Influence of Perfusion Defects on Survival after Coronary Revascularization

Simonsen, Jane Angel; Gerke, Oke; Tamadoni, Mohammad; Rask, Charlotte Krogh; Thomassen, Anders; Hess, Søren; Johansen, Allan; Mickley, Hans; Jensen, Lisette Okkels; Hallas, Jesper; Høilund-Carlsen, Poul Flemming

Published in:
European Journal of Nuclear Medicine and Molecular Imaging

Publication date:
2012

Document version
Final published version

Citation for published version (APA):
within 60 days; 4 patients who underwent revascularization or had any cardiovascular events between PET and ICA were excluded. Myocardial blood flow at rest (rMBF), at stress with adenosine (sMBF) and myocardial flow reserve (MFR=sMBF/rMBF) were estimated using the 1–compartment Lutlie model (Franceschini et al. 2010). Fractional shortening was also assessed using computer-based automated edge detection (QCA). MFR was divided in 3 groups: G1=MFR<1.5, G2=1.5<MFR<2 and G3=MFR≥2. Systolic stress was graded as non-significant (<50% or FFR ≥0.8), intermediate (50%-stenosis>70%) and severe (≥70%). Correlation between MFR and percentage of stenosis were assessed using a non-parametric Spearman test. Results: In G1 (44 vessels), 17 vessels (39%) had a severe stenosis, 11 (25%) an intermediate one, and 16 (36%) no significant stenosis. In G2 (13 vessels), 2 (15%) vessels presented a severe stenosis, 7 (54%) an intermediate one, and 4 (31%) no significant stenosis. In G3 (9 vessels), 0 vessel presented a severe stenosis, 1 (11%) an intermediate one, and 8 (89%) no significant stenosis. Nine of these 10 patients (90%) were referred from hospital files. Evaluated risk factors were: CACS ≥400 male gender, family history of coronary artery disease, hypertension, chronic renal insufficiency, diabetes, smoking, age >63 years, known IHD, inability to perform ergometer bicycle stress, and hypercholesterolemia. Median follow-up time was 980 days. End points were myocardial infarction or need for revascularization of significant coronary stenosis, death, and both death and revascularization. Results: CACS was >256 in patients (81%) and ≥ 400 in 62 patients. The annualized event rate of ischemic events or death was higher in the group of patients with CACS ≥ 400 (6.6%) compared to patients with CACS 0-399 (1.5%). When comparing ischemic events only the event rate was 4.6% and 0.9% in patients with CACS ≥ 400 and CACS 0-399 respectively. Cox regression analysis showed that CACS ≥ 400 (RR 3.4, p = 0.011, CI 1.3 to 9.0) and inability to perform ergometer bicycle stress (RR 4.8, p = 0.036, CI 1.1 to 21.4) were the most powerful predictors of ischemic events or death, whereas CACS ≥ 400 (RR 4.0, p = 0.034, CI 1.1 to 14.2), diabetes (RR 5.1, p = 0.016, CI 1.4 to 19.0), and male gender (RR 3.8, p = 0.059, CI 0.95 to 15.1) were the most powerful predictors of ischemic events only. Conclusion: CACS ≥400 is an important risk factor for ischemic events and death or ischemic events only in patients despite normal MPI and LVEF. CACS should subsequently be considered performed alongside MPI procedure.

OP143
Evaluation of calcium score among other risk factors in patients with normal myocardial perfusion and normal left ventricular ejection fraction as determined by 99mTc-sestamibi myocardial perfusion imaging

C. J. Madsen, K. F. Andersen, B. Zerahn; Dept of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University Hospital of Copenhagen, Herlev, DENMARK.

Aim: The aim of this study was to evaluate coronary artery calcium score (CACS) among other potential risk factors for cardiovascular events and/or death in patients with normal myocardial perfusion imaging (MPI) and normal left ventricular ejection fraction. Materials and methods: The study comprised 540 consecutive patients who underwent a CT attenuation corrected 99mTc-sestamibi myocardial perfusion imaging protocol with either ergometer bicycle- or pharmacological stress. Patients were referred to MPI by a cardiologist if they had an equivocal risk of ischemic heart disease (IHD), had a history of IHD with renewed suspicion of ICH, or prior to renal transplantation because of chronic renal insufficiency. A total of 318 patients were included on the basis of a normal myocardial perfusion distribution, a normal left ventricular ejection fraction (LVEF), and a successful assessment of CACS. Data on patient risk factors, history, and events were retrieved from hospital files. Evaluated risk factors were: CACS ≥400 male gender, family history of coronary artery disease, hypertension, chronic renal insufficiency, diabetes, smoking, age >63 years, known IHD, inability to perform ergometer bicycle stress, and hypercholesterolemia. Median follow-up time was 980 days. End points were myocardial infarction or need for revascularization of significant coronary stenosis, death, and both death and revascularization. Results: CACS was >256 in patients (81%) and ≥ 400 in 62 patients. The annualized event rate of ischemic events or death was higher in the group of patients with CACS ≥ 400 (6.6%) compared to patients with CACS 0-399 (1.5%). When comparing ischemic events only the event rate was 4.6% and 0.9% in patients with CACS ≥ 400 and CACS 0-399 respectively. Cox regression analysis showed that CACS ≥ 400 (RR 3.4, p = 0.011, CI 1.3 to 9.0) and inability to perform ergometer bicycle stress (RR 4.8, p = 0.036, CI 1.1 to 21.4) were the most powerful predictors of ischemic events or death, whereas CACS ≥ 400 (RR 4.0, p = 0.034, CI 1.1 to 14.2), diabetes (RR 5.1, p = 0.016, CI 1.4 to 19.0), and male gender (RR 3.8, p = 0.059, CI 0.95 to 15.1) were the most powerful predictors of ischemic events only. Conclusion: CACS ≥400 is an important risk factor for ischemic events and death or ischemic events only in patients despite normal MPI and LVEF. CACS should subsequently be considered performed alongside MPI procedure.

OP144
High Dosage Nicorandil Administration on PCI in Initial ST Elevated AMI Patients Can Bring Beneficial Effects.

Purpose/Methods: Nicorandil administration in AMI patients was reported to reduce infarcted myocardium and prevent left ventricular (LV) remodeling. In addition, high dosage (HD) NCR administration was reported to be effective to CHF. To clarify whether HD nicorandil administration in AMI patients was more effective to salvage myocardium than low dosage (LD) nicorandil administration, 30 patients (age=62±10; M/F=M/F=26/4) with initial AMI with ST segment elevation undergoing successful percutaneous coronary intervention (PCI) were enrolled. Patients were divided to HD group (15patients) and LD group (15patients) at random. HD nicorandil administration was intravenous (0.2 mg/kg/minute), intracoronary (2mg), and continuous (0.2mg/kg/hour for 24hours) administration. LD nicorandil administration was intravenous (4mg), intracoronary (2mg), and continuous (4mg/h for 24 hours) administration. Tc-99m MIBI QGS was done on subacute and chronic period (6 to 9 months). LV ejection fraction (LVEF), end diastolic volume (EDV) and end systolic volume (ESV) using Tc-99m MIBI QGS were calculated. Total coxs model (TC) was calculated by the summation of 5-point grading defect score (0=normal perfusion to 4=perfusion defect) of 17 SPECT segments. Total cox score (ES) was calculated by the number of hyperperfusion and perfusion defect segments. Exercise tolerance was estimated by anaerobic threshold oxygen consumption (AT-VO2) and peak oxygen consumption (Peak-VO2) using carldopulmonary exercise test (CPX). Result: There were no significant differences between HD group and LD group in CPK, BNP, AT-VO2 and saucise and chronic EF, EDV and ESV. Some results of HD group were significantly better than LD group in subacute TDS (HD: 8.6±5.7 vs. LD: 16.0±14.4 p=0.01), chronic TDS (HD: 7.2±6.6 vs. LD: 13.7±11.7, p=0.04) and chronic Peak-VO2 (HD: 23.5±4.8 ml/min/kg vs. LD:17.8±4.5 mi/min/kg p=0.004). Conclusion: High dosage nicorandil administration in AMI patients was effective to reduce myocardial infarction and improve exercise tolerance in comparison with low dosage nicorandil administration.

OP145
Influence of Perfusion Defects on Survival After Coronary Revascularization

J. A. Simonsen, O. Gerke, M. Tammadori, C. Raskl, A. Thomassen, S. Hess, A. Johansen, H. Mickley, L. O. Jensen, J. Hallas, P. F. Huland-Carlsen; 1 Odense University Hospital, Odense C, DENMARK, 2University of Southern Denmark, Odense C, DENMARK.

Aim: To test the hypothesis that with reversible ischemia by myocardial perfusion scintigraphy (MPS) the prognosis in terms of survival is more favourable following revascularization. Materials and Methods: We conducted a review of 6 years’ MPS perfusion studies for suspected obstructive coronary artery disease. A total of 1157 patients referred for suspected obstructive coronary artery disease. Perfusion defects were graded using the summed stress score (SSS) and a 20-

S181

OP – Sunday

segment model: 0normal and 1, 2, 3, and 4 = slightly, moderately, severely and completely compromised perfusion. Data from up to ten years’ follow-up were derived from national registers. Results: One fourth (N=527) had either reversible (N=324) or mixed perfusion defects (N=203). Of these, 184 underwent coronary revascularisation within 180 days following MPS (group 1), whereas 65% received medical therapy (group 2). Mean follow-up was 5.0 years (range 0.2 – 9.4). Groups 1 and 2 were comparable regarding sex, age, history and ejection fraction (N=255), but differed by SSS (12.8±0.9 vs. 9.5±0.4, p<0.001, N=341), defect size (more large defects in group 1, p<0.0001), and reversibility (higher degree of reversibility in group 1, p<0.0001). All-cause death incidence rates were 3.5% and 4.3%, respectively. A total of 105 (20%) died: 34 (19%) in group 1 and 71 (21%) in group 2 (NS). Perfusion defects were small (SSS 4-6) in 23% (45%), moderate (SSS 9-13) in 131 (25%), and large (SSS >13) in 161 (31%). Of these, 20%, 37%, and 55%, respectively, were in group 1. The Hazard Ratios (HRs) for patients in group 2 having three defects sizes were 1.7 (p=0.31), 2.1 (p=0.11), and 1.9 (p=0.04), respectively. Mild, moderate or marked reversibility (reductions in SSS of ≤5%, 6-9%, or ≥10% of theoretical max 80), was found in 267 (51%), 135 (26%), and 125 (24%) of the 527 patients with 19%, 40% and 63%, respectively, in group 1. HRs in the corresponding subgroups in group 2 were 2.3 (p=0.07), 0.8 (p=0.59), and 2.7 (p=0.008), respectively. In 101 patients (19%) with limited reversibility, HR for medical therapy was 1.5 (p=0.31) compared to 1.7 (p=0.31), 2.2 (p=0.22), and 2.7 (p=0.01) in the 426 patients (81%) who had either i) a small defect, ii) a moderate defect with moderate or marked reversibility, or iii) a large defect with marked reversibility. Conclusion: For patients with large perfusion defects and defects with marked reversibility, the benefit of revascularization versus medical therapy was evident, as opposed to patients with smaller defects or defects with less extensive reversibility.

OP146 Ischemia but not necrosis is a predictor of post-stress LVEF drop 6 months after myocardial infarction: a gated myocardial perfusion SPECT study.

C. Genuancia1, A. Cochez2, L. Lorjis1, K. Stamboul1, O. Humbert2, M. Zelley Hospital Bronnète2, Y. Cotin1, University Hospital, DIJON, FRANCE, 2Centre Georges-François Leclerc, DIJON, FRANCE.

Background: Gated myocardial perfusion SPECT (gSPECT) is able to detect restenosis or progression of coronary artery disease early in the systematic follow-up of myocardial infarction (MI). Although post-stress left ventricular ejection fraction (LVEF) decrease is often associated with ischemia, its explanatory factors after MI are unclear. Aim: To identify the clinical and gSPECT characteristics associated with a 5% or more post-stress LVEF decrease in patients with earlier MI. Methods: Two-hundred and thirty six consecutive patients admitted to intensive care unit for acute MI were prospectively included. Six months after discharge, a post-stress/rest gSPECT procedure was performed according to a one day protocol. Post exercise-induced stress gSPECT images were acquired 10 to 15 minutes after intravenous injection of 3.7 MBq/kg of 99mTc-sestamibi. Rest gSPECT images were acquired 30 minutes after injection of 11.1 MBq/kg of 99mTc-sestambri and at least 4 hours after post-stress injection. End-diastolic volume, end-systolic volume and LVEF were determined using QGS™ software. LVEF drop was considered significant if post-stress LVEF ≤55% compared with LVEF at rest. Summed Stress Score (SSS), Summed Rest Score (SRS), and Summed Difference Score (SDS) were visually evaluated using a 17 segments model. Results: Post-stress LVEF drop was observed in 56 (24%) patients (group A). Demographic and infant characteristics were similar when compared with patients with unaltered post-stress LVEF (group B). Patients with LVEF drop had significantly higher SDS when compared with patients without unaltered LVEF (median (IQR): 2 (0-5) vs 0 (0-3) p=0.016); they also had more often significant ischemia (i.e. SSS>2) (48% vs 27% p=0.006) and severe ischemia (i.e. SDS>4) (14% vs 4%, p=0.024). Moreover, rest LVEF was higher in group A than in group B (62% [56-69] vs 56% [49-63] p=0.001). Multivariate logistic regression analysis identified significant ischemia (OR: 1.70; 95% CI: 1.85-7.38) and rest LVEF (OR: 1.07; 95% CI: 1.04-1.11) as independent associated factors of LVEF drop. Conclusion: In patients with previous myocardial infarction, a post-stress LVEF decrease ≥5% is associated with higher incidence of reversible perfusion defects. These results are in accordance with the myocardial stunning model and exclude the potential influence of an extended myocardial necrosis or left ventricular remodeling on post stress LVEF fall following MI.

OP147 Estimation of myocardium at risk and saved myocardium using myocardial perfusion gated-SPECT practiced one month after infarction

L. M. G. Sanchez, Santiago Aguadé-Bruix, Guillermo Romero-Farina, Nazarena Pizzi, Gemma Cuberas, Gustavo de León.; Hospital Universitari Vall Hebrón, Barcelona, SPAIN.

Objective: To estimate myocardium at risk (MR) and salvaged myocardium (SM) following percutaneous coronary revascularization (PCR) in patients with a first acute myocardial infarction (AMI), using myocardial perfusion gated-SPECT (gSPECT). Method. Forty patients (mean age 61.5 years, 8 women) with AMI and primary PCR were prospectively included. They underwent two gSPECT: the first one consisted in the injection of 800 MBq of 99mTc-tetrofosmin prior to the PCR (gSPECT-1). The first study (gSPECT-1) was performed when patient was considered stable immediately after PCR procedure. The second study (gSPECT-2) was performed between the fourth and fifth week following AMI. The area of real MR was quantified by assessing the perfusion defect in gSPECT-1, while the SM was measured by the difference between the MR area and the area of necrosis in gSPECT-2. The MR area in gSPECT-2 was calculated by analysing the discordance between the extension of the perfusion defect and the left ventricular motility defect. Quantification of left ventricular perfusion defects, wall motion, wall thickening, ejection fraction and ventricular volumes were assessed using the QGS software. Results. A significant improvement in perfusion, wall motion, thickening and left ventricular ejection fraction (p<0.001) was observed between gSPECT-1 and gSPECT-2. In gSPECT-2, significant discordance was observed (p=0.007) in cm2 between areas of wall motion and perfusion (extension of perfusion defect < extension of motility defect), making it possible to construct a model to estimate the extent of MR area that correlated well with real areas of MR and SM (Pearson correlation coefficient: 0.78). The degree of concordance for correct classification of patients with SM >50% was 83% (kappa: 0.6). Conclusions. Gated myocardial perfusion SPECT performed one month after early PCR in a first AMI can be used to establish an estimate of MR and SM areas. 409 — Sunday, October 28, 2012, 14:30 — 16:00, Brown 1 Symposium 4 - EANM/EAU Joint Session: Diagnostics and Therapy in Patients with Biochemical Recurrence after Primary Therapy

OP148a Introduction

G. Janetschek, AUSTRIA

OP148b PET/CT in Patients with Biochemical Recurrence after Primary Therapy

B. Krause, GERMANY

OP149 Salvage Therapy Options: Urology

B. Tombal, BELGIUM

OP150 Salvage Therapy Options: Radiation Oncology

V. Khoo, UNITED KINGDOM

410 — Sunday, October 28, 2012, 14:30 — 16:00, Brown 2 Neurosciences: Dopamine Imaging

OP151 Quantification and Whole-Body Distribution of a Novel Dopamine D2/D3 Receptor Agonist, [18F]MCL-524, in Monkeys: A Prediction for Application in Human Subjects

S. J. Finnema1, V. Stepanov1, R. Nakao1, N. Amin1, A. W. Sromek2, J. L. Neumeyer1, P. Seeman1, M. G. Stabin1, L. Farde1, C. Hallidin1; Karolinska Institutet, Stockholm, SWEDEN, 2McLean Hospital/Harvard Medical School, Belmont, MA, UNITED STATES, 1University of Toronto, Toronto, ON, CANADA, 1Vanderbilt University, Nashville, TN, UNITED STATES.

Aim: A fluorine-18 radiolabeled dopamine D2/D3 receptors agonist PET radioligand may be the optimal tool for investigation of the interaction between radioligand binding, endogenous dopamine and receptor trafficking in man. We recently reported the initial radiochemistry development of the promising agonist [18F]MCL-524 [1]. In the current study we performed a quantitative analysis of [18F]MCL-524 binding to central D2/D3 receptors and a whole body distribution study in nonhuman primates. Materials and Methods: A total of eight PET measurements were performed on six experimental days in four cynomolgus monkeys. Two monkeys were studied on two experimental days each using a HRRT PET system. On the first day two baseline PET measurements were performed after i.v. injection of respectively [18F]MNPA [2] and [18F]MCL-524. Arterial blood was obtained for

409 — Sunday, October 28, 2012, 14:30 — 16:00, Brown 1