Five homologous small RNAs are involved in the response of Listeria monocytogenes to cell wall acting antibiotics

Nielsen, Pia Kiil; Kallipolitis, Birgitte H.

Publication date:
2010

Document version
Final published version

Citation for published version (APA):
Nielsen, P. K., & Kallipolitis, B. H. (2010). Five homologous small RNAs are involved in the response of Listeria monocytogenes to cell wall acting antibiotics. Poster session presented at Five homologous small RNAs are involved in the response of Listeria monocytogenes to cell wall acting antibiotics, .

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 12. Dec. 2019
Five homologous small RNAs are involved in the response of *Listeria monocytogenes* to cell wall acting antibiotics

Nielsen PK and Kallipolitis BH

1Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK- 5230 Odense M, Denmark

Introduction

Listeria monocytogenes is a food borne pathogen which has the ability to survive and adapt to a wide range of extreme environments; e.g. low pH, low and high temperatures, high osmolarity and the presence of antibiotics. Small RNAs have been found to play a crucial role in stress adaption. Small RNAs exist in a multitude of organisms as stable RNA transcripts which range from 20-500 nt in size, and are typically encoded from intergenic regions. Regulation by small RNAs is mainly achieved through an antisense mechanism at the post-transcriptional level.

In *L. monocytogenes* more than 50 small RNAs have been identified so far, but the elucidation of their role is still in progress (3). The *Listeria* Hfq-binding RNA C (*LrC*) was originally found by co-immunoprecipitation with the RNA chaperone protein Hfq (1), which in both gram-positive and gram-negative bacteria, has been shown to enhance the antisense regulation of small RNAs (2,4). By computational approaches it was found that *L. monocytogenes* contains five homologous copies of *LrC*. *LrC*-4 are encoded from the intergenic region between cyuK and sal, whereas the fifth copy, *LhrC*, is encoded from the intergenic region between lam0946 and lam0947 (fig 1a).

Alignment of all five *LrC* copies shows a great variance in the promoter region, between *LhrC1*, *LhrC4* and *LhrC5*, whereas the coding regions of *LhrC1* are conserved (fig.1b).

Fig. 1a

Fig. 1b

LhrC1-5 are induced in response to cell wall stress

To understand the regulatory role of LhrC1-5, transcriptional fusion of the promoter region of *LhrC1, LhrC3* and *LhrC5* to lacZ were constructed and introduced into *L. monocytogenes EGD-e*.

Beta-galactosidase assays were conducted to point out which stress conditions *LhrC1-5* may respond to.

The promoter activity was examined in response to a random selection of environmental stress agents. Samples were extracted at 0, 30 and 60 minutes of stress, respectively (fig. 2a-2c).

All five small RNAs are induced in response to the presence of cell wall stress agents such as ethanol and cell wall acting antibiotics.

Fig. 2a

Fig. 2b

Fig. 2c

LhrC1-5 are fully dependent on the two component system LisRK

To analyze the promoter activity and transcription of LhrC1-5 in mid-exponential growing cells upon the addition of ethanol and beta-lactam antibiotics, we conducted beta-galactosidase assays (2% ethanol, 4 ug/ml Cefuroxime and 0.1 ug/ml Penicillin G) and quantitative real-time PCR (4 ug/ml Cefuroxime) experiments. The oligos used for qPCR were designed to recognize all five copies of LhrC. Results from fig. 2a-c indicate that LhrC1-5 are induced in response to conditions that activate the two-component systems LisRK and CesRK. Mutants lacking LisR and CesR were therefore included in these assays.

The expression of LhrC1-5 is fully dependent on the presence of transcription factor LisR (fig. 3a and 3b). The response regulator CesR adds another layer of complexity to the regulation of LhrC1-5 expression (fig. 3a).

Fig. 3a

Fig. 3b

LhrC1-5 stability does not depend of the Hfq chaperone

To examine whether the chaperone Hfq affects the stability of LhrC1-5, a stability assay was performed, including a wildtype EGD-e strain and a mutant lacking Hfq. LhrC1-5 were induced by the addition of 0.1 ug/ml penicillin G. The RNA turnover was followed after the addition of rifampicin at time 0 min (which equals 30 min of induction by pen G). Samples were extracted at time -2, +2, +4, +8, +16 and +24 min relative to addition of rifampicin.

By northern blotting using a probe recognizing all five small RNAs, it is observed that Hfq does not affect the stability of LhrC1-5 (fig. 4).

Fig. 4

References

Perspectives

To summarize:

- All five *LhrC* were originally identified as Hfq-binding small RNAs (2).
- Alignment of all five *LhrC* copies shows a great variance among the promoter regions of *LhrC1, LhrC4* and *LhrC5*, whereas the transcribed regions of *LhrC1* are highly conserved (fig. 1b).
- All five small RNAs are induced in response to the presence of cell wall stress agents (fig.2a-c).
- The expression of *LhrC1-5* is fully dependent on the presence of transcription factor LisR. Response regulator CesR adds another layer of complexity to the regulation *LhrC1-5* expression (fig. 3a).
- Hfq does not affect the stability of *LhrC1-5* (fig. 4).

The gene regulation downstream of *LhrC1-5* is currently being pursued; do they act as antisense RNAs in an additive, redundant or hierarchical fashion, or by combination of these mechanisms? The answer may lead to an understanding of how *L. monocytogenes* endure the presence of cell wall acting agents in the environment.