Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala; Skou, Eivind Morten

Publication date:
2011

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 11. Dec. 2019
For polymer electrolyte membrane fuel cells (PEMFC) using hydrogen as fuel and operating at low temperature (60-80°C), the most efficient catalysts for the hydrogen oxidation reaction (HOR) are platinum alloys. Similarly, at the air side of the fuel cell, platinum is the most efficient catalyst for the oxygen reduction reaction (ORR). To reduce the cost of the noble metal catalyst, though maintaining a high catalytic activity towards the HOR and ORR, small metal nanoparticles in the size range 1-5 nm are deposited or grown onto an electrochemical and inert support material. [1, 2] The support material preferred due to its anchoring abilities is Vulcan XC-72 carbon black. Suitable electrochemical surface area (ESA) is obtained with platinum loadings of approximately 20 wt.%, for platinum supported by Vulcan XC-72 carbon black. [3]

At fuel cell operation the catalyst particles are subjected to very harsh conditions, such as low pH, high potential drop and a warm and humid environment, which is needed for the proton-conducting membrane to operate.

Defect characterisation of carbon substrates
Electron spin resonance (ESR) spectroscopy relates the carbon signal ratio between isolated spins at structural irregularities and conductive carriers associated with electron conduction bands between graphene layers (figure 1). The measurements were performed with annealed (800°C) magnesium oxide as internal reference and diluting material.

Raman spectroscopy and X-ray photon spectroscopy (XPS) are surface sensitive spectroscopy methods used for CNT dispersion evaluation and carbon species determination (figure 2). [6-9]

Peroxide formation
For fuel cells the transient species investigated is hydrogen peroxide (H₂O₂) formed during the ORR. Hydrogen peroxide breaks chemically down into hydroxyl radicals (OH•), which may cause membrane degradation and carbon corrosion.

To evaluate the species produced during cell operation, the RRDE can be used to measure transient species formed during the potential sweep (figure 3).

Electrode preparation and dispersion properties
The preparation of the RDE and RRDE working electrodes, used for characterisation of fuel cell catalysts, is performed by preparation of a dispersion/ink, jetting the desired amount and applying it to the electrode disc surface. Upon drying in inert atmosphere, a drop of Nafion® dispersion is applied and dried in order to form a <0.2 µm thick porous Nafion® layer (figure 4). [10]

To evaluate ORR effects properly the preparation of well dispersed catalyst on the electrode surfaces is needed, which previously promotes great challenges.

To disperse the different carbon nanostructured supports and supported materials different auxiliary agents such as solvents, dispersing agents and nanohalides can be used (figure 5).

OHR kinetic properties have been investigated by using PVP for dispersion (figure 6).