The impact of cultivation techniques on bioactive compounds in the aerial parts of Echinacea purpurea

Thomsen, Maria Obel; Fretté, Xavier; Christensen, Lars Porskjær; Grevsen, Kai

Published in:
Book of abstracts of the 28th International Horticultural Congress (IHC)

Publication date:
2010

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 13. Apr. 2020
Sm08

A NEW LOOK AT MEDICINAL AND AROMATIC PLANTS

Sm08.001
A New Look at Medicinal and Aromatic Plants

Matthé, A.
University of West Hungary, Faculty of Agriculture and Food Industry, H-1113, Városi u. 2, Mohosnakutató-Központ, Hungary

Herbs, Medicinal and Aromatic Plants (MAPs) have been utilized in various forms, since the very early periods of mankind. Even until recently, these resources were exploited nearly without any major limitations. The initial basic curative role of MAPs has been maintained, since even today 80 % of the world’s population relies primarily on traditional medicines. In the developed parts of the world, however, an opposite new trend has emerged, i.e.: To seek natural alternatives to using conventional drugs, food and cosmetics, etc., with lesser side effects. As a counterpoint to their basic traditional culinary, as well as food industry uses to-date MAPs are intensively consumed in the form of food supplements and food additives. More recently feed-additives have gained on popularity. They offer natural alternatives with less side effects to animal and ultimately to human consumption, instead of the synthetic chemicals and production increasing hormones, formerly used in animal husbandry. All these, and farther, here not detailed factors, seem to maintain a varying and even increasing huge demand on these commodities of already limited availability. A New Look, a different holistic focus and R+D action is needed to improve and sustain a vibrant and socio-economically sound MAPs sector. Main elements of this can be best related to the sources of raw material production: The primary resource for raw materials is wild-crafting with some over nine tenths of MAPs used traditionally gathered in the so called Third World Countries. The huge demand has already lead to the overexploitation of natural resources, thus also endangering valuable incomes for rural households, especially in developing countries. Consequently, the sustainable use of natural resources has become an inevitable imperative from both environment protection and socio-economical points of view. Farther efforts should be made to secure a steady stream of raw material supply of these important species by in situ and/or ex situ production technologies. In addition to conserving and farther improving the germplasm of traditionally cultivated species, the domestication/introduction of farther crops is needed. Sophisticated in vitro micropropagation and breeding (selection) technologies aided by advanced phytochemical and molecular biological analytical techniques can farther assist this process. Ultimate goal of these efforts should be to assist the recent upsurge in improving the traceability and safety (reliability) of natural products, as well as the appropriate policies and legal frameworks to guide the protection, production (including organic production), trade, and applications of medicinal and aromatic plant materials (GWP, GAE, GCP, GMP, etc.).

Sm08.002
Hybrid Condiment Paprika Breeding and Adaptation of Agrotechnical Methodology in Hungary

Somogyi, N.; Somogyi, G.; Pauk, J.; Taborosine Abraham, Z.; Lantos, C.; Gemesne Juhasz, A.; Marotine Toth, K.; Garcia Pomar, M. I.; Somogyi, B.

The authors would resolve the future of the condiment paprika production – at least partly – with the forcing house production of new, Hungarian bred hybrids. For this purpose the authors: - bred and announced for registration three new condiment paprika hybrids, - worked out the production technology of shoot regeneration for condiment pepper hybrids, adapted successfully the applied methods of shoot regeneration for sweet pepper production, - defined the fundamental correlation between the mode of cultivation and the yield quantity and the nutritional value, - proved that during the development process the tested lines were significantly different in yield quantity and quality, and these features are mainly determined by their genetic background, - based on their observation they are supporting the fact that to breed such hybrids, which can be effectively produced, it is suggested to produce the parental lines from European varieties, - proved that the breeding process of the Hungarian condiment paprika can be successfully and cost-effectively speeded up by exploiting the seasonal variations in the environmental parameters. In the breeding phase of the experiment 41 local and foreign lines were used in the crossings and during the four-year-long line surveys around 800 combinations were evaluated based on many thousands of samples. In the course of the agrotechnical experiments they examined the effect of the supporting system, the type of pruning, and the time of harvesting on the quantity of yield as well as on the nutritional values. Based on the results they formulated a recommendation for the producers, who were crucial participants of the breeding work.

Sm08.003
Selection of Sponge Gourd Genotypes High in Productivity and Identification of Anti-Microbial and Anti-Oxidant Activity Characteristics

Moon, J.; Lee, J.; Boo, H.; Choi, E.; Son, S.; Lee, W.; Cho, I.

National Institute of Horticultural and Herbal Science, RDA, Imok-dong, Jangan-gu, 440-706, Suwon, Gyeonggi-do, Republic of Korea

Sponge gourd (Luffa sp.) plant is a potent material to be an effective health care food due to its natural characteristics of anti-inflammatory activity. As an initial step of breeding new genotypes high in productivity of sap exudates and biomass, total 32 genetic resources collected from local and overseas were screened. Twenty-five of them are included in the species of Luffa cylindrica and five of them are included in the species of Luffa acantigia. There was a high genotypic variation in productivity of sap exudates, which had a negative correlation with productivity of biomass in the genotypes of SG2, SG5 and SG24. Several genotypes introduced from overseas, including SG1, SG11, SG14, SG17, SG19, SG21 and SG26, had higher productivity of sap exudates and biomass than local ones. The worst productivity of sap exudates was observed in the genotypes of SG3, SG8, SG25, SG27 and SG30. The antimicrobial and anti-oxidant activities were analyzed in various plant parts, including sap exudates of stem (basal 50 cm), fresh plant tissues (stem, leaf and root), flowers, fruit flesh, fruit rind, and seed of one local variety. A significantly higher antimicrobial activity against Malassezia furfur was observed in the root tissue and sap exudates, while the activity against Candida albicans was higher in the leaf tissue and sap exudates compared to other parts. When the activities of antioxidant enzymes, including ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase activity (SOD), were compared, significantly lower activities were observed in stem tissue than other parts.

Sm08.004
Nitrogen Fertiliser Requirements for South African Medicinal Plant Species Used in Traditional Healing Practices

Prinsloo, G.; Viljoen, J. C.; Du Plooy, C. P.

Agricultural Research Council, Biosalvec Vegetable and Ornamental Plant Institute, Private Bag X283, 0011, Pretoria, Gauteng, South Africa

The question of whether South African medicinal plants can be cultivated to meet rising demand for medicinal plants in traditional healing practices is a burning
matter. The demand for medicinal plants is related to the great cultural signific-
ance attached to medicinal plants. The growing demand has not only resulted in
increased hazard for overexploitation of wild populations, but also an increased in-
terest in cultivation. The intensive harvesting of medicinal plants due to increased
use has in many places resulted in overexploitation and forms a serious threat to
biodiversity. This results in acute shortages and price increases for certain plant
species. Very little information is available on growing and cultivation of South
African medicinal plants. The effect of nitrogen fertilizer on the yield, chemical
composition and antibacterial activity have been determined for three medicinal
plant species used in traditional healing practices in South Africa namely Artemisia
afra, Leonotis leonurus and Sutherlandia frutescens. Different sources of nitrogen
(uurea, lime ammonium nitrate and ammonium sulphate) and different levels of
fertilizer (0, 180, 240 300 and 360 kg N·ha⁻¹) were applied as treatments. The fresh
plant material was weighed and subjected to chromatographic and bioassays. The test
organisms which were used in the bioassay were Staphylococcus aureus, Escherichia coli and Enterococcus faecalis. All the species reacted positively with
addition to the three nitrogen sources with most of the treatments showing a
significant increase in the fresh mass yield with the lowest level of fertilizer applied.
Leonotis leonurus and Artemisia afra achieved the highest yield at 180 kg N·ha⁻¹
ammonium sulphate and Sutherlandia frutescens at 180 kg N·ha⁻¹ ureum. The
cromatographic analysis confirmed that no major changes occurred in the plant
during the duration of the trials.

Sm08.005

Variability Agronomic, Chemical and Essencial Oil Yield of Cultivars Garlic (Allium sativum L.) of the State of São Paulo, Brazil

Teramoto, J. R. S.; Pantano, A. P.; Trani, P. E.; Marques, M. O. M.; Haber, L. L.; Schammas, E.

Instituto agronômico - IAC, Av. Barão de Pernambuco, 531, DF, Postal: 28, Plantas Aromáticas e Medicinais, 13015-770, Campinas, São Paulo, Brasil.

**Instituto agronômico - IAC, Av. Barão de Pernambuco, 531, DF, Postal: 28, Plantas Aromáticas e Medicinais, 13015-770, Campinas, São Paulo, Brasil.*

**Instituto agronômico - IAC, Av. Barão de Pernambuco, 531, DF, Postal: 28, Plantas Aromáticas e Medicinais, 13015-770, Campinas, São Paulo, Brasil.*

Instituto de Zootecnia - IZSTAD, Avenida Max Peres, 106 - Nova Odessa, SP, Brasil, CEP 14160-000, Brazil.

The therapeutic activity of garlic is too extensive and can combat cardiovascular
disease, acting as anti-neoplastic and also has antimicrobial, anti-
oxidants and immune system. The pharmacological effect of garlic has been at-
tributed to sulfur compounds obtained by the degradation of alliin, abundant in the
tissues of the plant. The state of Sao Paulo has some of garlic cultivars and the
IAC through germplasm bank has been developing new varieties and more
productive with better medicines. Based on a study of the IAC itself that led to the
classification of 72 cultivars, using the technique of gel electrophoresis as-
sociated with morphological characterization, it was the 20 distinct groups, yet
the chemical characteristics at the time were not considered. This work aims to
characterize the volatile fraction of 16 varieties among groups of cultivars based
on sulfur compounds which attribute medicinal properties to the plant in order
to identify the best cultivars based on qualitative and quantitative aspects of the
main active ingredients present the characteristics associated traits. The extrac-
tion of essential oils was made by hydrodistillation. The chemical analysis was
conducted on a gas chromatograph coupled to mass spectroscopy, identification of
chemical constituents was performed using the comparative analysis of mass
spectra of substances with the database of the GC-MS and retention index.
The results were submitted to analysis of variance and means compared by Tukey
test. To perform the analysis, we considered each individual treatment, with 3
replicates of injection and each chemical was considered a variable to the already
adopted agronomic statistically the Scott-Knot. It was observed that the yield
and relative proportions of principals’ components for the 16 varieties showed
difference. The yield ranged from 0.77 to 6.24%, while the relative proportion of
disulphide and triosulphide, ranged from 19.62 to 55.27% and 33.55 to 72.48%,
respectively.

Sm08.006

Intercropping Studies and Integrated Nutrient Management in Ashwagandha (Withania somnifera Dunal)

Kattimani, K. N.

Belgium, 501 135, Gorakhpur, India.*

Ashwagandha (Withania somnifera Dunal.) belonging to the family Solanaceae, is
an important medicinal crop cultivated in India under rainfed situations. Roots
prescribed for hiccup, bronchitis, rheumatism, dropsy and curing general sexual
weakness in human. Intercropping of ashwagandha with pigeon pea (Cajanus
cajane) revealed that significantly highest gross and net returns of Rs. 35,625 and
Rs. 21,625 per hectare respectively, were obtained in intercropping system (Two rows
Ashwagandha and one pigeon pea) followed by sole crop of ashwagandha. The
lowest returns were recorded in sole pigeon pea. The highest B:C ratio of 2.54 could
be recorded in intercropping system with good quality roots. The total alkaloid con-
tent in the roots was not affected by intercropping system. Significantly maximum
plant height of 66.34 cm was recorded as the crop was supplied with both organic
and inorganic sources of fertilizers (2.5 t FYM + 0.5 t vermicompost + 30:40:30 kg
NPK/ha). Significantly highest number of branches was recorded as the crop was
supplied with 2.5 t FYM + 1.0 t vermicompost and 30:40:30 kg NPK/ha. The root
length was not influenced by both organic and inorganic sources, but root diameter
was influenced by the inorganic fertilizer application. However, significantly higher
root yield of 1170 kg/ha was obtained as the crop was supplied with 5.0 t FYM + 1
vermicompost +30:40:30 kg NPK/ha. Application of farm yard manure (5 t/ha) had
significant effect on total alkaloid content (0.204%). Combined application of
N, P, O2 and K2O had negative effects on total alkaloid content in the roots. The
study included problems faced by the ashwagandha growers, which was collected
with the help of personal interview techniques using well-prepared schedule.
High cost of seeds, poor germination, and lack of technical information on processing
and unorganised market was identified as main problems by the growers.

Sm08.007

The Effect of Variety and Row Distance on Yield and Quality of Pot Marigold

Crnobarac, J.; Jacimovic, G.; Marinkovic, B.; Latkovic, D.; Ballajic, J.

Faculty of Agriculture, sq. d. Obaderine f. 11.001, Novi Sad, Serbia.

Biotechnical Faculty, sq. D. Obradovica 8, 21000, Novi Sad, Serbia.

Calendula or pot marigold (Calendula officinalis L.) is very well-known garden plants,
producing large numbers of yellow-orange flowers over a long period. This species
apart from its use as an ornamental, has traditional culinary and herbal uses. The aim
of this paper was to find the best adapted variety and optimal row distance, concern-
ing flowers and petals yield and quality. Trial was conducted in 2006-2007 at experi-
mental field of Institute of Field and Vegetable Crops at Rimskih Sandevi (p 45°20’ N,
λ 19°51’ E), Novi Sad, Serbia. The experimental design was a randomized complete
block design with a split-plot arrangement, where the main plots were cultivars and
the sub-plot row distances. There were 4 cultivars: ‘Bački Petrovac’, ‘Orange King’
(originated from Serbia), ‘Plamen’ and ‘Plamen Plus’ (from Czech Republic) and 4
row distances: 40, 50, 60 and 70 cm with constant 10 cm between plants in row. Ac-
grinding to ANOVA year had significant effect only on dry flowers yield. Variety had
very significant effect on fresh and dry petals yield, the Plamen Plus had the highest
and Backi Petrovac the lowest. Row distance had very significant effect on fresh and
dry flowers and petal yields, the values regularly increased from 70 to 40 cm, where
was the highest. Interaction was very significant between year and variety for all
traits, in 2006 the best was Orange King and in 2007 Plamen Plus. The quality of
dried flowers and petals was significantly affected only by varieties. Content of essen-
tial oils in flowers was in range from 0.32-0.50 ml/100, in petals 0.11-0.33 ml/100g
and was the highest at Czech variety Plamen. Highest content of total flavonoids
(11.92%) and total phenol substances (1.37%) in petals had domestic variety Bački
Petrovac, while it’s content in flowers was the highest in variety Plamen Plus.

Sm08.008

Effect of Picking Time on Essential Oil Yield of Ylang-Ylang (Cananga odorata)

Muchjajib, U.; Muchjajib, S.

Kasetsart University of Technology, Suranaree, 80300 Mueang, 13000, ATTUTHONG, THAILAND

Ylang-ylang (Cananga odorata) (Lam.) Hook. & Thomson, a member of the Annonaceae Family is a tropical medium-tall tree reaching a height of 10-20 metres. It produces flowers nearly all year round and the peak season is in rainy season during May-September. Ylang-ylang flowers have a fresh, sweet and oriental floral aroma. The essential oil obtained from ylang-ylang flowers has long been used in fragrance and food flavoring industry and today it is a popular component of many legendary perfumes and aroma formulas in spa business for health and beauty. The study was aimed at finding the optimal harvesting time for ylang-ylang flowers to maximize the essential oil yield. There were 4 experiments: different time of picking and distilling, different stages and sizes of flowers. The results have shown that picking flowers at 8:00 am and 12:00 noon and 6:00 pm gave 0.42, 0.40 and 0.35% v/w while picking flowers at 8:00 am and the hydro-distilling process done at 9:00 am, 1:00 pm and 5:00 pm gave 0.45, 0.44, and 0.44% v/w. Yet when the distilling time done at 9:00 am of the following day, it resulted in high amount of essential oil with 0.67% v/w. It was clearly seen that the stages and sizes of flowers affected the essential oil yield. The percentage of essential oil yield from the immature green stage, the mature greenish-yellow stage and the late yellow stage were 0.25, 0.41 and 0.31% v/w. The large flowers (1.37 x 7.14 cm; 1.91 g/flower) gave the greatest amount of essential oil with 0.74% v/w whereas the medium (1.20x5.87 cm; 1.56 g/flower) gave 0.47% v/w. The flowers of small size (1.18 x 5.08 cm; 1.10 g/flower) gave only 0.16% v/w. The main constituents of the extra grade of ylang-ylang essential oil extracted from hydro-distillation method analyzed by Gas chromatography/Mass spectrometry were as follows: geranyl acetate (18.28 %), benzyl benzoate (14.42%), geraniol (10.92%), transcaryophyllene (10.71%), and geraniol (8.44%).

Sm08.009

Agronomic Production and Essential Oil of Ocimum basilicum L. in Different Systems, Fertilization and Season Cultivation

Resende, R. F.; Luz, J. M. Q.; Camilo, J. S.; Blank, A. F.

Federal University of Uberlandia, Av. UFU, Cidade Universitária, AGRICULTURAL SCIENCES INSTITUTE, 38400-902, Uberlandia, MINAS GERAIS, BRAZIL

Faculty of Agriculture, Kinki University, Japan

Evaluations the agronomic production and yield of essential oil of Ocimum basilicum L. produced in different systems (field, greenhouse), different types of fertilizer (mineral and organic) and different seasons the year (spring-summer / autumn-winter). The experiment was conducted at Farm Experiment of the Gloria (PUU), Uberlandia, Minas Gerais state. The delineation was entirely randomized, in factorial design 2 x 2 with five repetitions. As source of nutrients have used chicken manure for the organic and NPK (4-30-16) for the mineral fertilizer. It was used the cultivar Maria Bonita and the spacing used was 60 cm x 30 cm. The bed had 10 plots each plot with 20 plants. Five plots received organic manure, and the other five, mineral fertilizer. The crops were taken in the morning on 20/05/2008 and on 20/05/2009, when the plants were in full bloom. The variables analyzed were height, length and width of leaves, fresh and dry mass, yield and composition of essential oil. The essential oils were extracted by hydrodistillation with Clevenger type apparatus, for two hours. The data were subjected to analysis of variance joint and means compared by T ukey test (p ≤ 0.05). There was no interaction between type apparatus, for two hours. The data were subjected to analysis of variance joint and means compared by T ukey test (p ≤ 0.05). There was no interaction between type apparatus, for two hours.

Sm08.010

Traditional Uses of Organic Medicinal Plant Species

Madalen0, I. M.

PORTUGUESE TROPICAL RESEARCH INSTITUTE, RUA ANDRADE, 8-2° 2, 1170-015, LISBON, PORTUGAL

Medicinal herb species constitute a valuable resource for low-income residents. They can be found in Latin American front and backyards, tended by the household members in a co-operative manner, without usage of chemicals. In 1998, the Portuguese Tropical Research Institute has initiated field research in the Brazilian Amazon, focusing urban agriculture practices within the municipality of Belem. So far, five other cities have been investigated regarding traditional medicinal knowledge: Lima (Peru), Santiago (Chile), Mexico City (Mexico), Havana (Cuba) and San Jose (Costa Rica). Research results on the issue of organic medicinal herb production in urban and periurban areas will provide support and build confidence in the traditional uses of medicinal plant species. Hope is to contribute for a healthier urban environment and to present information for researchers and farmers engaged in the production, evaluation, or use of herbal medicines.

Sm08.011

Major Aroma Ingredients of Lilium Oriental ‘Siberia’ and its Effect on Human

Pan, H. T.; Sun, M.; Jin, Z. L.; Yang, W. R.; Kong, Y.; Zhang, Q. X.

Beijing Forestry University, National Engineering Research Center for Floriculture, No. 35, Qingshui East Road, 111, Beijing, CHINA

School of Landscape Architecture, Beijing Forestry University, No. 35, Qingshui East Road, Beijing, 100083, CHINA

Flower aroma from lilium oriental hybrids is strong and easily identified. The volatile fragrance compounds released from fresh cut flowers of lilium oriental hybrids Siberia, were analyzed by dynamic headspace collection and gas chromatography - mass spectrometry (GC-MS). The main aromatic ingredients were Homomethenyl salicylate (25.98%), 1,6-octadien-3-ol,3,7-dimethyl Linalool (10.61%), 1,3-6-oc-tatene, 3,7-dimethyl-cis-octene (7.81%) and Hexadecanoc acid 1-methylheptyl ester (6.54%). As related biological targets had been mensurated, lily aroma made subjects brain boost β wave amplitude and the rate of galvanic skin response (GSR) ascended. That shows that the subjects are caused sympathetic activity, which reacts the Linalool’s effects. Linalool is a kind of monoterpene alcohols, has obvious stimulative effect on human biological and psychological targets. With the assistant of questionnaires, the study demonstrates that lily scent has a high recognition and most people describe the lily scent as relaxed, excited, enjoyable and other word bonuses.

Sm08.012

The Relationships between Lavender Aroma Component and Aromachology Effect

Tomi, K.; Hayashi, T.; Fushiki, T.; Yazawa, S.; Murakami, H.; Matsumura, Y.

faculty of agriculture, kyonko university, gokasho, 511-0111, yoshino, yamato, japa

Faculty of Agriculture, Kinki University, Japan

It is widely accepted that aromas from plant essential oils show some mental and physiological effects that are often called ‘Aromachology’ effects. However, there are few reports exhibiting the clear scientific evidence on aromachology effects of essential oil. In this study, we tested aromachology effects of essential oils from two lavender (Lavandula angustifolia and L. intermedia), Lavender essential oil is believed to have relaxing effects. POMS (Profile of Mood States) test was tried to reveal the mental effects of the oils on human volunteers. Some relaxing effects such as decrease of ‘Fatigue’ feeling were observed by giving aroma of both the lavender essential oils. Power spectral analysis on R-R intervals of heartbeat was used for evaluating the physiological effects of the lavender oils on human autonomic activity. Aroma of the lavender oil from L. angustifolia (called ‘true lavender’) caused a increase of human parasympathetic nerve activity, but the oil from L. intermedia
didn't show such an effect. To reveal key compounds causing such a difference in the physiological effect, volatile compounds of the essential oils were analyzed by GC and GC-MS. The similar contents of linalool and linalyl acetate were included in both the essential oils, but the content of camphor was higher in the oil of l-
vandin. Since camphor is believed to have the ability increasing sympathetic nerve activity, this compound may offset the relaxing effects of linalool and linalyl acetate.

Sm08.013

Estimation of Genetic Parameters in a Linalool-Type Basil Population

Blank, A. F.; Souza, E. M.; Paula, J. W. A.; Carvalho Filho, J. L. S.; Rosa, Y. R. S.; Alves, P. B.; Arrigoni-Blank, M. F.

Instituto de Meio Ambiente - UFRGS, Av. M. Saldanha, 83, 90035-970, Porto Alegre, RS, Brazil

Basil (Ocimum basilicum L.) is an aromatic and medicinal plant species of great economical importance, mainly owing to its essential oil content. The available Ocimum sp. genotypes vary considerably in the production and active principles of essential oil. This study aimed to estimate genotypic and phenotypic yield-related parameters and genetic gain after selection in three generations of selfing. The ac-
cessions were evaluated and selected based on individual plant selection in the S0 (original population) and S1 and S2 generations of selfing, for essential oil content and linalool content in essential oil. There were significant yield increases for both variables with gains of up to 234% for essential oil content and 71% for linalool content, indicating efficiency in the selection process. The estimates of the genetic variance and heritability, associated to high yield values, suggest the possibility of developing a new basil cultivar.

Sm08.014

Effect of the Different Plant Origin and Climatic Conditions on the Total Phenol Content and Total Antioxidant Capacity of Self-Heal (Prunella vulgaris L.)

Sárosi, S.; Bernáth, J.; Bertoll, A.; Pistelli, L.; Burchi, G.; Antonetti, M.; Benvenuti, S.

Institute of Medicinal and Aromatic Plants, Commercial University of Budapest, József téri 8, H-1190, Budapest, Hungary

Department of Pharmaceutical Sciences, University of Pisa, Via Bonanno 33 56126, Pisa, Italy

Department of Botany, University of Pisa, Via Vincenzo Grassi 3, 56126, Pisa, Italy

The cultivation methods for medicinal plants ought to guarantee higher yields of active constituents in the final products. However, due to the predicted climatic changes, the present agricultural systems have to be modified. According to previous reports, the quality and quantity of active constituents accumulated in medicinal plants are highly affected by climatic conditions. Climatic changes will result in several stress effects on the plants both under cultivation and in their natural habitats. In the last years it was proved that the accumulation of several terpenoids and phenol compounds can increase as a result of stress response reactions. Since phenol compounds can be regarded as "multifunctional" antioxidants due to stress effect, the amount of these chemical substances can raise significantly. Self-Heal (Prunella vulgaris L.) populations were evaluated in different habitats of Hungary and Italy in 2007. According to our results, the total phenol content (TPC) as well as the total antioxidant capacity (TAC) of the samples was affected by the summer, warmer weather conditions in Italy. In fact, plants coming from Monte Pisani and from the Botanical Garden of Lucca were characterised by significantly higher TPC (0.6±0.05 and 0.7±0.01 mg GAE/ml respectively) and TAC (0.91±0.19 and 1.14±0.06 mg AAE/ml, respectively) values than the Hungarian originated samples (average values of 0.41 mg GAE/ml and 0.59 mg AAE/ml of seven Hungarian locations). The altered climatic conditions (direct sun instead of half shadow, higher temperature) during the cultivation of the same genotypes resulted in a similar tendency. Comparing to the woodland natural habitats, in the cultivated plants the level of TPC (average values in the natural habitats: 0.30 mg GAE/ml and in the cultivated pop-
ulations: 0.53 mg GAE/ml and TAC (average values in the natural habitats: 0.52 mg AAE/ml in the cultivated populations: 0.72 mg AAE/ml) increased significantly.

Sm08.015

Chemical Intraspecific Variability and Chemotypes Determination of Rosmarinus officinalis L. in the Region of Murcia

Jordán, M. J.; Lax, V.; Martinez, C.; Aouissat, M.; Quilez, M.; Sotomayor, J. A.

MEXICAN INSTITUTE OF INVESTIGATION AND AGRICULTURAL DEVELOPMENT, INDIA, C/M. OROZCO S/N, 30145, LA ALBACERÍA, MURCIA, SPAIN

DéPARTMENT DE BIOLOGIE (BIOLOGIE) DU CENTRE UNIVERSITAIRE DE TÁRAS MOULAS, BP 138 CITÉ ESSENAR, 34000, UNIVERSITÉ DE MONTPELLIER 2, FRANCE

Rosmarinus officinalis L. essential oil quantitative chemical composition depends, as it has been reported in several publications, on the geographical origin of this species. Major components previously identified in the essential oil, which define the chemotype of these plants are camphor, 1,8-cineol and α-pinene. However, the intraspecific variability detected among plants belonging to a reduced geographical area, as it occurs in the Region of Murcia (11,313 Km²) implies the necessity of defining the existence of different chemotypes and their relation to the climatic conditions in the growing area. On these bases, 31 wild rosemary populations (making a total of 152 individual plants) were prospected and analyzed. The chroma-

Sm08.016

Antioxidant Properties and Total Phenolics of Anatomical Parts of Hypericum foliosum Alton

Rainha, N.; Rodrigues, C.; Lima, E.; Baptista, J.

University of Azores, Department of Biological Sciences, Rua da Mãe de Deus, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal

University of Azores, Department of Biological Sciences, Rua da Mãe de Deus, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal

Methanolic extracts from anatomical parts of the Azorean endemic Hypericum fo-
foliosum Alton (aerial parts-AP; flowers-FL; old leaves-OL; young leaves-YL; stems-ST; stem bark-SB; root-RO and seed capsules-SC) were studied to evaluate their poten-
tial antioxidant activity and the basic classes of its bioactive compounds using commonly accepted methodologies. The results reveal that when the antioxidant activity determination is carried out by a single method the antioxidant potential could be underestimated, since significant differences both in phenolic content (TPC) and antioxidant activities were observed. Among all samples assayed, the ST showed the best overall results including a TPC of 86.88 mg of gallic acid equivalents/dry extract which is twice the TPC of the majority of the other samples. On the other hand, the SC showed the lowest overall activity. The AP, SB and RO have higher amounts of phenolics and superior antioxidant properties than OL, YL and FL extracts in the majority of the assays. No encouraging results were obtained regarding to the inhibition of the oxidative damage of proteins with six extracts presenting a pro-oxidant role. A high correlation was found between TPC and antioxidant capacity, indicating an important role of polyphenols. The TPC showed a significant correlation (P < 0.05) with radical scavenging activity (r = 0.756), prevention of lipid oxidation (r = 0.618), superoxide anion activity (r
were clustered into the same group on the dendrogram because of their similar aroma components, while var. aromaticum and var. purpurea were clustered into anther group for its significant different aroma components, while C. vesticum and C. larifolium had two kinds characteristic aroma components, and 1-Octene, Hexanal, hexenal, 3-Hexen-1-ol, 3-thujene and benzaldehyde. Benzene and 3,5-Heptadien-2-ol, 2,6-dimethyl-bicyclo[3.1.1] hept-2-ene, trans-ocimene, cis-terpinolene were characteristic components of C. indicum, Acetic acid, hexylester and D-Germacrene were own components of C. var. aromaticum, while C. vestitum have six kinds aroma components, such as 1-Octene, Hexanal, hexenal, 3-Hexen-1-0l, 3-Hujeine and benaldehyde. Benzene and 3,5-Heptadien-2-ol, 2,6-dimethyl were characteristic of C. lavandulifolium. And Opinopappus taishengensis had two kinds characteristic aroma components, limonene and farnesene. It is shown that C. vestitum and C. chasseri, C.cindicum var. aromaticum and C. lavandulifolium were clustered from the dendrogram because of their similar aroma components, while Opinopappus taishengensis was clustered into another group for its significant different aroma components from the other five kinds of chrysanthemums.

Sm08.018
Effect of Salinity Stress (NaCl) on Growth and Development and Chicoric Acid of Echinacea purpurea cv. Magnus

1SHARAN UNIVERSITY OF TECHNOLOGY, COLLEGE OF AGRICULTURE, DEPARTMENT OF HORTICULTURE, 841661111, ISHARMAN IRAN, ISLAMIC REPUBLIC OF IRAN
2SHARAN UNIVERSITY OF TECHNOLOGY, DEPARTMENT OF CHEMISTRY, 841661111, ISHARMAN IRAN, ISLAMIC REPUBLIC OF IRAN

Salinity is a growing problem in agricultural soils that affect plant growth, including medical plants, reducing their yield. On the land, the synthesis of active material in medical plants is clearly under the influence of environmental conditions and in stress conditions, the production of secondary material increases and soil conditions. Essential oil was extracted from rosemary leaves and flowers by hydrodistillation and was analyzed by gas chromatography. The first results show an average essential oil yield of 2.05% (+ 0.25). Sixty-two different compounds have been identified, accounting for 96.25-100% of the total oils. Terpene hydrocarbons alpha-pinene (8.01-16.75%), camphene (5.00-8.73%) and beta-pinene (6.02-13.09%) and oxygen terpene derivatives 1,8-cineole (13.28-32.36%) and camphor (13.74-34.61%) are the most representative ones. The aim of this research is to obtain as much information as possible about natural and biochemically available resources to start with breeding programmes of wild growing populations in order to provide an appropriate plant material necessary for an adequate cultivation technology.

Sm08.019
The Composition of Herbage Essential Oils from Natural and Culture of Endemic Salvia cyaneascens Boiss. et Bal. in Turkey

Cosge, B.1; Bingol, U.2; Gurbuz, B.; Turker, A.; Ipek, A.5; Beyzi, E.; Pour, K. A.3
1ABANT IZET BAYAZI UNIVERSITY, MUDURU U.A. VOCATIONAL SCHOOL OF HIGHER EDUCATION, MUDURU, BOZ, TURKEY; TR-14400, BOZ, TURKEY
2ABANT IZET BAYAZI UNIVERSITY, FACULTY OF APPLIED SCIENCE, BAYAZI DISTRICT, ANKARA, TURKEY
3ABANT IZET BAYAZI UNIVERSITY, FACULTY OF AGRICULTURE, FIELD CROPS DEPARTMENT, 06160 BAYAZI ANKARA, TURKEY
4ABANT IZET BAYAZI UNIVERSITY, BIOLOGY DEPARTMENT, TR-14400, BOZ, TURKEY
5DOKU UNIVERSITY, FACULTY OF AGRICULTURE, FIELD CROPS DEPARTMENT, KASIRE, TURKEY

This research was carried out at Organic Farming Program, Mudurnu S.A. Vocational Higher School, Abant Izzet Bayaz University and the Department of Field Crops, Faculty of Agriculture, University of Ankara in 2009. The plantation was established with natural cuttings of Salvia cyaneescens Boiss. et Bal. and endemic to Turkey, in 2009 year. This year, only one cuttings was done and the herbage samples for essential oil compounds were obtained from this cutting. Essential oils obtained by hydrodistillation form natural and culture of herbage were analyzed by GC-MS. Hewlett Packard 6890 N model, for determination of essential oil compounds. Essential oil ratio from natural and culture area was recorded as 0.06% and 0.05%, respectively. 17 compounds both in the natural herbage and the culture herbage representing 95.77% and 96.40% of essential oils, respectively, were identified. While ß-pinene was the compound with the highest value (17.55%) in the natural area essential oil, ß-cubebene was determined as the highest value (24.94%) component of the culture area essential oil.

Sm08.020
Chemical Characterization of Rosmarinus officinalis Wild Populations Essential Oil from Alcarria Region (Spain)

1C/C. ALMANSAFETTO contag, CBA. CUBERO-TOLEDO, KM 175, 16106, CUBERO, SPAIN
2U.OA, APDO. 111, 28040 MADRID, SPAIN

The quality and commercial value of an aromatic or medicinal plant is fairly related with its chemical composition. Secondary metabolites are compounds which are not directly involved with the natural plant growth. Their production is known to be influenced by many factors, both environmental and genetic as a response to particularly stressful situations (high temperature, low water availability, herbivores pressure) or as an information exchange mechanism. Our work is focused on the chemical characterization of rosmarinus essential oil from 30 Spanish wild populations. This bio-prospection has been carried out in Alcarria region, placed in the Centre of the Iberian Peninsula, where plant material was collected at full-flowering time. In this area, rosmarinus is a native species which appears as an attractive crop due to its adaptation to the local climatic and soil conditions. Essential oil was extracted from rosemary leaves and flowers by hydrodistillation and was analyzed by gas chromatography. The first results show an average essential oil yield of 2.05% (+ 0.25). Sixty-two different compounds have been identified, accounting for 96.25-100% of the total oils. Terpene hydrocarbons alpha-pinene (8.01-16.75%), camphene (5.00-8.73%) and beta-pinene (6.02-13.09%) and oxygen terpene derivatives 1,8-cineole (13.28-32.36%) and camphor (13.74-34.61%) are the most representative ones. The aim of this research is to obtain as much information as possible about natural and biochemically available resources to start with breeding programmes of wild growing populations in order to provide an appropriate plant material necessary for an adequate cultivation technology.
Wild Populations

A is the best promising line of temulawak because it has high Roxb. Roxb.):

1-
2-
3-

Roxb.): in this paper.

1-

2-

matrix. The chemical profile and the activity of the extract also will be explored appropriate growth environment for xanthorrhizol and curcuminoid productivities. Moreover, Cileungsi is the most C. xanthorrhiza

2-

pound content (curcuminoid and xanthorrhizol), Brine Shrimp Lethality Test separation methods selection. The parameters of these activities are active com

3-

analysis results show an average flavonoids concentration on Spanish sage distil

4-

sage, in our study, they have been found in an average concentration of 6.14 mg/kg. acids and flavonoids is well known. This biological activity has a preventive effect against cardiovascular diseases and cancer, making the plants with high contents on them very interesting for phytopharmacy, cosmetic and food industry. First HPLC analysis results show an average flavonoids concentration on Spanish sage distil

5-

residues of 120.87 mg/kg (57.69-228.62 mg/kg) being Kanforol (29.95-

6-

158.50 mg/kg) and Quercitrin (12.59-75.37 mg/kg) the majority ones. Regarding phenolic acids, the average concentration of all the samples is 11.66 mg/kg, going from 6.11 to 25.76 mg/kg. Rosmarinic acid is the main one (5.75-20.81 mg/kg).

7-

Finally, Carnosic acid and Carnosol have been measured separately as these are de

8-

scribed on bibliography as the most representative phenolic compounds in Spanish sage, in our study, they have been found in an average concentration of 6.14 mg/

9-

kg (2.75-14.40 mg/kg).

Temulawak (Curcuma xanthorrhiza Roxb.): Standardization Activity and Chemical Profile

Darusman, L. K.;¹ Purwakusumah, E. D.;² Priosoeyanto, B. P.;³ Hasanah, M.;⁴ Rahardjo, M.;⁴ Nurcholis, W.^{1,2}

¹MOFASSAK RESEARCH CENTER, ROGER AGRICULTURE UNIVERSITY, KAMPUS URU TANAH KENCANA, JL. TANAH KENCANA NO. 1, 16111, BOGOR, WEST JAVA, INDONESIA

²SOCIETY OF MATHEMATICS AND NATURAL SCIENCES, ROGER AGRICULTURE UNIVERSITY, INDONESIA

³SOCIETY OF VETERINARY MEDICINE, ROGER AGRICULTURE UNIVERSITY, INDONESIA

⁴YODERSEAN MEDICINE AND AROMATIC CROPS RESEARCH INSTITUTE, INDONESIA

The research is aimed to develop the standardized Curcuma xanthorrhiza Roxb. as raw material for the herbal medicine. The research consists of two steps. The first step is standardization of C. xanthorrhiza material production through variety selection and modification of growth environment. The second step is the separating of temulawak bioactive compound from the matrix through separation methods selection. The parameters of these activities are active com

10-

compound content (curcuminoind and xanthorrhizol), Brine Shrimp Lethality Test (BSLT), and anti oxidant test. The result showed that the promising line of C. xanthorrhiza A is the best promising line of temulawak because it has high xanthorrhizol and curcuminoid productivities. Moreover, Cileungsi is the most appropriate growth environment for C. xanthorrhiza cultivation with high bio-

11-

active productivity. The inorganic cultivation technique produced an enhanced xanthorrhizol and curcuminoid productivity. Masioner with ethanol 96% is the best extraction method in separating bioactive from the C. xanthorrhiza matrix. The chemical profile and the activity of the extract also will be explored in this paper.

Networking on Conservation and Use of Medicinal, Aromatic and Culinary Plants Genetic Resources in Portugal

Barata, A. M.;¹ Rocha, F. A.;² Lopes, V. M.;³ Morgado, J.;⁴ Maia, J.;⁵ Bettencourt, E.;⁶ Dias, S.;⁷ Delgado, F.;⁸ Costa, M.;⁹ Farinha, N.;¹⁰ Póvoa, O.;¹¹ Salgueiro, L.;¹² Figueiredo, A. C.¹³

¹INSTITUTO NACIONAL DE RECURSOS BIOLÓGICOS, L. 7 BANCO PORTUGUÊS DE CERAMOPLÁSTICA VEGETAL, QUINTA DE S. JOSÉ, S. PAULO DE MERCEIRA, 4700-515, BRAGA, PORTUGAL

²UNIVERSITY OF SÃO PAULO, AGVICULTURA, R. SÃO MÁRIO, 5600-461, CAMPO DAS CERROZAS, PORTUGAL

³UNIVERSITY OF SÃO PAULO, AGVICULTURA, R. SÃO MÁRIO, 5600-461, CAMPO DAS CERROZAS, PORTUGAL

⁴UNIVERSITY OF SÃO PAULO, AGVICULTURA, R. SÃO MÁRIO, 5600-461, CAMPO DAS CERROZAS, PORTUGAL

⁵UNIVERSITY OF SÃO PAULO, AGVICULTURA, R. SÃO MÁRIO, 5600-461, CAMPO DAS CERROZAS, PORTUGAL

Genetic Resources are crucial to support humankind wellbeing by contributing to increase the income of the rural populations and, thus, their general welfare, by maintaining the sustainable traditional agricultural systems. However, their impor-

14-

Antioxidant Activity and Chemical Profile

Friends or Foes? Ornamentals - Medicinal Plants - Poisonous Plants

Farkas, A.

UNIVERSITY OF PÉCS, INSTITUTE OF PHARMACOLOGY, BÉKÁN 1.; 4806, PÉCS, HUNGARY

Although some people are not aware of it, we constantly come across medicinal plants and poisonous plants alike, often in the form of ornamentals - inside or in the surroundings of our homes, schools and working places. Often it is difficult to clearly distinguish between medicinal / poisonous / ornamental plants. In case of several spe-

15-

cies, such as lavenders, orogenas and sages, a large number of taxa are available for the cottage garden both as ornamentals and as sources of home remedies. Our investiga-

16-

tion directed at the medicinal value of ornamental sage cultivars revealed that their volatile compounds were the same as those of common sage, only the ratio of compo-

17-

nents differed. The physiological effect of several plant derivatives is dose-dependent: small doses can be used for therapeutic purposes, while larger doses exert a toxic effect on humans and/or animals. E.g. the extracted cardiac glycosides of widely planted
Experiences Improvement the Herbal Crops Farming Practices and Empowerment the Farmer's Institution in Some Production Centers of Indonesia

Bahar, Y. H.

Some location in Indonesia have the good condition and potential enough for herbal crops farming because of the suitable and favorable agro-ecosystem, availability of land and water resources, and low competition with other crops. Many local social culture of the people and also the community life style have been used the herbal crops as material for medicinal, refrigerant, beverage and cosmetic purposes since long time ago. Moreover, jamu was declared as Indonesia heritage for traditional herbal which have been popularly consumed by the people for alternative and traditional medicinal, cosmetic, body refresher, etc. These conditions have supported to develop the herbal crops farming in Indonesia. Most herbal crops which have been developed in some production centers in Indonesia is the rhizomes, such as; ginger, galanga, Indian galangal, turmeric, aromaticum wild ginger, java turmeric, black turmeric, and Chinese key. As raw material for medicinal and jamu industries, the quality and characteristic of the product should be maintained properly in order to be conformed to the need and standard of the industry. Supporting to this matter, some actions have been carried out for farming practice improvement are; 1) formulation the GAP/SO/2 utilization good variety and selected seed based on the requirement of the industry, 3) selection of suitable location by considering the technical and environmental aspects (herbal crops belt development/Kawasan Tanaman Obat), 4) application of the integrated farming system approach, 4) application and promotion of organic farming and sustainable development, 5) improvement and practicing good post harvest handling, 6) primer processing on the selected product. By constructing that efforts and actions have been resulted in increasing the herbal crops production to meet the requirement of the industries, as well as improving the capabilities and capacities of the farmer's institution to produce the good quality product.

In vitro Flowering in Cultures of Daucus carota subsp. Halophilus, a Portuguese Endemic Carrot

Tavares, C.1; Salgueiro, L.2; Canhoto, J.1

1Center of Pharmaceutical Studies, Department of Life Sciences, University of Coimbra, Aveiro Avenue, 3004-475 Coimbra, Portugal
2Institute of Biotechnology, School of Veterinary Medicine, University of Coimbra, 3004-475 Coimbra, Portugal

Daucus carota subsp. halophilus is a carrot wild-relate growing in some region of Portugal as an endemic species. As other members of the Apioeae family, it produces essential oils that have been characterized in a previous work. Antifungal and cytotoxicity tests showed that the oil with the highest amounts of elemicin displayed the strongest antifungal activity without side effects on mouse skin dendritic cells. For the in vitro propagation of this species were also established by our group through axillary shoot proliferation and somatic embryogenesis. In this work the conditions for in vitro flowering are described. Shoots were established from axillary shoots of field-growing plants on a MS medium containing 1.5 mg/L of N6-benzyladine and 0.5 mg/L of indol-3-acetic acid and proliferating in the same culture medium start to develop inflorescences after 6 months of culture under a 16 h light/8 h dark photoperiod (25 °C). Repeated subcultures using the basal parts of the proliferating shoots, in the same culture medium, results in new cycles of shoot and flower formation each four weeks. These cultures have been maintained for 18 months without loss of the flowering potential. Apart from the dimensions, inflorescences produced in vitro closely resemble those formed in natural conditions. Ovules and anthers produced in vitro have also the same morphological characteristics that those occurring in vitro. Moreover, acetocarmine squashes of the anthers and fluorescence microscopy analysis using DAPI showed that the in vitro and in vivo anthers produced pollen grains quite similar. However, in some cases, supernumerary divisions of the pollen cells have been observed. Attempts to achieve seed formation and to complete the life cycle of Daucus carota subsp. halophilus in laboratory conditions are being pursued. This would be very useful for plant conservation, to improve conditions for the propagation of this taxon and for essential oil production.

In vitro Cultures of Pogostemon cablin

Jaafar Sidik, N.; Awal, A.; Baba, A. R.; Raduan, R. S.; Setamam, N.

UNIVERSITY TECHNOLOGY MARA, BIOLOGY DEPARTMENT, FACULTY OF APLIED SCIENCE, UNIVERSITY OF TECHNOLOGY MARA, 50700, SHAH ALAM, SELANGOR, MALAYSIA

Pogostemon cablin or patchouli is a native to tropical regions of Asia. It is a perennial aromatic herb belongs to Lamiaceae family. The plant has been cultivated for its essential oil which has been used in perfumery and food industries. The herb can also be used to treat pharynx pain, asthma, cough and fever. This study was conducted in order to determine the effect of various hormones combination (NAA and BAP) on leaf, stem and lateral bud explants of Pogostemon cablin using tissue culture technique. Result shows there was a significant difference in microshoots development and callus formation using stem and lateral bud as the explants in various combinations of hormones. For the microshoots growth, the optimum hormone combination was 0.5 - 1.0 mg/L NAA with 0.5 - 1.0 mg/L BAP. On the other hand, for callus (unorganized and undifferentiated tissues) formation, the optimum hormone combination was 2.0 mg/L NAA and 0.1 - 1.0 mg/L BAP. A friable and whitish callus was obtained from MS (Murashige and Skoog) medium supplemented with higher auxin (NAA) concentration. By comparison, sucrose concentration at 40 g/L in MS basal medium gave the optimum microshoots development whereas sucrose concentration at 20 g/L gave the optimum callus formation. The Pogostemon cablin microshoots and callus obtained from this experiment can be used to analyze the phytochemicals and biological activities.

A New Protocol for Propagation and Development of the Greek Endemic Species Origanum dictumns L.

Grigoriadou, K.; Papanastasi, K.; Maloupa, E.

NATIONAL AGRICULTURAL RESEARCH FOUNDATION, LABORATORY OF CONSERVATION AND EVALUATION OF NATIVE AND ORCHIDENTICAL SPECIES, P. BOX 40, 303 71, GR., 370 05, THESSALONIKI, GREECE

Asexual propagation and cultivation in hydroponical system and in a pilot field were studied, in the frame of a research project aiming at the sustainable utilization of the Greek endemic species Origanum dictumns L. Rooting of softwood cuttings was tested using two different substrates and three concentrations of IBA (0, 1000, 2000, 4000 ppm). The rooting percentage, the number of roots and the root length were measured. Best results (90-95% rooting) were observed in the substrate perlite: peat (3:1) at 1000 ppm IBA. Developed plants were planted in a pilot field where four different organic fertilizations treatments were applied. Height, diameter, fresh and dry flower weight per plant and per hectare were measured. The highest dry flower production was achieved by the addition of Agroholol, an organic fertilizer consisting of organic matter (80-90%), total N (6-8%), P2O5 (0.5-1.5%) and K2O (1-3%) (first year's production was 1170 t/ha while the second was
The aim is not only to achieve good quality, efficacy and safety products but also in research & development thus including clinical trial. Soho is also having partnership with institutions in developed countries on research and analysis. Besides Soho already got some cooperation with some companies in developed countries for the product. After the indication and photochemistry already settled, we can move forward to clinical trial process and get marketing approval within the indication. In the future, Soho is willing to build herbal centre and research development of Temulawak. This aim is to have a good role model of herbal development in Indonesia. This project will involve all team from government, academicals and community. Hopefully, Temulawak can be Indonesia’s Ginseng in worldwide and well known internationally as good quality, efficacy, and safety herbal product.

Sm08.200
Assessment of Achillea cartillaginea Introduced from Wild to Field Collection

Radusiene, J.¹; Gudaitėyte, O.²; Benetis, R.³
¹INSTITUTE OF BIOLOGICAL, NATURAL RESEARCH CENTRE, ZALIUPUS 30, 13018 KURŠUMLIAUS, LT-05108, VILNIUS, LITHUANIA
²KATONAS UNIVERSITY OF MEDICINE, LITHUANIA

The raw material of Achillea millifolium L. is one of the oldest and most important drugs in pharmacopoeias of many countries. There is little known about other yarrow species which could be used as new sources of herb material in pharmacy. The aim of the research was to assess phytochemical diversity of A. cartillaginea Ledeb. ex Rchb. introduced into field collection and to select valuable accessions for further cultivation. The essential oils from flowers and leaves were isolated by hydrodistillation and then analysed with Fison 8261 gas chromatograph with flame ionisation detector (FID) on a fused silica capillary column, (25 m × 0.2 mm × 0.5 µm). Qualitative analysis was based on the comparison of retention indices and mass spectra. The fraction of oxygenated monoterpens was dominant in essential oils. The flower oils according to the dominant compounds were attributed to camphor, 1,8-cineole and β-thujone+ chrysanthene chemotypes. The leaf essential oils demonstrated great variation in dominating compounds. The study provides information about the composition of phenolics in ethanolic extracts of A. cartillaginea. Phenolic compounds were performed using a liquid chromatographic Waters 2690 Alliance HPLC system equipped with a polymeric 5μm AscendTM RP-Amide analytical column (150 x 4.6 mm). Compounds were identified comparing eluting retention times and UV spectra with those of authentic standards. The total content of identified compounds varied from 9.56 to 15.03 mg/g in flowers, from 24.49 to 64.05 mg/g in leaves and from 4.67 to 13.10 mg/g in stems. Chlorogenic acid and five flavonoids, namely luteolin-7-O-glucoside, rutin, apigenin-7-O-glucoside, luteolin and apigenin, were identified in plant material. The flowers accumulated higher contents of identified compounds varied from 9.56 to 15.03 mg/g in flowers, from 24.49 to 64.05 mg/g in leaves and from 4.67 to 13.10 mg/g in stems. Chlorogenic acid and five flavonoids, namely luteolin-7-O-glucoside, rutin, apigenin-7-O-glucoside, luteolin and apigenin, were identified in plant material. The flowers accumulated higher amounts of luteolin-7-O-glucoside, apigenin-7-O-glucoside, luteolin and apigenin while leaves were found to be superior with regard to chlorogenic acid and rutin. A. cartillaginea accessions have potential value as a primary source for further selection.
wild and cultivated, the former being used mainly in urban areas; while the second is generally preferred in rural areas. We are interested in the first part of this work: the extraction and chemical characterization of essential oil of fennel seeds of two varieties considered. For this, we used the technique of hydrodistillation and then analyzed by gaseous chromatography. Almost all of these compounds (99.7%) were identified through the intersection of three different criteria (retention index on nonpolar phase, retention index on polar phase and mass spectrum). The main results have highlighted the overall presence of the same compounds in the samples analyzed, albeit at different levels depending on the variety studied, enabling us to assert that the two varieties studied belong to the subspecies *Cappillicum*, *Maya* that differ in their chemotypes (chemotype trans-anethole "for the variety grown", and "chemotype estragole" for the spontaneous variety). The second part of this work has been devoted to the study of the antibacterial activity of essential oil extracts obtained. Two different methods were used for the determination of this activity: method in liquid medium and method on solid medium. The results obtained show that the two varieties studied have antibacterial effects against *Escherichia coli* strains and *Enterococcus faecalis*, the difference in doses could cause this effect. Thus the wild variety is more interesting since it has a stronger effect than the cultivated variety.

Sm08.202

The Influence of Chitin on Growth and Chlorophyll Content of Two Herb Plants, *Anethum graveolens* L. and *Eruca sativa* L.

Liopa-Tsakalidi, A.; Chalikopoulos, D.; Barouchas, P.; Panagiotopoulos, L.

IHEI HONDOGAKU, DEPARTMENT OF MECHANICAL & WATER RESOURCES ENGINEERING, NEK KTHETA, 51200, MIEKONJIOH, AITOARKERANNA, GREECE

The effect of chitin soil amendment was studied in the characteristics of organic glasshouse cultivation of *Anethum graveolens* L. and *Eruca sativa* L. plants. The seeds were sown in potting soil, covered with vermiculite and remained in the growth chamber until the first real leaves appeared. The seedlings were transplanted in pots filled with the following substrates: peat, peat and chitin (2g/l), peat-sand (2:1v/v), peat-sand and chitin (2:1v/v+2 g/l chitin). Chitin in the peat substrate did not affect the length and weight of the leaves and shoot, as well as of the entire lemon balm plant, while at the peat-sand substrate it increased the corresponding sizes. It also did not affect the weight and height of the root plant, while it increased the fresh and dry weight of the leaves and shoot. In the peat-sand substrate chitin increased the fresh and dry weight of the leaves, shoots, root and of the whole plant, as well as the length of the leaves and the plant height. The peat and chitin substrate increased the total chlorophyll content in the root plant’s leaves by 73%, and in the peat and sand substrate by 39%, in comparison to the corresponding non-chitin substrates. This total chlorophyll increase in the presence of chitin in both substrates is due to both a and b chlorophylls. In the peat substrate chitin increased the fresh and dry weight of the leaves, shoots and of the whole plant, while in the peat and sand substrate no important change is remarked. The peat and chitin substrate increased the total chlorophyll content in the dill plant’s leaves by 13%, and in the peat and sand substrate by 15%, in comparison to the corresponding non-chitin substrates. This total chlorophyll increase, in the presence of chitin in both substrates is mostly due to chlorophyll a.

Sm08.203

Investigation of Volatiles from Saffron Flower and the Antioxidant Effectiveness

NAGORI CULTIVATION INC. NAGORI GUN, 5-1-12, KIRISHIDORI, OSHIMA-CITY, 330-0321, OSHIMA, KAGOSHIMA, JAPAN

NODA AROMATIC CO., LTD. FUNDAMENTAL RESEARCH DEPARTMENT, JAPAN

Saffron (Crocus sativus) has a flower with three characteristic reddish colored stigmas and yellow stamens, and brilliantly hued in lilac or mauve. The dried stigmas are used as an additive for foods, beverages, and as a coloring agent in cooking, as well as for medicine to treat a wide range of ailments, including stomach upsets, bu- bonic plague, and smallpox. The aroma of the stigma is distinguished by a hay-like or medicinal odour, which is from the constituent safranal, while stigma extracts exhibit high antioxidant and free radical scavenging activities. A number of reports have been presented regarding the constituents and effects of the Saffron stigma, whereas investigations of the whole Saffron flower are limited. In the present study, we investigated the aroma and effects of the Saffron flower as a whole. In autumn, purple buds appear and the Saffron flower develops a brilliant pastel shade of blue with a touch of purple-red, along with an enchanting scent that resembles that of roses, without a medicinal aspect. Using head-space techniques as well as solvent extraction analyses of the scent of Saffron flowers, we identified 2-phenylethyl alcohol as the main constituent, along with other newly identified components that conjure up the image of the scent of roses. In addition, extracts from the flower revealed highly antioxidant activities. To assess the antioxidant properties of aroma extracts from Saffron flowers, we evaluated the constituents using a DPPH method and the results showed some active components, including safranal. Furthermore, we used a contingent negative variation method to determine the psycho-physiological effects, which indicated that the Saffron scent has a relaxing effect.

Sm08.204

Quantitative Effects of Temperature and Light Intensity on Accumulation of Bioactive Compounds in *St. John’s* Worth

Radusiene, J.; Stanis, Z.; Cirak, C.; Odabas, M. S.

INSTITUTE OF BOTANY, NATIONAL RESEARCH CENTRE, DAVUTYU KIZILSUYU, 41970, VILNIUS, LITHUANIA

UNIVERSITY OF ONDOKUZ MAYIS, SCHOOL OF PROFESSION OF SARA, TURKEY

The quantitative effects of temperature and light intensity on accumulation of naphthodianthrones, phlogolucinol derivatives and phenolics were examined on greenhouse-grown *St. John’s Worth* (*Hypericum perforatum* L.). Plants were grown in greenhouse separated into two parts; shaded by 50% transparent polyethylene cover and un-shaded. Temperature and light intensity were measured daily using a Sato Keiryoic MFG R704 thermo hydograph and a Delta-T Sun Scan Canopy light analyzer. During experiment plants were harvested weekly and assayed for the chemical compounds concentrations by HPLC method. According to the results, increase in temperature from 24 °C to 32 °C and light intensity from 803.4 μmol m⁻² s⁻¹ to 1618.6 μmol m⁻² s⁻¹ determine continuous increase in contents of bioactive compounds. Multi regression analyses were performed to describe the quantitative effects of temperature and light intensity on accumulation of analyzed compounds. The relationship between temperature & light intensity and accumulation of phytochemicals was exposed by following regression equation: SMC = (a + (b1 x t) + (b2 x l) + (b3 x t²) + (b4 x (t x l))), where SMC – secondary metabolite content, t - temperature (°C), l - light intensity (μmol∙m⁻²), a, b1, b2, b3 and b4 - coefficients of the produced equations. The simple equations were developed for predicting the contents of hyperforine, hypericine, pseudohypericine, amontillafone, apigenin-7-glucoside, hyperoside, kempferol, rutin, quercitin, quercitrin, and chlorogenic acid in plant material of *St. John’s Worth*. Our results suggested that temperature and light are important environmental factors to optimize the raw material production of *St. John’s Worth*. The mathematical models produced in the present study could be applied as useful tools for prediction of content of phytochemicals and standardization of plant materials.

Sm08.205

Chemical Variability of Wild *Rosmarinus officinalis* L. from Algeria

Jordan, M. J.; Aouissat, M.; Lax, V.; Martinez, C.; Sotomayor, J. A.

THIBA, C/ MARCELO 67, 30103, AL ALGECIRAS, MURCIA, SPAIN

DEPARTMENT DE BIOLOGIE (SÉGOLINE) DU CENTRE UNIVERSITAIRES DE THABA MOUAIL, BP 137 Cité ISNAB, SATA 10-150, ALGERIA

Rosemary (*R. officinalis* L.) is a Mediterranean shrub belonging to the *Lamiaceae* family. Wild rosemary, due to its bioactive properties, has been cultivated by local farmers, with no previous selection, for a long time. Specifically in Algeria, it occupies 100,000 ha of the territory; however in spite of that, there is an important lack
of knowledge about the chemical variability of this wild rosemary. On the bases of these statements, a total of 15 wild Algerian rosemary populations have been analyzed considering their essential oil yields (EO) and polyphenolic extract anti-oxidant activities (AA). Samples were harvested from natural populations located in the northwestern part of the country on area 8000 ha. The morphological traits, such as the number of branches and lateral shoots, the number of umbel per plant or seed size have a great influence on fruit yield. The aim of the study was to evaluate some morphological traits of the selected caraway genotypes. In the experiments done in 2008 and 2009, 25 selected caraway genotypes originated from: European botanical gardens (18), two cultivars: ‘Rekord’ and ‘Konczewicki’ and our own breeding strains were tested. The obtained results showed that the objects in caraway collection varied in terms of all tested morphological traits. The plant height ranged from 71.5 cm (Rekjavik) to 107.8 cm (cv. ‘Konczewicki’). Number of branches on the main stem was from 5.3 (Rekjavik) to 10.0 (Jera). The number of lateral shoots ranged from 9.8 (Rey- jawik) to 21.5 (strain 9/10). Leaf length was from 11.9 cm (Lozanna) to 29.1 cm (cv. ‘Konczewicki’). The number of umbels per plant was from 91.4 (Reyjauke) to 251.9 (strain 9/10). The fruit yield varied from 14.2 g (Reyjauke) to 48.5 g (cv. ‘Konczewicki’). The weight of 1000 seeds was from 1.81 g (Salzburg) to 3.31 g (strain 9/1). The advanced breeding materials performed better characteristics of these morphological traits, which affect fruit yield. The caraway genotypes evaluation will make it possible to choose the appropriate genotypes for further breeding program.

Sm08.209
Chemical Variability of Great Burnet (Sanguisorba officinalis) Growing Wild in Poland

Pelc, M.1; Przybyszewska, E.1; Przybyl, J. L.1; Capecka, E.2; Baczek, K.3; Weglarz, Z.4

1 INSTITUTE OF NATURAL FIBRES AND MEDICINAL PLANTS, WOJEW. WIELKIEGO 7/8, 60-630, POZNAN, POLAND
2 UNIVERSITY OF LIFE SCIENCES, POLAND

Caraway (Carum carvi L.) is one of the most important medicinal plants cultivated in Poland on area 8000 ha. The morphological traits, such as the number of branches and lateral shoots, the number of umbel per plant or seed size have a great influence on fruit yield. The aim of the study was to evaluate some morphological traits of the selected caraway genotypes. In the experiments done in 2008 and 2009, 25 selected caraway genotypes originated from: European botanical gardens (18), two cultivars: ‘Rekord’ and ‘Konczewicki’ and our own breeding strains were tested. The obtained results showed that the objects in caraway collection varied in terms of all tested morphological traits. The plant height ranged from 71.5 cm (Rekjavik) to 107.8 cm (cv. ‘Konczewicki’). Number of branches on the main stem was from 5.3 (Rekjavik) to 10.0 (Jera). The number of lateral shoots ranged from 9.8 (Rey- jawik) to 21.5 (strain 9/10). Leaf length was from 11.9 cm (Lozanna) to 29.1 cm (cv. ‘Konczewicki’). The number of umbels per plant was from 91.4 (Reyjauke) to 251.9 (strain 9/10). The fruit yield varied from 14.2 g (Reyjauke) to 48.5 g (cv. ‘Konczewicki’). The weight of 1000 seeds was from 1.81 g (Salzburg) to 3.31 g (strain 9/1). The advanced breeding materials performed better characteristics of these morphological traits, which affect fruit yield. The caraway genotypes evaluation will make it possible to choose the appropriate genotypes for further breeding program.

Sm08.208
The Impact of Cultivation Techniques on Bioactive Compounds in the Aerial Parts of Echinacea purpurea

Thomsen, M. Q.1; Fretté, X. C.2; Christensen, L. P.2; Greven, K.1

1 FA CULTY OF AGRICULTURAL SCIENCES, INSTITUTE OF HORTICULTURE, AARHUS UNIVERSITY, KRISTENBERGVEJ 10, DK-7000 AARHUS, DENMARK
2 INSTITUTE OF CHEMICAL ENGINEERING, BIOTECHNOLOGY AND ENVIRONMENT, TECHNOLOGY, UNIVERSITY OF SOUTHERN DENMARK, NIELS BORIS ALLE 1, DK-5230 ODENSE, DENMARK

Echinacea purpurea is an important medicinal plant and is used to treat infections, to aid in wound healing and to enhance the immune system. The active principles of E. purpurea include secondary metabolites such as alkamides and phenolic acids. Many secondary metabolites make up the defence system of plants and hence the contents of bioactive secondary metabolites in plants may change as a reaction to stress. As a result a part of this study was to investigate how nutrient deficiency affects the content of alkamides and phenolic acids in the aerial parts of E. purpurea. Other factors, which may affect the content of bioactive compounds are the time of harvesting the plant material. Therefore another part of this investigation was to determine how different harvest times around flowering affects the content of alkamides and phenolic acids in the plants. Echinacea purpurea was cultivated in 2008 and 2009. The 2008 plants were exposed to 0, 100 or 200 kg N/ha and aerial parts were harvested in August whereas the aerial parts of the 2009 plants were harvested at three different development stages during the growing season (July to late August). Alkamides and phenolic acids were extracted from fresh frozen aerial parts with methanol–water (90:10) and identified by liquid chromatography electrospray ionization ion-trap mass spectrometry (LC–ESI–IT–MS/MS) combined with photodiode array detection (PAD) and quantified in extracts by reverse phase HPLC–PAD. Major alkamides were identified as undeeca-2E,4Z-diene-8,10-diynoic acid iboserylamide, dodeca-2E,4Z,8Z,10Z-tetraenoc acid iboserylamide and dodeca-2E,4E,8Z,10E-tetraenoc acid isoboserylamide whereas cichoric acid was the dominant phenolic acid. Preliminary analyses shows, that the contents of bioactive secondary metabolites in plants may change as a reaction to stress. As a result a part of this study was to investigate how nutrient deficiency affects the content of alkamides and phenolic acids in the aerial parts of E. purpurea.

Sm08.207
Evaluation of Variability of Morphological Traits of the Selected Caraway (Carum carvi L.) Genotypes

Seidler-Lozykowska, K.1; Bocianski, J.2

1 INSTITUTE OF NATURAL FIBRES AND MEDICINAL PLANTS, WOJEW. WIELKIEGO 7/8, 60-630, POZNAN, POLAND
2 UNIVERSITY OF LIFE SCIENCES, POLAND

Caraway (Carum carvi L.) is one of the most important medicinal plants cultivated in Poland on area 8000 ha. The morphological traits, such as the number of branches and lateral shoots, the number of umbel per plant or seed size have a great influence on fruit yield. The aim of the study was to evaluate some morphological traits of the selected caraway genotypes. In the experiments done in 2008 and 2009, 25 selected caraway genotypes originated from: European botanical gardens (18), two cultivars: ‘Rekord’ and ‘Konczewicki’ and our own breeding strains were tested. The obtained results showed that the objects in caraway collection varied in terms of all tested morphological traits. The plant height ranged from 71.5 cm (Rekjavik) to 107.8 cm (cv. ‘Konczewicki’). Number of branches on the main stem was from 5.3 (Rekjavik) to 10.0 (Jera). The number of lateral shoots ranged from 9.8 (Rey- jawik) to 21.5 (strain 9/10). Leaf length was from 11.9 cm (Lozanna) to 29.1 cm (cv. ‘Konczewicki’). The number of umbels per plant was from 91.4 (Reyjauke) to 251.9 (strain 9/10). The fruit yield varied from 14.2 g (Reyjauke) to 48.5 g (cv. ‘Konczewicki’). The weight of 1000 seeds was from 1.81 g (Salzburg) to 3.31 g (strain 9/1). The advanced breeding materials performed better characteristics of these morphological traits, which affect fruit yield. The caraway genotypes evaluation will make it possible to choose the appropriate genotypes for further breeding program.
Great burnet (Sanguisorba officinalis L.) is a perennial belonging to Rosaceae family. In Poland it usually occurs on the wet piedmont meadows. In the people medicine the herb and underground organs of these plants were used as hemostatic in gastrointestinal disorders. Nowadays the extracts from the great burnet are applied in the treatment of hemorrhage and in diarrhoea. The main active compounds of the great burnet are tannins and phenolic acids. The aim of investigation was to compare ten populations of great burnet wild growing in different areas of Poland in respect of phenolic compounds accumulation. Quantitative and qualitative analysis was performed by HPLC. The investigated populations differed distinctly in the content of particular phenolic compounds. Differences between underground and aboveground organs also were found. Catechin, epigallocatechin, epicatechin, epigallocatechin gallate, gallic and ellagic acid were found in the roots whereas rosmarinic, caffic, chlorogenic, elagic and gallic acids in aboveground organs.

Sm08.210

Poppy Cultivation in the Slovak Republic

Salamon, I.; Fejér, J.

Department of Botany, Faculty of Science, Slovak University, 841 04, Bratislava, Slovakia.

Poppy (Papaver somniferum L.) is a traditional crop in Slovak Republic and its cultivation has long-standing history. The recent conditions of poppy cultivation modify the Law 139 from 1998 about narcotic and psychotropic components and products. In order to this rule it is possible to cultivate of poppy on land more than 100 m² on a base of permission from the Slovak Ministry of Health. The large-scale cultivation of this special crop is concentrated in the West Slovakia, in nearness of the pharmaceutical company Zentiva, Co, in Hlohovec. Farmers prefer a combination method of poppy production: seeds for food purposes and dry capsules for pharmaceutical industry. Poppy production areas were from 386 to 2,714 hectares during last 10 years. Yield of seed are usually from 0.28 to 0.73 ton per hectare. Good agricultural practice and own Slovakian poppy varieties are very suitable background for a high yield potential of seeds (about 2 tons per hectare). Poppy capsules are as secondary product, which is very important raw-material to our pharmaceutical industry. Their yields fluctuate according to the season and customer requests from 300 to 500 kg per hectare. Purchases of poppy straw material were from 55.3 to 1,191.5 tons annual during years 1990 and 2006. The processing capacity of the Slovakian pharmaceutical industry is much higher, about 4,000 tons, and the miss raw materials are imported from Czech Republic. The cultivate varieties of poppy are suitable accumulate from 0.4 to 0.6% of morphine. However the purchase straw material contents in average only 0.3% of morphine, statistics from 1970 to 2005 years. The influence of the vegetation season and harvest technology is affected on these results.

Sm08.211

Phytochemical Characterization of Essential Oils from Laurus nobilis from Brazil and Turkey

Morais, L. A. S.; Gonçalves, G. G.; Castanha, R. F.; Mattos, L. P. V.

Embrapa Meio Ambiente, R.D. 37, km 127.5, Barroso (MG), 31,720-000, Belo Horizonte, Minas Gerais, Brazil.

The aim of this work was to evaluate the yield and chemical composition of essential oil of laurel (Laurus nobilis L.) from Turkey and Brazil. Laurel leaves were collected at four properties in Paty do Alferes district (Rio de Janeiro State) in winter (07/26/2008), and dried at room temperature (25 °C) at shade conditions. Samples from Turkey were donated by a private company. Essential oils were obtained by hydrodistillation in a Clevenger-type apparatus for 4h and analyzed by GC-MS (Shimadzu, QP 5050, with DB-5 capillary column - 30 m x 0.25 mm x 0.25 μm). Carrier gas was Helium (1.7 mL/min); split ratio: 1:20. Temperature program: 60 °C, rising to 240 °C at 3 °C/ min. Injector temperature: 240 °C and detector temperature: 260 °C. Identifications of chemical compounds were made by matching their mass spectra and Kovat's indices (IK) values with known compounds reported in the literature. The average of essential oil yielded obtained was 1.4% (Paty A and D samples), 1.5% and 1.1% (Paty B and C samples, respectively) and 2% (Turkey sample). Lower yield of Brazilian essential oils may have occurred because the leaves were harvested in winter. Further studies will be conducted to verify the seasonal variation of laurel. Even smaller, they are within the acceptable market standard. Analysis by GC-MS of the essential oils has identified 16 compounds. The essential oil from Turkey presented a slightly higher content of 1,8 cineole (major compound), but it does not presented linalool, methyl eugenol and myrcene, compounds founded in Brazilian essential oils. These results showed the high quality of Brazilian essential oils' tested that indicates marketing potential to the consumer industry, without the onus of an import process. Brazilian and Turkey essential oils' presented similar quality and the first can supply the needs of internal Brazilian marketing, reducing costs of raw material and logistics.

Sm08.212

Eucalyptus from Mata Experimental do Escarouipim (Portugal): Evaluation of the Essential Oil Composition from Sixteen Species

Faria, J. M.¹; Sanches, J.²; Lima, A. S.²; Mendes, M. D.²; Geraisdes, D. A.²; Leiria, R.²; Trindade, H. D.²; Pedro, L. G.²; Barroso, J. G.³; Figueiredo, A. C.²

¹Universidade de Lisboa, R. Cív. Cív. 30, CENTRO DE BIOTECNOLOGIA VEGETAL, C.C. PISO 1, CAMPO GRANDE, 1749-015, LISBOA, PORTUGAL.

²AUTORIDADE FLORESTAL NACIONAL, DIRECÇÃO REGIONAL DE FLORESTAS DE LISBOA E VALE DO TEJO, SANTARÉM, PORTUGAL.

The introduction of eucalyptus in Portugal seems to have been part of a general movement, by the mid-nineteenth century, of ordering exotic plants to beautify parks and gardens. Nevertheless, given the favourable edaphoclimatic conditions and Eucalyptus globalous particular characteristics, this species was fast in becoming an unavoidable element of the Portuguese forest [1]. The Mata Experimental do Escarouipim (Salvadora de Magos, Portugal) is an area of protected forest tutored by Autoridade Florestal Nacional, which includes an arboretum with an identified, and documented, collection of 125 different eucalyptus species, considered to be the most complete in Europe [2]. In the present work, the essential oils isolated from the aerial parts of sixteen Eucalyptus species of this arboretum were studied. The essential oils were isolated and analyzed by GC and GC-MS as in [3], and the percentage composition of the volatiles was used to determine the oils relationship by cluster analysis [4]. Despite the monoterpene fraction being dominant in all oils (62-97%), major differences were found in essential oils composition. Essential oil cluster analysis showed only a high correlation (Score=70.7) among eleven species (E. cinerea, E. cordivi, E. hoisinana, E. botryoides, E. camaldulensis, E. globulus, E. pohuechoum, E. radiata, E. saligna, E. smithii and E. constituents), mainly due to their richness in 1,8-cineole (27-83%). The remaining five species were dominated by citronellal (36%, E. citridorum), piperitone (40%, E. divenix), limonene and α-pinene (41% and 44%, respectively, E. ficifolia), α-pinene (82%, E. pauciflora) and α-phellandrene (45%, E. umbricola).
Accumulation of Biologically Active Compounds in Above - And Underground Organs of Common Avens (Geum urbanum L.)

WARSAW UNIVERSITY OF LIFE SCIENCES, SGGW, FACULTY OF HORTICULTURE AND LANDSCAPE ARCHITECTURE, DEPARTMENT OF VEGETABLE AND MEDICINAL PLANTS, NOWOSIPIECKA 166, 02-797 WARSAW, POLAND

Common avens is a perennial belonging to Rosaceae family. This species grows in Poland in deciduous and mixed forests on moderately humid and rich soils. Both above - and underground parts of this plant are rich in phenolic compounds, especially tannins. Underground organs contain also volatile oil with eugenol as a dominant component. Raw materials of common avens reveal antioxidant, antihypertensive, anti-inflammatory and antiparasitic activity. Taking into consideration the high diversity of species the effects of cultivation have been done. The aim of undertaken study was to investigate the influence of the age of plants and harvest time on the quality of above- and underground organs of common avens (Geum urbanum L.). In the raw materials the content of phenolic compounds (tannins and polyphenolic acids) and the content of eugenol and nopinone in essential oil from the roots was determined. In aboveground organs the content of tannins and polyphenolic acids was the highest in rosette leaves, lower in shoot leaves and the lowest in spring root leaves. Rosette leaves were characterized by high content of ellagic acid and epicatechin gallate. The content of tannins in underground organs was the highest in one-year old plants collected in late autumn. Two-year old underground organs were characterized by high content of catechin. Accumulation of eugenol and nopinone in essential oil from the roots was not related to the age of plants.

Diversity of Wormwood (Artemisia absinthium L.) Growing Wild in Poland in Respect of the Content and Composition of Essential Oil and Phenolic Compounds

Geszprych, A.; Przybył, J. L.; Kuczerenko, A.; Weglarz, Z.

WARSAW UNIVERSITY OF LIFE SCIENCES, SGGW, FACULTY OF HORTICULTURE AND LANDSCAPE ARCHITECTURE, DEPARTMENT OF VEGETABLE AND MEDICINAL PLANTS, NOWOSIPIECKA 166, 02-797 WARSAW, POLAND

Wormwood herb is regarded as a medicinal raw material rich in bitter principles. However, its biological activity is also affected by the presence of essential oil and phenolic compounds. In Poland wormwood herb is collected mainly from wild growing plants. The aim of the study was to compare the content and composition of essential oil and phenolic compounds in aboveground organs and different layers of root system collected from eighteen populations of wormwood from central and north-eastern area of Poland. Herbs was collected at the stage of plant blooming and dried naturally. Content of essential oil in the raw materials was determined by hydrodistillation method, and its composition by GC. Methanolic extracts obtained by continuous exhaustive extraction of raw materials were used for qualitative and quantitative analysis of phenolic compounds by HPLC. The content of essential oil in the investigated raw materials ranged from 0.40 to 0.88%. In six populations the dominant constituent of essential oil was sabieryl acetate, in three - chrysanthenyl acetate, in two - sabine, and in one - beta-thujone. Other populations were characterised by comparable content of two or three main compounds in essential oil, e.g. sabine and beta-myrcene, beta-myrcene and cineol, chrysanthenyl acetate and beta-myrcene, sabinyl acetate, chrysanthenyl acetate and beta-thujone. In the investigated raw materials eleven phenolic substances were identified: five phenolic acids (caffic, p-coumaric, ferulic, chlorogenic, and rosmarinic one), five flavonoids (apigenin, diosmetin, orientin, quercetin, and hyperoside), and (3-epi)gallocarpinic gallate. In the raw materials obtained from all the investigated populations the dominant phenolic compound was ferulic acid but its content was diverse (396-1118 mg/100 g of dry herb). Remarkable level of chlorogenic and rosmarinic acids was also found (159-477 and 178-446 mg/100 g, respectively).

Sm08.214

Yield and Phytochemical Characterization of Essential Oil from Ocimum selloi B. Obtained by Hydrodistillation and Supercritical Fluid Extraction

Morais, L. A. S. 1; Ming, L. C.2; Marques, M. O. M.3; Meireles, M. A. A.4

UNIVERSIDADE DE SÃO PAULO, DEPARTAMENTO DE FARMACOCINÉTICA EFarmacodinâmica, CASA RECINTO, CAJÁN 129, CEP: 14006-902, SÃO PAULO, BRAZIL

The yield and chemical composition of essential oils from leaves of Ocimum selloi B. submitted to organic and mineral fertilization, obtained by hydrodistillation and supercritical fluid extraction (SFE) were compared. Essential oil was extracted in a Clevenger-type apparatus for 2h 30 and analyzed by GC-MS (Shimadzu, QP 5050-D-5 capillary column - 30 m × 0.25 mm × 0.25μm). Carrier gas was Helium (1.7 mL/min); split ratio: 1:30. Temperature program: 50°C, rising to 180°C at 5°C/min, 180°C, rising to 280°C at 10°C/min. Injector temperature: 240°C and detector temperature: 230°C. Identiﬁcations of chemical compounds were made by matching their mass spectra and Kovat’s indices (IK) values with known compounds reported in the literature. An Applied Separations-apparatus (Speed SFE, model 7071, Allentown, PA, EUA) was used for SFE extractions. They were conducted at pressure 200 bar and temperature 30°C (20 min in static mode and 40 min in dynamic mode). The supercritical CO₂ flow rate was (6.8±0.7) × 10-5 kg-CO₂/s. The essential oil collected was immersed in ethylene glycol bath (5°C). The yield of essential oil obtained by SFE was greater than hydrodistillation in both fertilization treatments (279% e 333% for organic and mineral fertilizations, respectively). There were no differences between the fertilization treatments. The amount of the volatile components showed by GC-MS chromatogram was highest in the essential oil obtained by hydrodistillation than SFE. The main volatile constituents of the essential oils were trans-anethole (Hydrodistillation: organic - 52.4%; mineral - 55.0%; SFE: Hydrodistillation - 62.8%; mineral - 66.8%) and methyl-chavicol (Hydrodistillation: organic - 37.3%; mineral - 38.3%; SFE: organic - 8.4%; mineral - 4.3%). A reduction of methyl-chavicol relative proportion of essential oil obtained by SFE was observed. Cis-anethole, α-copaene, trans-cadinol, germacrene-D, β-selinene, bicyclogeranene and spathulenol were expressed only in hydrodistillation. The extraction of essential oil by SFE presented higher yield of essential oil than hydrodistillation technique. Presenting, however, these essential oils, different phytochemical profiles.

Effects of Postharvest Treatments on the Quality Parameters of Crude Drugs of Thymus vulgaris and Origanum vulgare subsp. hirtum

Szabó, K.; Novák, I.; Sárosi, S.; Pluhár, Z.; Bányai, L.; Mándoki, E.

EÖTVÖS UNIVERSITY OF BUDAPEST, DEPARTMENT OF MEDICINAL AND AROMATIC PLANTS, PÓLIGON TÉR 1, 1119, BUDAPEST, HUNGARY

The quantity and quality of the biologically active agents could be influenced significantly by the postharvest treatments. We aimed to compare the effect of natural drying, drying on 30°C, on 40°C freeze drying (lyophilisation) and refrigeration on the quality of crude drugs of garden thyme (Thymus vulgaris) and Greek oregano (Origanum vulgare subsp. hirtum). The essential oil (EO) content and composition, the total antioxidant capacity (TAC) and the total phenol content (TPC) of samples were measured. The EO content of the thyme samples occurred between 0.68 and 1.85 mL/100 g d.w. The oregano samples contained EO within the range of 3.28 and 6.80 mL/100g d.w. The freeze drying significantly decreased the amount of EO in samples of both species. In the EO of Thymus samples thymol was found
in the highest ratio (58.7-71.8%), while in the essential oil of oregano carvacrol was the main compound (91.2-95.7%). The EO compositions were not influenced by postharvest treatments. Considering the TAC of the samples, the only water extract proved to be effective, while the alcoholic extracts had no TAC. Oregano has several times stronger TAC and TPC than garden thyme. Fresh and deep-frozen samples have not shown antioxidant capacity (0.00-0.21 mg ASE/ml). The strongest TAC was measured in case of natural drying (1.25 and 1.41 mg ASE/ml) and of 40 °C drying (1.03-1.42 mg ASE/ml) in the samples of both species. The TPC showed a little bit different character: In case of oregano naturally dried samples showed the highest values, while in case of thyme the freeze dried samples gave the highest values. Summarizing the results, deep freezing seems to have the worst effect on the quality parameters of the crude drugs.

Sm08.218
The Populations of Melissa officinalis L. (Lemon Balm) in Armenia and its Conservation through Introduction into Agricultural Production System
Abrahamyan, A.
ARMENIAN STATE AGRARIAN UNIVERSITY, TERENY 74, 0009, YEREVAN, ARMENIA
It has been implemented field trips research work on the populations of Melissa officinalis L. in different regions of Armenia during 2008-2009 vegetation periods. Also, it has been surveyed its growing and biological characteristics in different populations. The selection of researching territories has been realized by taking into account the existing data (The Botanic Garden of RA) and theoretically possible existence of new population. These territories vary with their geographical location, elevation, soil types, climatic conditions etc. Though, we have found out new population, but the current condition of lemon balm’s populations is alarming, due to many different anthropogenic threats. In fact, 4 populations from 11 are extinct. The map (with GPS data) shown the distributions of plant’s populations is created. Also, it has been observed the factors, which have negative effect on the conservation of populations. Realized different multiple observations over the populations have exposed the fixed times of each phenophases, plant growing characteristics. We have estimated the growing sizes of each population, its abundance and the number of ripened plants etc. We have found out its certain biological characteristics in Armenia. Melissa is drought-resistant, but grows well in soils with enough moisture. It is susceptible towards early spring frosts and abrupt weather change. Chemical analyses have been done to value the essential volatile oils in plant, growing different populations. In order to contribute to the conservation of this plant, we suggest to introduce it into the agricultural production system. Created data could be served as indispensable materials for the appropriate approaches of domestication experiments of wild Melissa. This would foster the improvement of its use and the development of traditional medicine as well. In addition, created data could be basic material to assess the sustainability of Melissa populations in respect with The Red Book Criteria of IUCN.

Sm08.219
Morphological and Chemical Variability Assessment from Portuguese Mentha pulegium L. (Pennyproyal) Accessions
Lopes, V. R.; Barata, A. M.; Rocha, F.; Pedro, L. M.; Barroso, J. M.; Figueiredo, A. C.
Instituto nacional de Recursos biológicos, 1º andar porto do Carro de Gomos wacieta, Quinta S. Joao, 5, Pedro de Mereles, 4700-835 BRAGA, PORTUGAL
Universidade de Lisboa, Faculdade de Ciências de Lisboa, DRV, Instituto de Biologica e Biodiversidade, Centro de Biociências da Vida, C2, Campus Grande, 1749-016 Lisboa, PORTUGAL
Mint species have been used, for centuries, for medicinal and culinary purposes due to their antiseptic and cooling properties. Mentha pulegium L.; commonly known in Portugal as poyo, has local medicinal and seasoning use, namely in the preparation of typical fish dishes, and liquors. Accessions of M. pulegium consisting of wild collected material and seed progeny were assessed for diversity through a combined morphochemical evaluation. Morphological characters from ten, pheno-

Sm08.220
Dropwort (Filipendula vulgaris L) Seeds Germinability as Affected by their Ripeness and One-Year Storage
Przybył J. L.; Paczesna E.; Angeliczyk M.; Baczek K.; Weglarz Z.
DEPARTMENT OF VEGETABLE AND MEDICINAL PLANTS, WARSAW UNIVERSITY OF LIFE SCIENCES - SGGW, NOWOSIETOWA 106, 02-797, WARSAW, POLAND
Dropwort is a perennial, naturally occurring in Poland on sunny, semi-dry meadows and neglected lands. Above- and underground organs of this plant are used for ages in people medicine as a diuretic, antirheumatic and anti-inflammatory agents. In Department of Vegetable and Medicinal Plants of Warsaw University of Life Sciences – SGGW the cultivation trials of dropwort have been done. The aim of undertaken investigation was to study the influence of seeds ripeness and its short term storage on the germination ability. The seeds were collected in the dough and complete mature stage from two-years old plants. The germinability was assessed directly after harvest and after one-year storage, according to The International Seed Testing Association (2000). The accumulation of phenolic compounds in the seeds was performed as well. Directly after seed harvest there were no distinct differences in germination ability between the seeds collected in dough and complete maturity. After one-year storage the germination ability of seeds collected in dough stage did not exceed 40 per cent whereas fully ripe seeds germination ability was higher than 90 per cent. In the seeds six phenolic compounds were identified: rutin, hyperoside, astragalin, spireoside, gallic and ellagic acids. The distinctly higher germination ability of full ripe seeds after one-year storage may result in the decrease of the content of phenolic compounds, especially of gallic and ellagic acids.

Sm08.221
Intraspecific Variability of Southern Sweet-Grass (Hierochloë australis (Roem. & Schult.) Wild Growing in Poland
Przybył J. L.; Paczesna E.; Angelczycyk M.; Baczek K.; Weglarz Z.
DEPARTMENT OF VEGETABLE AND MEDICINAL PLANTS, WARSAW UNIVERSITY OF LIFE SCIENCES - SGGW, NOWOSIETOWA 106, 02-797, WARSAW, POLAND
Southern sweet-grass is naturally occurring in Poland tuft-grass. The leaves of this plant are coumarin raw material used in medicine as well as in food and tobacco industry. The content of coumarin in the leaves is the most important quality discriminant of the raw material. This species being under partial legal protection is seriously endangered because of excessive, uncontrolled collecting. Taking into
consideration this danger the trials of its cultivation were undertaken in our Department. The aim of the study was to investigate the intraspecific variability of southern sweet-grass wild growing in the Eastern area of Poland. The differences concerning the coumarin derivatives between five geographically distant populations and between 45 individuals (belonging to one population) were investigated. Both the populations and the individuals distinctly differed in the content of all detected coumarin compounds: coumarin, 5,4'-dihydroxyconumarin, 7-hydroxyconumarin. The highest differences between individuals were found in the content of coumarin (from 87.07 to 1082.43 mg/100g of dried raw material). There were also visible differences between individuals in the intensity of powdery coating on the leaves. The leaves of the plants rich in the coating were characterized by significantly higher content of coumarin in comparison with plants with visible coating. It may indicate that this compound is partly secreted from the leaves and accumulated in the powdery coating.

Sm08.222
Accumulation of Phenolic Compounds in Leaves and Underground Organs of Dropwort (Filipendula vulgaris L.)
Bazcek K.; Przbył J. L.; Angelczyk M.; Kuczerenko A.; Pelc M.; Weglarz Z.
DEPARTMENT OF VEGETABLE AND MEDICINAL PLANTS, WARSAW UNIVERSITY OF LIFE SCIENCES - SGGW, NOWOŚWIĘCIEŃSKA 166, 02-776, WARSAW, POLAND
Dropwort is an Euro-Asian perennial belonging to Rosaceae family. The plant with shoots up to 80 cm high and pinkish-white flowers occurs rarely on sunny grass- or neglecteclands. The raw materials (above- and underground organs) rich in phenolic compounds reveal anti-inflammatory, antirheumatic and diuretic activity. The effect of flowering shoots removal on the yield of basal leaves and underground organs (rhizomes with tuberous roots) and accumulation of phenolic compounds was investigated. The flowering shoots removal increased the yield of both above- and underground organs. In the plant materials six phenolic compounds [(-)-epigallocatechin, (+)-catechin, (-)-epicatechin, (-)-epigallocatechin galate, ellagic and gallic acids] were determined by HPLC. In the leaves dominant compounds were gallic acid and (+)-epicatechin whereas in underground organs – catechin derivatives (+)-catechin, (-)-epicatechin. The summer removing of flowering shoots changed the content and composition of determined phenolic compounds. The storage organs (rhizomes and tubers) from the plants after flowering shoots removal were characterized by distinctly lower content of these compounds in comparison to raw materials from not-cut plants. The content of phenolic compounds in the leaves and roots of not-cut plants was higher than the plants after flowering shoots removal.

Sm08.223
Black Cohosh Rhizome and Phytochemical Production in Response to Shading, Spacing, and Age
Thomas, A. L.; Applequist, W. L.; Rottinghaus, G. E.; Miller, J. S.
1UNIVERSITY OF MISSOURI, SOUTHWEST RESEARCH CENTER, 1414 HIGHWAY 21, MOUNT VERNON, MISSOURI, UNITED STATES
2RESEARCH BOTANICAL GARDENS, ST. LOUIS, MISSOURI, UNITED STATES
3UNIVERSITY OF MISSOURI, VETERINARY MEDICAL DIAGNOSTIC LABORATORY, COLUMBIA, MISSOURI, UNITED STATES
4NEW YORK BOTANICAL GARDEN, BRONX, NEW YORK, UNITED STATES
Black cohosh [Actaea racemosa L.; Cimicifuga racemosa (L.) Nutt.] is a perennial woodland herb native to the eastern and midwestern United States. Interest in cultivating black cohosh has increased as it is commonly used as a dietary supplement to treat menopausal symptoms. Two studies were conducted in a shadehouse in Missouri, USA from 2000 to 2004. The first study quantified the development of rhizome and root tissues of known age, and of four phytochemicals therein in response to three shading treatments. The second study evaluated rhizome and root tissues of not-cut plants was higher than the plants after flowering shoots removal. In Missouri, USA from 2000 to 2004. The first study quantified the development of rhizome and root tissues of known age, and of four phytochemicals therein in response to three shading treatments. In the second study evaluation, black cohosh rhizomes increased in size from 46 g (fresh weight) at the end of their second season to 78 g by the third season. Mature rhizomes from the spacing study, which were several years old, averaged 171 g upon harvest. In the age study, cimicaracemoside A, 23-epi-26-deoxyactein, actein R, and actein S were found in both rhizome and root tissues in varying quantities. In general, age of tissue did not consistently influence concentration of these phytochemicals. Rhizomes from plants in full sun had significantly more cimicaracemoside A (641 ppm) compared with those under 40% or 80% shade. For 23-epi-26-deoxyactein, rhizomes grown under 40% shade had a higher concentration (3,109 ppm) compared with 0 or 80% shade. In the spacing study, concentration of cimicaracemoside A was not affected by shading, but was significantly greater with 0.5 m spacing (427 ppm) compared with 1 m spacing; whereas concentration of 23-epi-26-deoxyactein was not influenced by spacing, but was significantly higher under 0% and 40% shade (2,842 and 2,779, respectively) compared with 80% shade. The varying responses of the phytochemicals in this study suggest that production of each compound may be independently influenced by a variety of horticultural and environmental factors.

Sm08.224
The Organic Cultivation of German Chamomile (Matricaria chamomilla L.)
Salehi, A.1; Ghalavand, A.2; Sephidkon, F.3; Asgharzadeh, A.4; Khalesro, S.4
1TARIQ MUDUNI UNIVERSITY, DEPARTMENT OF AGRICULTURE, FACULTY OF AGRICULTURE, TARIQ MUDUNI UNIVERSITY, TEBRIZ, IRAN, 14111-33611 R. IRAN, TEBRIZ, ISLAMIC REPUBLIC OF IRAN
2DEPARTMENT OF AGRICULTURE, FACULTY OF AGRICULTURE, TARIQ MUDUNI UNIVERSITY, TEBRIZ, ISLAMIC REPUBLIC OF IRAN
3DEPARTMENT OF SOIL, BIOLOGY, SOIL AND WATER RESEARCH INSTITUTE, TEBRIZ, ISLAMIC REPUBLIC OF IRAN
To study the effect of organic and bio fertilizers on the growth, yield and essential oil of Matricaria chamomilla L., a field experiment has been carried out in Iran during 2008. The factors were PGPR inoculation (inoculated and no inoculated), zeolite (0 and 9 ton/ha) and vermicompost (0, 5, 10 ton/ha). Studied characteristics were plant height, dry flower yield, essential oil content and yield. The results showed that vermicompost levels had significant effects on all studies parameters. With increasing vermicompost levels, plant height, dry flower yield, essential oil content and yield were increased. The highest (0.73 %) and the lowest (0.52 %) of essential oil content were observed in 10 and 0 ton/ha vermicompost levels, respectively. Also there were positive and synergistic interactions between factors vermicompost combined with PGPR and vermicompost combined with zeolite on dry flower yield. Zeolite also showed significant effects on mentioned traits as with increasing zeolite amount, essential oil yield increased and there was significant difference between 0 and 9 ton/ha zeolite. Also, PGPR enhanced plant height, dry flower yield, essential oil content and yield. The highest (358/313 kg/ha) and the lowest (321/33) of dry flower yield were obtained in inoculums and no inoculums PGPR. Consequently, it seems that the organic cultivation of German chamomile can consider as an alternative system for conventional system in chamomile production.

Sm08.225
Prioritisation of Medicinal and Aromatic Plant Species for Genetic Resource Conservation in Lithuania
Sveistytė, L.1; Labokas, J.1; Radusiene, J.2; Karpavičienė, B.2; Loziene, K.2
1PLANT CARE BANK, ŠIAULIŲ ŽIEMŽI, 49, LT-08266, VILNIUS, LITHUANIA
2INSTITUTE OF BOTANY, NATURAL RESEARCH CENTRE, ŠIAULIŲ ŽIEMŽI, 49, VILNIUS, LITHUANIA
About 400 native plant species are being used in both modern and traditional medicine in Lithuania. They make an indispensable part of biological diversity and are conserved at large. As the number of the species is high and their habitat range is wide the application of maintenance measures on all of them gets complicated. Therefore, we made some attempts to prioritize the species and somehow facilitate the genetic conservation strategies for medicinal and aromatic plants (MAPs). For the baseline data collection we used national and regional pharmacopoeias, scien-
entific references, statistical and ethnobotanical data sources. The experience of
neighbours, particularly the Nordic countries was taken into account as well. The
analysis of different data sources and our own experience suggested grouping MAP
species into three tentative priority groups based mainly on their socio-economic
and cultural values, resource abundance, biological and habitat preferences. The
socio-economic and cultural values of MAPs were estimated by their consumption
rates and scale over the last period as well as species popularity and knowledge-
ning it in different ethnographic parts of the country. The resource abundance and
habitat preferences were estimated reviewing the various case studies as well as using
inventory data of useful plants carried out by the Institute of Botany. The highest
priority group includes MAP species which are (or could be) very important for the
consumption, but their resources are very scarce due to specific habitat preferences and
other conditions. The collecting of most of them is limited by the law. A good example of
this group is Arnica montana. Lower priority group includes species of high
utilitarian value with more abundant, but still limited resources. An example is
Arctostaphylos uva-ursi. And the biggest part of MAP species which resources are
not under the threat would fall into the lowest priority groups.

Sm08.226
Cholinesterase Inhibitory Capacity and Antioxidant Activity of Quercus suber L. Extracts
Costa, P.; Gonçalves, S.; Grevenstuk, T.; Romano, A.
UNIVERSITY OF ALGARVE AND INSTITUTE FOR BIOTECHNOLOGY AND BIOENGINEERING (IBB/CGB-UTAD), FACULTY OF
SCIENCES AND TECHNOLOGY, CAMPO DE GABRIELA, ED. B. RO5-139, F4010-190 PORTO, PORTUGAL.
Medicinal plant drug discovery continues to offer new and important leads against
a variety of pharmacological targets including Alzheimer’s disease (AD), which
have a great impact on modern society. Currently, the effective treatment for AD
has been aimed at the cholinergic system, via acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) inhibition. Moreover, it has been suggested that oxidia-
tive stress is an important event to the development of multiple diseases including
AD, and therefore, it seems reasonable that antioxidants can play an important role
in their improvement. In this study, aqueous and methanol extracts from leaves of
Quercus suber L.; a common tree of the Mediterranean region, were evaluated
for their cholinesterase inhibitory capacity and antioxidant activity. The ability
of the extracts to inhibit AChE and BuChE activity was determined by Ellman’s
colorimetric method. Antioxidant activity was determined by trolox equivalent anti-
oxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays,
and the phenolic content was evaluated by Folin-Ciocalteu assay. Results showed
that the methanol extract of Q. suber was the most active inhibitor of AChE (37.31
- 89.05 %) and BuChE (30.20 - 68.75 %) enzymes in vitro. Both extracts demon-
strated high antioxidant properties by TEAC (3576.08 ± 106.75 and 1892.48 ±
59.57 μmolTE·gext.) for methanol and aqueous extracts, respectively) and ORAC
(3071.80 ± 104.13 and 3624.00 ± 60.25 μmolTE·gext.) respectively. Finally, it
was confirmed a directly relationship between phenolic content (2945.53 ± 86.47
and 2535.30 ± 150.44 μmolGAE·gext) for aqueous and methanol extracts, respec-
tively) and antioxidant activity, which are in accordance with previous studies. This
study revealed that the methanol extract of Q. suber is a possible beneficial agent
in AD therapeutic.

Sm08.227
Development of a Sustainable Method for the Bioprospection of Plumbagin from D. intermedia
Grevenstuk, T.; Gonçalves, S.; Romano, A.
UNIVERSITY OF ALGARVE AND INSTITUTE FOR BIOTECHNOLOGY AND BIOENGINEERING (IBB/CGB-UTAD), FACULTY OF
SCIENCES AND TECHNOLOGY, CAMPO DE GABRIELA, ED. B. RO5-139, F4010-190 PORTO, PORTUGAL.
Plumbagin is a naphthoquinone produced by plants of the
Plumbaginaceae, Dro-
seraceae and Drosophyllaceae families, which has been known for long for its broad
range of biological activities (antimicrobial, antiatherosclerotic, anticarcinogenic,
etc.) and continues to be an effective agent against new pharmacological targets.
The most exploited source of plumbagin is the roots of Plumbago spp. (Plumbagi-
nacea), however these plants grow slowly and the roots suitable for extraction take
tears to grow. On the other hand, most species of the Drosenae genus (Drosenaceae)
and the monotypic species Drosophyllum lusitanicum (Drosophyllaceae) exist in
confined habitats and are protected by law. Taking these limitations into account,
this work describes the development of an alternative and sustainable method for
the production of plumbagin from micropropagated Drosenae intermedia (Hayne)
plants. For the purpose of this work D. intermedia plants were produced using a
recently developed micropropagation protocol. The biomass increment of D.
intermedia cultures was monitored to determine the optimum subculture period
and a growth curve was obtained. Several extraction techniques (maceration, ultra-
sound assisted, sonoliet and supercritical fluid extraction) were employed to recover
plumbagin from the obtained plant material and extraction yields were compared.
The crude extracts were then subjected to a purification step using a Solid Phase
Extraction column. The results show that, except for maceration, good extraction
yields were obtained and the purification process yielded a nearly pure sample.
Furthermore, the use of supercritical fluids proved to be an efficient technique for
the extraction of plumbagin, bypassing the need to use hazardous organic solvents.
In conclusion, this work describes an ecologically and environmentally friendly
method for the production of plumbagin.

Sm08.228
Sustainable Production of Basil Using Recycled Household Compost: Impact on Flavour and Quality
Cruckshank, B. J.; Graham, L. E.; Prestwich, M.; Daymond, A.; Wagstaff, C.
UNIVERSITY OF READING, WHITKNIFFS, P.O. BOX 217, READING, RG6 6AH, UNITED KINGDOM
BAC FRESH HERBS, LUCAS GREEN ROAD, WOTF END WISING, SUSSEX, GU3 1ST, UNITED KINGDOM.
Basil (Ocimum basilicum L.) is a commercially significant crop both in the UK and
throughout the World. Since flavour properties of this herb are the primary fac-
tor determining its quality, our objective is to improve the sensory characteristics of
the product, whilst improving sustainability by reducing energy and chemical
inputs. Past research has shown significant phytochemical fluctuations in response
to environmental stimuli, such as light, temperature and water. We hypothesised
that the growth physiology and phytochemical content of basil is also influenced
by nutrient levels and soil quality. We investigated the use of recycled household
compost (RHC) as an alternative commercial substrate to soil-based media with the
addition of chemical fertiliser. RHC is a widely-available waste by-product from
domestic properties which may be beneficial to growers, the consumer and envi-
ronment. Physiological measurements have been made and have shown that the use
of RHC can result in a product with the required aesthetic qualities and yield for
commercial use. We have established how the use of RHC substrate during cultiva-
tion affects the flavour characteristics of the plant, both via GC-MS analysis and
human sensory evaluation.

Sm08.229
Water Extractable Phytochemicals from Lavandula viridis and Thymus lotocephalus Exhibit Antioxidant Properties
Gonçalves, S.; Gomes, D.; Romano, A.
UNIVERSITY OF ALGARVE, FACULTY OF SCIENCES AND TECHNOLOGY, CAMPO DE GABRIELA, ED. B. RO5-139, F4010-190
PORTUGAL AND INSTITUTE FOR BIOTECHNOLOGY AND BIOENGINEERING (IBB/CGB-UTAD).
It is well-known that most species of the Lamiaceae family possess a wide range of
biological and pharmacological activities. Lavandula viridis and Thymus lotocephalus
(Lamiaceae) are endemic species from the Algarve region (Portugal) that are little
studied in terms of their pharmacological potential. Thus, and considering the in-
creasing interest in the health properties of natural antioxidants, this study was con-
ducted to ascertain whether the antioxidant activity and total phenolic content of
extracts is affected by steeping the plant material in hot or cold water. The aqueous
extracts were prepared by homogenizing aerial parts in cold water for 2 h or in hot
water for 5 min (1:20 w/v). Both cold and hot infusions were then centrifuged at
3000 rpm for 10 min, the supernatant was filtered and used in subsequent assays.
Antioxidant activity was evaluated by Fe2+ chelation, degradation of deoxyribose,
reducing of FeCl₂ and DPPH assays, and total phenol content was determined by using Folin-Ciocalteu reagent. Extracts from both species have similar iron-chelating capacity and ability to inhibit Fe(II)/H₂O₂-induced decomposition of deoxyribose as an index for hydroxyl radical. However, L. viridis extracts had higher reducing power than T. lotocephalus ones. Moreover, results obtained with DPPH and Folin assays also showed that extracts from L. viridis had superior antioxidant properties and much greater phenolic contents than those from T. lotocephalus. In general, extracts obtained with hot water displayed higher antioxidant activity in all the as-says and larger amounts of phenols, nevertheless, this was more pronounced in L. viridis. In conclusion, this work demonstrated the significant antioxidant properties of extracts from L. viridis and T. lotocephalus by employing several in vitro methods, however best results were observed with L. viridis extracts obtained with hot water.

Sm08.230
Introduction and Conservation of Mint Germplasm (Mentha spp) in Brazil
Vieira, R. F.; Silva, D. B.; Alves, R. B. N.
Jagiariuna, São Paulo, Brazil

The genus Mentha (Lamiaceae) consists of nineteen species distributed in the Old and New World. The aromatic leaves of mint are used fresh and dried as flavorings or spices in a wide variety of foods. They contain biologically active constituents and are also used in traditional ceremonial rituals and as medicines. Volatile oils of mint species are used to flavor foods, in dental and oral products, and in fragrances. The objective of this work was to establish a germplasm bank of mint. The following species (Accessions) were included in this collection: Mentha aquatica L. (5); Mentha arvensis L. (6); Mentha campestre Schur. (1); Mentha canadenis L.(2); Mentha × piperita Sole (1); Mentha × spicata L. (6); Mentha longifolia L. (2); Mentha × piperita subsp. citrata Ehrh. (2); Mentha xii-loca Hudson (4); Mentha rotundifolia L. (2); Mentha sp. (19); Mentha suaveolens Ehrh. (3); Mentha suaveolens Ehrh. × M. aquatica L. (1); and Mentha × sylvestris L. (1). Sixty seven mint accessions, representing 14 species, were collected and introduced at the Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil. The total germplasm collection is maintained at field and greenhouse conditions, as well as in in vitro collection. Most of the collection has been chemically characterized. Vector of all the accessions have been collected and deposited in the Embrapa Genetic Resources and Biotechnology herbarium (CEN).

Sm08.231
Effect of Freezing and Drying on the Yield and Chemical Composition of Essential Oil of Rosemary (Rosmarinus officinalis L)
Goncalves, G. G; Mancinelli, R. C; Castanha, R. F; Morais, L. A. S.
Soil and Water Research Institute, Tehran, Iran, I. R. Iran
Tarbiat University, Tehran, Iran, I. R. Iran

This work aimed to evaluate three post-harvest processes on chemical composition and yield of rosemary (Rosmarinus officinalis L), essential oil. Leaves were collected at 8h30min in Jaguariúna-São Paulo State-Brazil. They were divided into three batches. The first batch was immediately submitted to hydrodistillation in order to know its initial volatile composition. The remaining batches were submitted to three post-harvest treatments. The highest essential oil content, but no significant effect on anethol percentage. Generally the chemical compositions were observed in frozen samples (0.94%-a), followed by dried samples (0.92%-b). Essential oil from fresh-material presented smaller yield (0.81%-c). Comparison of the essential oil profiles showed no statistically significant differences in camphor content (fresh-26.9%-a; dried-26.9%-a; frozen-25.7%-a), major component. The compounds, 1,8 cineole (fresh-19.9%-a; dried-18.5%-a; frozen-14.4%-b) and myrcene (fresh-15.9%-a; dried-15.7%-a; frozen-11.9%-b), showed highest content on fresh and dried samples. α-pineno (fresh-14.4%-b; dried-13.8%-b; frozen-16.6%-a), camphene (fresh-4.0%-b; dried-4.3%-b; frozen-5.1%-b) and l-limonene (fresh-3.9%-b; dried-4.1%-b; frozen-4.9%-a) presented highest content when submitted to freezing. These results showed that freezing process increased the yield of rosemary essential oil, but changed its composition, but, for some aromatic species, a proportion of the oil yield must be sacrificed to ensure the required essential oil quality.

Sm08.232
Effect of Vermicompost, PGPR and Zeolite Application on Yield and Essential Oil Content of Anise (Pimpinella anisum L)
Khalesro, S.1; Ghalavad, A.1; Sefidkon, F.2; Asgharzadeh, A1; Salehi, A.1
Shahid Beheshti University, Tehran, Iran, I. R. Iran

In this research, the effects of bio-organic fertilizers and zeolite on seed yield, essential oil content and composition of Pimpinella anisum L., as aromatic and medicinal plant, was investigated. Field experiment was conducted in the Agriculture Research Station at Sanandaj, Iran, in 2008. Experimental Factors were three levels of vermicompost (0, 5 and 10 t·ha⁻¹), two amount of zeolite (0 and 4.5 t·ha⁻¹) and mixture of Azotobacter, Azospirillum and Pseudomonas (inoculation and not-inoculation). The results showed that vermicompost levels highly increased the quantitative characters including plant height, umbel no/plant and seed yield. The application of 10 t·ha⁻¹ vermicompost gave the highest value of those characters. These values were 18.3%, 29.9% and 43.1% higher than the first level of Vermicompost, for plant height, umbel no/plant and seed yield, respectively. Quantitative characters were also significantly increased by PGPR inoculation and zeolite application. Applying the third level of vermicompost caused the highest value of essential oil and anethol percentage. Zeolite application had a significant effect on essential oil content, but no significant effect on anethol percentage. Generally the most favorable interaction treatment for umbel no/plant and seed yield was the PGPR inoculation combined with the highest level of vermicompost.

Sm08.233
Comparison between Different Techniques for Volatiles Analyses in Coriander (Coriandrum sativum L)
Carrubba, A.; Millitello, M.; Salano, F.; Pagan Domenech, A. T.
University of Palermo, Palermo, Sicily, Italy

Although many papers have been devoted to the study of Coriander fruits aromatic pattern, many differences show up according not only to the provenience of seeds, but also to the analytical methods chosen. In our work, samples from one Coriander small-seeded biotype have been analysed, verifying the differences between (1) the oil extracted by means of a Soxhlet apparatus (2) the same oil sampled by means of HS-SPME and (3) the same oil sampled by means of HS-SPME on oils extracted by employing several in vitro methods.
Carrubba, A.; Catalano, C.; Bontempo, R.

Dill (Anethum graveolens L.) is an annual plant from Umbelliferae. Although in cookery also sprouts and tender leaves are used, the drug from Dill is represented by the scented fruits (“seeds”), largely used for flavouring conserved foods and liqueurs, but also by herbal and cosmetic industry. In this work, we present the results of a trial performed in Sicily, putting under comparison four different row arrangements: CR30 (continuous rows 30 cm apart); CR60 (continuous rows 60 cm apart), CR90 (continuous rows 90 cm apart) and TR (twin rows with a distance of 30 cm inside and 60 cm between twin rows. Being constant the plant population on row (12 plants m⁻²), the plant density per unit area changed consequently to 40, 20, 13.3 and 26.6 plants m⁻², respectively. Seeds yield, ranging from more than 2 to less than 0.8 t ha⁻¹, seemed to vary according to plant population, but between treatments many differences showed up in yield components and plant geometry.

Sm08.236
Aromatic Plants and their Bioactive Products to Control Postharvest ‘Rocha’ Pear Diseases

Matos, O.; Santos, M.; Vasilenko, P. R.; Barreiro, M. Graca

Aromatic plants can play a determinant role in several domains of agriculture being recognized as useful for food preservation, preventing moulds and pest attacks that affect the quality of fresh foods. Post harvest deterioration of fruits due to water loss, senescence and development of physiological disorders and fungal attacks cause decay in quality and economic losses. In present work the extracts of a set of aromatic plants were assayed for their capability to control fungi affecting cold stored fruits. Assays were performed in vitro and in vivo using the ‘Rocha’ pear variety kept under cold chambers. Botrytis cinerea and Penicillium expansum, two main pathogens responsible for postharvest rots, were used as biological targets. Although the low concentrations used promising results were achieved, from the in vitro tests performed with extracts or oils of eight aromatic plants. Significant mycelia growth reduction of both fungi was obtained mainly with O. vulgare, Coriandrum sativum and Mentha pulegium. Successful in vivo assays were performed with O. vulgare either for preventing or to treat fungal infections. From tests performed with standard compounds corresponding to the main constituents of such aromatic plants, positive results were also obtained mainly with caprylic acid, benzoic acid and pulegone. Present work is a positive contribute to the knowledge on biological potentialities of aromatic plants and their helpfulness to the development of harmless strategies to post-harvest control of fruit rots.

Sm08.237
Agronomic and Chemical Characterization of Vetiver Accessions

Arrigoni-Blank, M. F.; Santos, R. B.; Rosa, Y. R. S.; Oliveira Neta, P. M.; Alves, P. B.; Blank, A. F.

Vetiver (Chrysopogon zizanioides (L) Roberty syn. Vetiveria zizanioides (L) Nash) is a perennial plant of the family Poaceae whose essential oil extracted from its roots have jobs defined in the perfume industry because its known natural features such as fixation of volatile formulations. The aim of this study was to realize agronomic and chemical characterization of the vetiver accessions of the Active Germplasm Bank of the Federal University of Sergipe for identification of highly productive clones for essential oil content, yield and chemical composition. We tested six clones (UFS-VET001, UFS-VET002, UFS-VET003, UFS-VET004, UFS-VET005 and UFS-VET006) in a randomized block design with three replications and each part consisted of three vessels of 30 dm³ with one plant. After six months of culture the following variables were evaluated: plant height, number of tillers and airs, dry weight of shoot and root, essential oil content and yield, and chemical composition of the essential oil. The increased production of root biomass (1016.80 g) was obtained by accession UFS-VET003. The accessions UFS-VET002 and UFS-VET003 showed the highest percentage of khusimol (24.21% and 22.25%, respectively), the principal chemical constituent for the commercial value of vetiver essential oil.

Sm08.238
Genotype - Age Interaction in Pepper-Rosmarin

Blank, A. F.; Oliveira, T. C.; Santos, R. B.; Niculau, E. S.; Alves, P. B.; Arrigoni-Blank, M. F.

This work was aimed to study the behaviour of pepper-rosmarin (Lippia sidoides Cham) accessions of the Active Germplasm Bank of the UFS. The randomized block design was used in a split plot in time scheme. We tested ten pepper-rosmarin accessions and we realized harvest in the rainy seasons of 2005 and 2006. We analyzed the following variables: plant height (cm), fresh and dry weight of leaves (g/plant), content (%) and yield (ml/plant) of essential oil, and content (%) of the chemical constituents of the essential oil. We observed highest content and yield of essential oil for accession LSID-105 with 7.68% in 2005 and for accession LSID-101 with 56.46 ml/plant in 2006. The highest thymol and carvacrol means were found by accession LSID-003 with 90.82% and accession LSID-104 with 56.05%, respectively, both in 2006. The accession LSID-104 collected in the Sergipe State, presented carvacrol as its major chemical constituent. The other accessions had thymol as their major chemical constituent. In both years of cultivation the accessions presented phenotypic variability for all the analyzed variables, except for terpin-4-ol content in the essential oil.
Sm08.239
New Aromatic Citrus Resources in Okinawa

Teramoto-Inafuku, S.; Kawamitsu, Y.; Yamamoto, M.

The United Graduate School of Agricultural Sciences, Kagoshima University, Kikuchi 1, Kagoshima, 890-0065 JAPAN

This study of C. depressa Hayata, produces small mandarins with a strong, fresh aroma that are used as sour or sweet citrus. This group has many variations, and fruits contain high amounts of flavonoids. We have identified several Citrus species in the Okinawa Islands that have unique aromatic profiles that could find use in aromatherapy, cosmetics, and other applications. Four unique citrus profiles are introduced here. 1) Citrus depressa Hayata (local name Shikizuwakita): A small mandarin with a high content of the monoterpene hydrocarbons γ-terpinene and α-phellandrene. Fruit weight 30-40 g. Fruit shape index (FSI) = 137. Peel is vivid orange yellow and 1.5-2.0 mm thick, and contains polymethoxylflavones (nobiletin, tangeretin) and a flavanone (hesperidin). The essential oil could be used in aromatherapy, aromatherapy, and foods. 2) Citrus kraijsi hort. ex Tanaka var. kuchiichi (local name Kabuchii): High in sesquiterpenes hydrocarbons and thymol, with a strong, fresh aroma. The essential oil could be used in aroma treatment for relaxation and refreshment, as a room fragrance and deodorizer, in cosmetics, and in food and drinks, especially alcoholic beverages. Fruit weight 75-85 g. FSI = 127. Fruit is bright yellowish-green and 3-5 mm thick. The essential oil yield is similar to that of C. depressa. 3) Citrus kraijsi hort. ex Tanaka (local name Krajii): Higher percentages of esters (geranyl acetate and neryl acetate), similar to bergamot, make it potentially good for relaxation in aromatherapy. This species could be a new Japanese bergamot adapted to high humidity. Fruit weight 75-85 g. FSI = 113. Peel is vivid yellowish-green and 4-5 mm thick, with a favorable aroma. 4) Citrus spp. (local name Unzohiki): High percentages of geranial and neral make it good for cosmetics and aromatherapy treatment. Fruit weight 100-120 g. FSI = 121. Peel is vivid orange-yellow and 6-10 mm thick, with a fresh citrus aroma like C. nobilis. These aroma profiles suggest the potential for further development of essential oil production and utilization of wastes from juice factories in Okinawa. In addition, the high flavonoid content of these fruits could allow the development of human health care applications.

Sm08.240
Influences of Artificial Lightweight Soils and Soil Moisture on the Growth of English Lavender and Spearmint in Rooftop Gardening

Ono, E.; Kimura, M.; Kobayashi, R.; Miyata, M.; Matsuo, E.

Tokyo University of Agriculture, 1775, Funabashi 283-0054, Japan

Rooftop greening is expected to reduce the heat island phenomenon by relieving the urban thermal environment and to function to protect insulated buildings. However, we sometimes observe poor growth or the death of rooftop herbs on account of insufficient watering. In this experiment, seedlings of English lavender (Lavandula angustifolia) and spearmint (Mentha spicata) were planted in small nursery boxes (L240 x W160 x H70 mm) filled with four types of artificial lightweight soil. Controlled soil moisture was of five levels. Watering was carried out when soil moisture in the nursery boxes reached 12, 34, 56 and 78% of field water capacity (100%) respectively, to bring them back to 100%. In addition, soil moisture potential was maintained at 100% in one treatment. Differences with respect to the artificial lightweight soils were observed in the growth of lavender and mint. However, greater than these differences was the difference in soil moisture among the artificial lightweight soils. A cross-soil moisture comparison of plant height, number of leaves, and top fresh weight of the lavender yielded the following figures: 78% > 56% > 34% > 12% > 100%. The ratio of plant height, number of leaves, and the fresh and dry weights of the top at 100% of soil moisture to those at 78% of soil moisture was 68, 43, 37 and 41%. Essential oil content in the lavender leaves was also higher at 78% of soil moisture than at the other treatments. As for spearmint, plant height, number of leaves, and top fresh weight tended to increase with the increase of soil moisture percentage, especially at 100% of soil moisture. Also, a marked defect in growth was observed at 12% of soil moisture. Essential oil content in the spearmint leaves was higher at 12% of soil moisture than at the other treatments.

Sm08.241
Medicinal Pastures: Germination Assessment of Chicory (Cichorium intybus) Seeds Collected in Alentejo, South Portugal

Póvoa, O.; Farinha, N.; Generoso, V.

ESTA UNIVERSIDADE DE ÉVORA, CENTRO DE TERRITÓRIO, AV. 14 DE JUNHO, 7550-951 ÉVORA, PORTUGAL

In modern sustainable grazing systems, there is increased emphasis on use of non-traditional forages and local varieties to supply nutrients to livestock. Low availability of forage early in the growing season and low nutritive value in the summer could limit animal production in Alentejo. Chicory (Cichorium intybus) is perhaps best known for the extract of its roots used as an ingredient in ‘coffee substitute’ beverages or even for its medicinal uses. The plant blue flowers also present ornamental potential. Its use as a grazed forage for ruminants is less well known. Several authors reported its high content of some major and minor trace minerals in chicory and commented on its use in pasture mixtures as a source of these minerals. Others reported its potential use as medicinal pasture, with positive effect as a dewormer. The main goal of these studies is to assess local populations of C. intybus aiming its propagation to use as grazed forage with medicinal purposes in Alentejo and in the Mediterranean basin. C. intybus seed quality depends on the genetic characteristics of the plants, but it is also strongly affected by the conditions of seed development on the mother plants and by storage conditions. Seeds didn’t show dormancy, germinating in a large range of temperatures (5 ° to 30 °C), with their optimum around 25 °-30 °C. Seeds from 10 accessions of C. intybus were collected in the Alentejo region in beginning of autumn 2009 and stored at room temperature (ca. 20 °C). Seeds were chilled at 5 °C for 15 days or stored at room temperature (20 °C) control. Germination trials were performed in light and temperature controlled incubations at 20 °C at total darkness and at 12-h daily photoperiod.

Sm08.242
Study of Chemical Composition and Yield of Essential Oil of Ocimum selloi B. Submitted to Hydrodistillation and Steam Distillation

Moraes, L. A. S.; Gonçalves, G. G.; Castanha, R. F.

DEPARTAMENTO DE MEDICINA ANIMAL, RODÓVIA SP-340, KM 127, 0° 49’ 32” S, MUN. TAMANDUÁ, ESTADO DE SÃO PAULO, BRASIL

The present study aims to evaluate the yield and chemical composition of essential oil of Ocimum selloi obtained by steam distillation and hydrodistillation. The leaves were collected on experimental area of Embrafo Environment (Embrapa Meio Ambiente - Jaguariúna - SP / Brazil) and dried at 35 °C for 3 days. The essential oil was obtained by hydrodistillation in a Clever-type apparatus and steam distillation apparatus for 2h30. The yield was calculated using the essential oil mass values. Essential oils were analyzed by GC-MS (Shimadzu, QP 5050-DB-5 capillary column - 30 m x 0.25 mm x 0.25 μm). Carrier gas was Helium (1.7mL/min); split ratio: 1:30. Temperature program: 50 °C, rising to 180 °C at 5 °C/min, 180 °C, rising to 280 °C at 10 °C/min. Injector temperature: 240 °C and detector temperature: 230 °C. Identifications of chemical compounds were made by matching their mass spectra and Kovar’s indices (IK) values with known compounds reported in the literature. The essential oil of Ocimum selloi did not presented differences in number of compounds. The identified the fol-
lowing compounds: Cys-beta-ocimene, methyl chavicol (major compound), alpha-copaene, beta-harbourtene, beta-elemene, methyl eugenol, trans-caryophyllene, trans-alpha-bergamotene, allo-aromadendrene, germacrene-D, beta-selinene, bicyclergermacrene, germacrene-A and delta-cadinene. There was a reduction on methyl chavicol content on essential oil extracted by steam distillation (86.6%) when it was compared to hydrodistillation (93.3%). The inverse was noticed to bicyclergermacrene that presented higher concentration when it was extracted by steam distillation (2.6%) than hydrodistillation (1.9%). There was significant loss of essential oil during the extraction process by steam distillation (approximately 25% lower). These results showed that hydrodistillation presented highest yield of essential oil and highest content of methyl chavicol, when it was compared to steam distillation. At the condition in which the experiment was performed, hydrodistillation is the extraction form more suitable for essential oil of Ocimum ceylan.

Sm08.243

Mountain Arnica Transplants Production by Usage of Mycorrhizal Fungi

Zutic, L.; Topolovec-Pintaric, S.; Novak, B.; Petrovic, M.; Follic, M.; Benko, B.; Fabek, S.

1. University of Zagreb, Faculty of Agriculture, Vegetable Crop Department, Svetosimunska 11, 10000, Zagreb, Croatia
2. University of Zagreb, Faculty of Agriculture, Department of Plant Pathology, Svetosimunska 25, 10000, Zagreb, Croatia
3. University of Zagreb, Faculty of Food Technology and Biotechnology, Food Control Centre, Jagicova 31, 10000 Zagreb, Croatia

Medicinal plant species mountain arnica (Arnica montana L. family Asteraceae), a herbaceous plant of European hilly-mountain region, grows on acidic lawns and dry heather-lands, and is present in plant community Arnico-Nardetum strictae in western part of Croatia. Negative changes in eco-system (air pollution, over-fertilization), absence of pasture and mowing of lawns, and excessive gathering from the nature, lead to continuous decline of natural populations, proclamation of species as vulnerable and protecting by law in many European states, including Croatia. The aim of research is introduction of arnica into agricultural production on agro-ecologically suitable lands (full region, acidic soils with low nutrient content), along with diminishing of plant mortality, especially expressed in the first year of cultivation. It is presumed that plant mortality could be decreased by using of mycorrhizal fungi of the genus Glomus and/or Trichoderma in transplants production. Transplants were grown in PP trays with 67 cells, 9 cm deep, filled with commercial organic substrate inoculated with 5 % inoculum of Glomus mosseae (GM) and Glomus intraradices (GI), pellets of Trichoderma harzianum (TH, one pellet per cell) and in untreated substrate as control (C). The trial was set up in the summer growing period, in the open space with net-protection, according to complete randomized block with four replications. Since initial growing was very slow, seedlings were pricked out two months after seeding into 11 cm deep pots, and transplanted three weeks later in agricultural field, according to Latin square with four replications. Growth parameters (leaf rosette diameter, number of leaves per plant, plant biomass) analysed before pricking and planting out, and six weeks after planting, showed significant positive effect of TH on growth and development of arnica plants, as well as negative influence of GM and GI.

Sm08.244

Seed Germination Behaviour of the Endangered Medicinal Plant Podophyllum hexandrum Royle

Simonnet, R.; Quennoz, M.; Boulliant, S.; Carlen, C.

1. MEDICINARY, ROUTE DES VALLÉES 18, 1164, COTTIGNY, SWITZERLAND
2. AGROSCIENCES CHAMONIX – RENDEZ-VOUS ACWF, 74200, CHAMONIX, FRANCE

The overexploitation of Podophyllum hexandrum, a Himalayan medicinal species belonging to Berberidaceae, is endangering its survival in natural sites. Etoposide, a derivative of the podophyllotoxin, is currently in clinical use for treatments against many cancers. The cultivation of this species may answer to the growing demand of this plant species and may assure its supply. However, the difficulties in seed germination have not favored the cultivation of this plant. Several studies on this subject were published without giving a final answer. Germination tests started in 2008. Seeds were collected from a culture in Switzerland in August 2008, washed and dried, then conserved at room temperature. From the harvest on and during 200 days, germinations were made 13 times at regular intervals. Seeds treated with gibberellic acid GA3 (450 ppm, 24h) were compared to untreated seeds (in Petri dishes in a germinator with 12 hours with light at 25 °C and 12 hours in the dark with 18 °C). The development of excised embryos were also analysed in a similar way on the Gamborg B5 medium with or without GA3 (2.5 µmol/l). More than 90% of the excised embryos presented a normal growth from 5 to 8 days after having been put in culture. No behaviour difference was observed between the embryos issued from fresh seeds at harvest and those issued from dried seeds up to 12 weeks after harvest. The addition of gibberellic acid to the culture medium had no effect on the growth rate or speed. The best result for seed germination was obtained by treating fresh seeds at harvest with GA3, allowing 90% germination after 80 days. Complementary tests including the importance of temperature on germination rate and duration will be necessary to better define the procedure to get plants from seeds for cultivation of Podophyllum hexandrum.

Sm08.245

Variations in Terpene Profiles of Different Strains of Cannabis sativa L.

Casano, S.; Grassi, G.; Martini, V.; Michelozzi, M.

1. CREA, RONDO BANCHI SANTONI, VIA LEONARDO DA VINCI, 41000, BOLOGNA, ITALY
2. INSTITUTO DI Pianta GENERICI, NATIONAL RESEARCH COUNCIL, VIA BARABOSCHI DEL TRINCO EDIZIONE 1, 50018, SIENA, ITALY
3. RESEARCH INSTITUTE, ITALY

Secondary compounds of the plant are indispensable to cope with its often hostile environment and the great chemical diversity and variability of intraspecific and interspecific secondary metabolism is the result of natural selection. Recognition of the biological properties of secondary compounds have increased their great utility for human use; numerous compounds now are receiving particular attention from the pharmaceutical industry and are important sources of a wide variety of commercially useful base products. Medical and other effects of Cannabis sativa L. are due to concentration and balance of various active secondary metabolites, particularly the cannabinoids, but including also a wide range of terpenoids and flavonoids. Literature reported a wide qualitative and quantitative variability in cannabinoids, terpenoids and flavonoids contents in Cannabis spp. Terpenes are strongly inherited and little influenced by environmental factors and, therefore, has been widely used as biochemical marker in chemosystematic studies to characterize plant species, provenances, clones and hybrids. Aim of this study was to investigate the variability in terpene profiles in Cannabis sativa L. Samples were collected from 16 indoor lines derived from 16 different strains and were dried at room temperature. The terpene composition in inflorescences was analysed by GC/FID and GC/MS. The amount of each terpene (in sufficient quantities to be considered in statistical analysis) was expressed as a percentage of total terpenes. Results showed a large variation between different strains in the relative contents for several monoterpenes (α-pinene, camphene, β-pinene, sabinene, Δ-3-carene, α-phetlandrene, β-myrcene, α-terpinene, limonene, 1,8-cineole, 3-terpinene, cis-β-ocimene, trans-β-ocimene, α-terpinenolone) and one sesquiterpene, β-caryophyllene. This wide variability in terpene composition can provide a potential tool for the characterization of Cannabis biotypes, and warrant further researches in order to evaluate the drug’s medical value and, at the same time, to select less susceptible chemotypes to the attack of herbivores and diseases.

Sm08.246

Study of Chemical Composition and Antioxidant, Antibacterial and Cytotoxic Activities of Salvia urmiensis Bunge from Iran

Pakzad, R.; Karamian, R.; Ranjbar, M.; Saboora, A.

1. 30–42 ISFA UNIVERSITY, MAZANDERAN STREET, 51371/4819, ISFAHAN, ISLAMIC REPUBLIC OF IRAN
2. ISLAMIC REPUBLIC OF IRAN

The genus Salvia (Lamiaceae) comprises more than 700 species and wide spreads
over the world. In Flora Iranica, this genus is represented by 58 species, 17 of which are endemic. The genus Salvia is known for medical value, antibacterial and antioxidant properties. S. urmiensis was collected during the flowering stage from Mahnian, Gharbi Province, NW Iran. The aerial parts were hydrodistilled for 6 hours, using a Clevenger-type apparatus to yield 0.5% of dark yellowish oil. The oil was analyzed by GC-MS. 50 compounds were characterized in the essential oil of S. urmiensis, which 5-(7a-hydroxy-5,4-dimethyl-octahydroinden-4-yl) (19.14%), Scareolide (Cis-A) (18.36%), (+) Stachydrone (15.56%), Scareolide (6.99%), 13(16)-14-Labden-8-01 (5.671%) and Scareol (5.671%) were found to be the major components. Total phenolic content in the extract was 0.27 mg Gallic acid equivalents (GAE)/g and total flavonoid content was 11.32 mg/g (DW). Antioxidant activity (IC50 value) of the extract was determined as 1.51 mg/ml by DPPH assay. The methanolic extract showed a high antioxidant activity against the bacteria Bacillus subtilis and Enterobacter aerogenes. It showed a moderate activity against Serratia marcescens and Pseudomonas aeruginosa and a low activity against Escherichia coli, Bacillus megaterium and Bacillus cereus, but has no activity against Staphylococcus aureus, Staphylococcus saprophyticus and Citrobacter amalonaticus. In addition, the methanolic extract showed cytotoxic effect against two cancer cell line (Breast Cancer MCF-7 and Colon Cancer HT-29).

Leaf Biomass, Yield and Content of Saffrole in Piper aduncum L. Essential Oil in Different N Levels and Harvest Ages

Ferreira, M. L.; Provazi, M.; Ming, L. C.
UNIVERSIDADE ESTADUAL PAULISTA - FACULDADE DE CIÊNCIAS AGRÔNICAS - DEPARTAMENTO DE PRODUÇÃO VEGETAL - HORTICULTURA, AÇÚ - EXPERIMENTAL LAGUNA, 15840-357, BOTUCATU, São Paulo, Brazil

The objectives of this study were to assess the influence of five doses of N in leaf biomass production, income and level of saffrole in Piper aduncum L. essential oil in four harvest ages. The statistical design was randomized block with 5 rates of N and four harvest dates, in a 5 x 4 factorial scheme with four replications. Nitrogen levels were 0, 45, 90, 135 and 180 kg·ha⁻¹. The harvest ages were 152, 242, 332 and 428 days after transplanting (DAT). The extraction of essential oil of leaves was done by hydrodistillation, and the saffrole content was determined by gas chromatography coupled to mass spectrometer. The data were submitted to analysis of variance and compared by the Tukey test at 5% of probability. We observed a linear increase in biomass production according days after transplanting, and the highest production occurred at 180 kg·ha⁻¹ for the last three harvests. The highest essential oil content (%) occurred at 152 DAT, with the 332 and 428 DAT in doses of 135 and 180 kg·ha⁻¹. We also observed a linear increase in the essential oil yield (g/l plants), and for the last two harvests was higher at doses of 135 and 180 kg·ha⁻¹. The nitrogen and harvest ages did not affect the content of saffrole present in the essential oil, however, the yield of saffrole was significantly higher in the last harvest and in the two highest doses of N.

Prevalence and Severity of Geranium Wilt Complex Disease in Garhwal Hills of Uttarakhand in India

Prasad, D.; Singh, K. P.
Gorakhpur, Hemvati Nandan Bahuguni University, Gorakhpur, U.P., India

Geranium (Pelargonium gravoisii L. Hérit.) is a source of medicinally and industrially important essential oil extracted from its leaves and tender shoots. Species is becoming favoured plantation crop due to its adaptability to low and mid hills of Garhwal at altitudes ranging from 1500-2100 m asl. During a survey of geranium fields in Garhwal, the crop was found suffering from a disease exhibiting symptoms of root rot and wilt complex causing considerable damage (about 70%) to the crop. The pathogens were identified as Rhizoctonia solani Kuhn and Fusarium oxysporum f. sp. geranium and further confirmed by ITCC, IARI, New Delhi (ITCC Ref. No. 6199 and 6200). The extensive survey for disease was carried out in the year 2005 to 2007 during summer to winter season in randomly selected fields in four district viz.; Tehri, Uttarakashi, Dehradun and Chamoli of Garhwal hills. The summer and winter planted crops of 2005, 2006 and 2007 were found to be severely affected by stem and root rot wilt. Plants showed maximum stem rot incidence (60.55%) and plant mortality (17.20%) during the winter season, whereas in summer the crops showed maximum root rot and wilt complex incidence (38.33%) with plant mortality up
to 12.22%. The average stem rot mortality was comparatively low (16-20%) in summer crop but increased 18 to 26% in winter crop. The percentages of root and stem rot mortality in plantation of were initially low but had increased to 37.35% (summer crop) and 26% (winter crop) at Ranichauri.

Sm08.251

The *ex situ* Comparison of Two Improved St. John’s Wort (*Hypericum perforatum L.*) Cultivars with an Iranian Wild Population

Crockett, S. 1; Azizi, M. 2; Ghani, A. 1; Ebadi, T. 1

1. K. K. F. University of Shiraz, Institute of Pharmaceutical Chemistry, Department of Pharmacognosy, 31774111, Shiraz, Iran
2. Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran

In this research, two improved cultivars of *Hypericum perforatum* ('Gold' and 'Veperikon') were compared with a wild Iranian population ('Ardebil population') under common garden conditions in Iran. Plants were cultivated from seed in a greenhouse and seedlings were transplanted after one month to the field plots. The statistical design of this study was a Randomized Complete Block Design with three replications. During the period of full flowering, selected phenological (number of days to flowering), morphological (plant height, mean leaf area, number of black nodules/leaf) and chemical (hypericin and pseudohypericin content) characteristics were assessed. Our observations were that the 'Veperikon' cultivar is very sensitive to soil-borne diseases. All transplanted seedlings were infected by the plant pathogenic fungus *Colletotrichum gloeosporiodes* (Penz.), which caused necrosis of the whole plant. Both the 'Gold' cultivar and plants from the wild population persisted despite mild infections with *C. gloeosporiodes* and produced flowering shoots at both the first and second years after cultivation. The 'Gold' cultivar was superior to the Ardebil population in terms of phenological and morphological characteristics. The average naphthodianthrone contents (% dry weight of tissue) for the wild Iranian population were 0.09±0.03% but for the 'Gold' cultivar, 0.65±0.12%. These data indicate that selection and directed cultivation of Iranian *H. perforatum* plants can result in plants with improved morphological, phenological and chemical characteristics.

Sm08.252

Content and Chemical Composition of Essential Oil of 'Alecrim-Pimenta' in Manaus - Amazonas State, Brazil

Chaves, F. C. M. 1; Campelo, A. B. 2; Mendonca, M. B. 2; Hidalgo, A. F. 1; Ming, L. C. 1; Bizzo, H. R. 3; Souza, A. M. 4; Pinto, M. A. S. 5

1. Embrapa Amazônia Ocidental, Km 19, Av. São Paulo, 69015-870, Manaus, Amazonas, Brazil
2. Universidade Federal do Amazonas, Av. General Roberto Onofre Jordão, Bairro 3, 000, CEP 69590-370, Manaus, Amazonas, Brazil.
3. Universidade Federal de São Carlos, Av. Marechal Rondon s/n, São Cristóvão, Sergipe, Brazil
4. Embrapa Agroindústria de Alimentos, Avenida das Américas, 29.501, 23.020-470, Rio de Janeiro, Brazil
5. Universidade Federal do Ceará, Campus Campus, Campus Universitário, Fortaleza, Ceará, Brazil

The family *Piperaceae* globally presents 12-14 genera and about 1400 to 1950 species. The genus *Piper* is rich in Piper and its components showed values close to that found in the conditions of natural occurrence local of the species.

Sm08.253

Biomass Production and Chemical Composition of Essential Oil of *Piper callosum* as Affected by Spacing in Manaus - Amazonas State, Brazil

Chaves, F. C. M. 1; Campelo, A. B. 2; Mendonca, M. B. 2; Hidalgo, A. F. 1; Ming, L. C. 1; Bizzo, H. R. 3; Souza, A. M. 4; Pinto, M. A. S. 5

1. Embrapa Amazônia Ocidental, Km 19, Av. São Paulo, 69015-870, Manaus, Amazonas, Brazil
2. Universidade Federal do Amazonas, Av. General Roberto Onofre Jordão, Bairro 3, 000, CEP 69590-370, Manaus, Amazonas, Brazil.
3. Universidade Federal de São Carlos, Av. Marechal Rondon s/n, São Cristóvão, Sergipe, Brazil
4. Embrapa Agroindústria de Alimentos, Avenida das Américas, 29.501, 23.020-470, Rio de Janeiro, Brazil
5. Universidade Federal do Ceará, Campus Campus, Campus Universitário, Fortaleza, Ceará, Brazil

The *Piper callosum* presents 12-14 genera and about 1400 to 1950 species, 700 species of the genus *Piper* and 600 species of genus *Piperomia*, distributed in the tropics. Brazil has five species, and *Piper* and *Piperomia* predominate with 170 and 150 species, respectively. In general, are herbaceous plants or shrubs, with entire leaves, alternate, infructescence with very small hermaphrodite flowers. The *Piper* species have as main characteristic, in any organs of plants, strong aroma and sweet and spicy flavor. They offer wide variety of uses as spices, flavorings and medicinal. The objective of this study was to evaluate the biomass of aerial part (dry weight basis), essential oil yield and its components, of *P. callosum*, affected by different spacings in plants cultivated in Manaus - Amazonas States, Brazil. The experimental design was conducted at Embrapa Western Amazon, in Manaus, AM, Brazil. The experimental design was randomized blocks, with four treatments (E1 - 0.5 x 0.5 m, E2 - 0.5 x 1.0 m; E3 - 1.0 x 1.0 m; E4 – 1.0 x 1.5 m) and seven replicates with six plants in useful area. The seedlings were made from cuttings of the stems and were planted in February 2007. In December of that year, they were cut at 10 cm of soil level. Biomass production was inversely proportional to the spatial arrangements, with the greatest biomass production (1,034.93 kg / ha) in the shortest spacing (E1), although no statistical difference was verified between E3 and E4. The same response was observed for the production of essential oil. For the chemical composition, regardless of spacing, it was found that the majority was composed of safrole (59.1%), followed by beta-pinen (8.3%), alpha-pinene (6.5%). Other constituents found were methyl eugenol (6.3%), 1,8-cineole (4.1), sabine (2.4%), gamma-terpinene and dliminene, both with 2.0% and beta-caryophyllene (1.2%).

Sm08.254

The Intercropping Fennel and Bean in Brazilian Semi-Arid Region

Carvalho, L. M. 1; Oliveira, I. R. 2; Almeida, N. A. 2; Andrade, K. R. 2

1. Universidade Estadual Paulista, Fazenda Experimental Lageado, S/n, 18.603-970, Botucatu, São Paulo, Brazil
2. Federal University of Sergipe, Av Marechal Rondon s/n, São Cristóvão, Sergipe, Brazil

Fennel (*Foeniculum vulgare Mill.*) is a spice and medicinal plant from Mediterranean region. In the Brazilian northeast, this crop is grown by family farmers, without irrigation, under high temperature conditions. A field experiment was conducted in semi-arid of Sergipe state, Brazil, to evaluate the performance of fennel - bean intercropping, under organic management, regarding to the agromonic traits, Area Equivalence Index (AEI) and components of yield. The experiment was conducted in a complete randomized blocks design with six replications and four treatments. The treatments were single crop and intercropping (additive model) of fennel with one variety of cowpea (*Vigna unguiculata*) and two varieties of beans (*Phaseolus vulgaris*), under organic management. Additionally, cowpea and beans were also grown as single crops. Plants of fennel were obtained from seeds sowing in trays, filled with organic substrate. The field
experiment was carried out for 167 days, from June, at the beginning of the rainy season, until the harvest of umbels on January. After harvest, the umbels were dehydrated in drying room, at room temperature (34 °C) and relative humidity kept at 40%. It was determined the dry mass of umbels, absolute and relative yield, AEl and essential oil content. No significant differences were detected as related to yield, which averaged 686 kg·ha⁻¹, but the height and canopy area of the plants were higher on the intercroppings. AEl values confirmed the viability of intercropping fennel and bean. It was also found that the production of dried umbels in all treatments was highest the fourth harvest, when it reached peak and then declined. The incidence of pests (especially aphids) was very low, causing no reduction in production.
Sm08.259
Toxicity of Volatile Phase of Essential Oils from Aromatic and Medicinal Plants to Apple Fruit Pathogens in vitro

Tanovic, B.1; Hrstic, J.2; Delibasic, G.2
1 INSTITUTE OF PHYTOECIDE AND ENVIRONMENTAL PROTECTION, 518 BANJOKA, 11080, BELGRADE, SERBIA; 2 AGRICULTURE OF AGRICULTURE, UNIVERSITY OF BELGRADE, SERBIA AND MONTENEGRO

Postharvest losses, caused by fungal diseases, are the major factor limiting the storage period and market life of apples. Currently, the control of postharvest decay is mainly based on the use of synthetic fungicides during growing season. However, the use of fungicides is restricted due to health concerns and consumers’ demand for less chemical residues on fresh produce. Application of substances of natural origin could be a convenient solution, safe for both human health and the environment. Essential oils from aromatic and medicinal plants are well known for their antimicrobial activity. Therefore, the objective of our study was to investigate the effect of volatile phase some essential oils on the growth of certain apple fruit pathogens: Monilinia sp.; Botrytis cinerea, Colletotrichum sp.; Fusarium avenaceum, and Alternaria sp. In order to determine fungicidal activity of the oils, the cultures, grown on artificial media in Petri dishes, were exposed to volatile phase of the oils. The exposure of the pathogen to the investigated oils lasted seven days and was followed by ventilation in a laminar flow hood. A culture of the pathogen grown without any treatment was used as a control. The growth rate of the tested microorganisms was partially or completely inhibited by the oil applied at concentrations 0.04 - 0.65 μl/ml air. Thyme essential oil showed fungicidal effect on all the tested pathogens at the concentration of 0.16 μl/ml air. The effect of cinnamon oil was lethal to Monilinia sp. Colletotrichum sp. at concentrations 0.04 and 0.08 μl/ml air, respectively. Parsley essential oil showed the lowest antifungal activity with minimal lethal concentration higher than 0.65 μl/ml air. These results indicate that some of the tested essential oils could be used for the control of investigated pathogens.

Sm08.260
Micropropagation of Lavandula multifida L from Field-Growing Adult Plants

Zuzarte, M.1; Salgueiro, L.2; Canhoto, J.1
1 CENTER OF PHARMACEUTICAL STUDIES, DEPARTMENT OF LIFE SCIENCES, UNIVERSITY OF COIMBRA, AF. 394/1, 1001-471, COIMBRA, PORTUGAL; 2 LABORATORY OF PHARMACOGNOSY, FACULTY OF PHARMACY, CENTER OF PHARMACEUTICAL STUDIES, HEALTH SCIENCE CAMPUS, UNIVERSITY OF COIMBRA, AZINHA DA S. COMBA 3000-354, COIMBRA, PORTUGAL

The selection of native Lavandula species and their economic exploitation have increased in the last few years. Micropropagation techniques have been used as an alternative for vegetative propagation allowing the multiplication of selected genotypes. For the first time an efficient protocol has been established for in vitro propagation of field-growing L. multifida. Auxillary buds from adult plants were established in Murashige and Skoog (MS) medium supplemented with 10 mg/L ascorbic acid. Several concentrations of the cytokinins benzyladenine (BA, 0.0; 0.1; 0.2; 0.5 and 1.0 mg/L) were used to analyze rooting. The highest multiplication rate (6.1 shoots per explant) and the highest number of nodes per shoot (5.9) were obtained using MS with 1.0 mg/L BA. Shoots exhibited a normal development but callus usually developed at the cut ends of the explants in all media supplemented with cytokinins. Shoots were then separated from the callus and transferred to MS medium. After a month in culture 41.75% of the shoots rooted spontaneously. The remaining shoots were cultured on MS supplemented with IBA. No significant differences were found concerning the number and length of roots formed on media with different IBA concentrations. Rooted plantlets were successfully transferred to soil, exhibiting a normal development with high degree of homogeneity and no evidences of somaclonal variation. Flowering was observed during the acclimatization phase of the micropropagated plants. Micropropagation through axillary shoot proliferation showed to be a reliable method for the rapid multiplication of L. multifida allowing plant conservation without damage of the natural resources, which are very limited in Portugal.

Sm08.261
Evaluation of Total Antioxidant Production in Seed and in vitro Populations of Taraxacum mongolica and T. officinale

Grout, B.1; Wei, N.2
1 UNIVERSITY OF LONSDALE, DEPARTMENT OF AGRICULTURE AND ECOLOGY, REPPARADOOK ALD 13, DR-0530, DENMARK; 2 COLLEGE OF AGRICULTURE, SICHUAN UNIVERSITY, SICHUAN, LISHAN PROVINCE 110616, P.R. CHINA

Various members of the genus Taraxacum are widely used in traditional medicine to treat complaints including hepatic disease, various cancers, inflammation and urinary problems. Scientific examination of major species from the genus has identified a range of phytochemical compounds with characteristics that include anti-inflammatory, anti-carcinogenic, analgesic and antioxidant activity. To investigate the potential for the production of desirable, active compounds such as antioxidants from commercial field cultivation, a seed population of T. mongolica collected in the wild in the Chang Bai mountain region of Northeastern China was compared with a population of Taraxacum officinale, native to E. Denmark for total antioxidant activity.2 Additionally, a protocol for the rapid micropropagation of Taraxacum mongolica was developed, with markedly restricted callus formation and precocious shoot development, to provide clonal material for subsequent field propagation likely to express minimal somaclonal variation. Total antioxidant levels in mature leaves of the two Taraxacum species were broadly comparable, with median values ranging from 27.9 to 32.9 Trolox equivalents (expressed as μM Trolox/g fwt). However, when a population of micropropagated plants of T. mongolica (each plant from a different parent) was examined, the median values for antioxidant, and the range, within the population, were significantly diminished. This suggests that such stresses as may be experienced in vitro induce a lower antioxidant response than those experienced in the natural environment and effective that field production might require the application of controlled stress to maximize antioxidant yield as a product.

Sm08.262
Micropropagation of Chinese Foxglove (Rehmannia angulata) Using a Tissue Culture Medium Based on Formula B for Mineral Composition

Yu, M.1; Mwafuririwa, L. D.2; Cullum, J.3; Bayley, J.1; Casano, S.4
1 NAGDICT PROJECTS LTD., 176 PENFOLD MAN W4, FELIXSTOWE, CORNWALL, UNITED KINGDOM; 2 SCHOOL OF HORTICULTURE, BEIGHTON COLLEGE, CHESTHAM, ESSEX, CHS 3RJ, UNITED KINGDOM; 3 PRACTITIONER RESEARCH L.L., GRAN VIA DE LES CORTS CATALANES 83, BARCELONA, CATALUNYA, 08011, SPAN

Chinese foxglove (Rehmannia angulata) may have important potential in pharmacology as it is closely related to the highly valued traditional Chinese medicinal plant Rehmannia glutinosa. Previous studies on micropropagation of hemp (Cannabis sativa L.) have shown that the inclusion in tissue culture medium of Formula B, a newly developed basal salt mixture composed of 2 parts (A+B), has given a significantly higher shoot multiplication rate than on MS based medium. In the present study, the effects of Formula B on micropropagation of Chinese foxglove (Rehmannia angulata) have been investigated in the shoot/root multiplication and acclimatization stages. Formula B based medium was significantly more effective than MS based medium after eight week of in vitro culture to induce new shoots by regenerating approximately twice as many shoots per explant, while the root multiplication rate was nearly three times higher. Moreover, the highest mean number of leaves produced ex vitro was observed at the end of the acclimation stage on plants that were previously in vitro cultured on Formula B based medium. Hence, it proved that the tissue culture medium based on Formula B could efficiently-im-
prove the micropropagation rate of Chinese foxglove (Rehmannia angustata). This will be useful to produce large quantities of plant materials for further biochemical characterization, phylogenetic analysis, pharmacological research and pharmaceutical production.

Sm08.263
Radioprotective Activity of Some Medicinal Plants Extracts

Mamedov, N.; Craker, L.; Rzayev, A.; Shamilov, E.; Abdullayev, A.; Rzayeva, I.; Gasimova, N.; Guliev, G.

*University of Massachusetts, Medicinal Plant Program, EN 114, Stockbridge Hall, 01003, Amherst, Massachusetts, United States
1Institute of Radiation Problems, National Academy of Sciences, Baku, Azerbaijan

Exposure to radiation has significantly increased during the past hundred years with the development and use of x-rays and radioisotopes in medicine and through environmental pollution from nuclear weapons and power plants. Because radiation can induce mutagenic changes, interfere with the immune system, and lead to the development of cancers, agents that could protect the body from radiation effects would be of great benefit. In this study, aqueous extracts of saffron (Crocus sativus), yarrow (Achillea nobilis), and scarlet rose (Sorbona japonica) reduced mutagenic effects of γ-radiation on albino Wistar rats. The most effective radioprotective and anti-mutagenic activity were demonstrated by the saffron extract, which reduced frequency of chromosomal aberrations in bone marrow cells (35.7% at 3 Gy; 17.1% at 5 Gy) and sperm cells (26.9% at 3 Gy; 16.4% at 5 Gy) and restored cell division. Radiation was applied in a gamma-irradiation chamber at the Rk-hund-20000 facility located at the Institute of Radiation Problems in Baku using an average power of 1252 rad sec⁻¹.

Sm08.264
Antioxidant Activity of Lavandula latifolia, Salvia lavandulifolia and Thymus mastichina Collected in Spain

Asensio-S-Manzanera, M. C.; Martin, H.; Herrero, B.; Sanz, M. A.

1Texte, CTA, BURGOS EM 119, RIFCA ZAMADUEÑAS, 07011, Valladolid, SPAIN
2IETSA, UNIVERSIDAD DE VALLADOLID, CAMPO DE PALACIO, 03080, BURGOS, SPAIN

Industry has been using antioxidants and their positive effects in order to maintain food quality and to prolong its long life. Some of these compounds are synthetic; however, it might be highly desirable to find out natural antioxidants. Aromatic plants help to improve organoleptic qualities of food products and also contribute to their preservation. Owing to this, the antioxidant activity of some populations of Lavandula latifolia (L), Salvia lavandulifolia (Sil) and Thymus mastichina (Tm) have been evaluated. Ten populations of Tm and 12 of each Sl and LI have been collected at flowering stage during the summer of 2.009 around Castilla y León (the Central Region of Spain). The vegetal material was dried in dark and room temperature conditions before hydrodistillation. Dry plant material and dry residues after hydrodistillation were used for analysis. Total phenolic content and antioxidant activity were determined. Two methods have been used to determine the antioxidant activity: 1) Free-radical scavenging (DPPH), and 2) Reducing power assay. The results showed that Tm had the higher content in essential oil, although there was high variability among the populations, indicating the selection will be possible in the three species. Total phenolic content and antioxidant activity of dry plant material were higher than hydrodistilled dry material, showing that a considerable portion of antioxidants was retained in the remaining hydrodistillation-aqueous water and the essential oil. Total phenolic content and antioxidant activity of dry plant material were also higher in Tm. In the case of hydrodistilled dry material, there were no differences between Tm and Sl, both species had higher phenolic content and antioxidant activity than IL. Although there have been variability among the populations and selection would be possible, Tm is postulated as the most interesting species from an antioxidant activity point of view.

Sm08.265
Volatiles from Coriandrum sativum: Comparison of in vitro and ex vitro Grown Plants

Cardoso, S.; Dias, I.; Sousa, J.; Figueiredo, C.; Barroso, J.; Pedro, L.

1Instituto Politécnico de Bragança, Escola Superior de Agronomia, CEFBI, CEFBI, Centro de Biologia Vegetal, CT, Piso 1, Campus Grande, 5749-015 Bragança, Portugal
2University of Massachusetts, Medicinal Plant Program, EN 114, Stockbridge Hall, 01003, Amherst, Massachusetts, United States

Coriandrum sativum (coriander) is commonly used, raw or cooked, in Portuguese gastronomy. Coriander is also used in traditional medicine as a carminative and as a digestive aid. The fruits essential oil is used in food flavouring and in perfumery and is also responsible for the digestive and stimulant effect as well as for fungicidal and bactericidal activity [1]. In vitro C. sativum plants were established by micropropagation in MS medium from in vitro grown 3 weeks old coriander seedlings. Six months after multiplication, some plants produced anthocyanins and maintained this phenotype for, at least, two years under in vitro micropropagation. In the present work, the volatiles of fruits and of ex vitro and in vitro C. sativum plants, with (A) and without (B) anthocyanin production, were studied. The volatiles were isolated by hydrodistillation and analyzed by GC and GC-MS. The fruits volatiles were dominated by linalool (82%), γ-terpinene (4%), camphor (3%) and geraniol (3%) as other major compounds. Linalool was present in the volatile fractions of A and B in in vitro and of ex vitro grown plants in small relative amounts (0.1%, 0.1% and 0.3%, respectively). Dodecanal (17%), α-tetrodecanol (15%) and n-nonane (7%) were the dominant compounds in the ex vitro plants volatiles. β-Phellandrene (37%, 45% in A and B, respectively), terpinolene (both 9%), β-sesquiphellandrene (4%, 6% in A and B, respectively) and α-phellandrene (2%, 3% in A and B, respectively) were the major compounds in A and B in vitro grown plants. Despite the anthocyanin production in A in vitro grown plants, the volatile profile was quantitative and qualitatively very similar to that of B in vitro grown plants.

Sm08.266
In vitro Establishment of Aromatic Geranium from Brazil

Arrigoni-Blank, M. F.; Almeida, S. A.; Oliveira, A. C. L.; Vasconcelos, J. N. C.; Luz, J. M. Q.; Blank, A. F.

1Universidade Federal de Sergipe, Av. Marginal Rondão S/N, CEP 49101-010, São Cristóvão, Sergipe, Brasil
2Universidade Federal do Ceará, Brazil

The aim of this work was to realize in vitro establishment of aromatic Pelargonium graveolens L'HÉR ex Air from Brazil. The completely randomized design was used. A 4 × 4 × 2 factorial scheme was utilized in the first assay, testing four concentrations of sodium hypochlorite (1.0; 1.5; 2.0 and 2.5%), four immersion times (8, 10, 12 and 14 minutes) and with and without pulverization with fungicide and antibiotic of the mother plants before removing explants. In the second assay a 4 × 4 × 2 factorial scheme was utilized, testing four concentrations of mercury chloride (0.06; 0.08; 0.10 and 0.12%), four immersion times (8, 10, 12 and 14 minutes) and with and without pulverization with fungicide and antibiotic of the mother plants before removing explants. For the third assay a 4 × 2 factorial scheme was utilized, testing four concentrations of salts of the MS medium (25%; 50%; 75% and 100%) and two types of explants (nodal and leaves). The evaluated variables were regeneration (%), contamination (%), number of shoots per explants, dry weight of the aerial part (mg). Sodium hypochlorite at 1.2% for 12 minutes was efficient for disinfestation of geranium explants. Despite the anthocyanin production in A in vitro grown plants, the volatile profile was quantitative and qualitatively very similar to that of B in vitro grown plants.
Sm08.267
Tissue and Cell Cultures of *Hypericum undulatum* for the Production of Acetylcholinesterase Inhibitors
Zhang, C.¹,²; Fevereiro, P. S.;³ Laranjo, J. G.;¹ Moura, J.;² Simplicio, A. L.²
¹UTIA – UNIVERSIDADE DE TRÁ OOS-MONTES E ALTO DOURO, 5000-911, VILA REAL, PORTUGAL
²IBIT/INO – UNIVERSIDADE NOVA DE LISBOA, AMADIM 172, 1780-016 LISBOA, PORTUGAL
¡*Hypericum undulatum* Wild. (Guttiferae), general name wasay St. John’s wort, is a medicinal plant. It is traditionally used for renal antispasmodic, hepatic protector, and the treatment of migraine, bladder and gall bladder ailments and intestinal-inflammatory. Alzheimer’s disease (AD) is frequent in elderly people, being the leading cause of dementia among older people. An estimated 10% of the world’s population over the age of 65 years is afflicted by AD. Acetylcholinesterase inhibitors (AChEIs) are currently the best available pharmacotherapy for AD patients. Presently, treating the symptoms of AD can only delay the progress of the disease. In addition, all the present medicines for AD have side effects. Therefore, it is of importance to screen for more powerful drugs from natural products to treat AD with fewer side effects. A recent work has demonstrated that *H. undulatum* plant has the AChE activity. In this work, cell suspension cultures of *H. undulatum* were established for the production of the AChEIs. Seeds were sterilized and aseptically germinated on MS medium solidified with agar without plant growth regulator. The germinated plants were maintained and used for callus induction. The best medium for callus induction and growth was MS plus 1 mg/l 2,4-D, 1 mg/l NAA and 0.2 mg/l 6-BA. Dispersed white calli were transferred to the same medium but without agar to establish cell suspension cultures. The suspension cultured cells turned dark and formed big cell blocks after subculture more than two months. Different cultivation parameters were tested to optimize the cell growth for a continuous culture. Kinetics of cell growth and sugar consumption was analyzed. The AChE activity of the plant cell extract was determined by capillary electrometrography. The results shown that upon metabolic regulation by elicitors the suspension cultured plant cells had a higher AChE activity than that of the plants.

Sm08.268
Cloning of Pharmaceutical *Cannabis* through an Aeroponic Propagation System
Bèguerie, S.¹,²; Casano, S.³;² Grassi, G.³
¹GRADUATE SCHOOL OF EXPERIMENTAL PLANT SCIENCE, WAGENINGEN UNIVERSITY AND RESEARCH CENTRE, DROENSDAALWEG 46, 6708 PB, WAGENINGEN, NETHERLANDS
²IVAM, FACULTY OF AGRICULTURAL SCIENCES, VIALE DELLE SCIENZE, 30125, PALERMO, ITALY
³CRA-CIN, Rovigo brach section, VIALE ANDRONICA 61, 41010, BOLOGNA, ITALY
Cannabis sativa L. is an important pharmaceutical species because it is the only source for a whole series of chemically diverse bioactive compounds that are currently under intensive investigation. Cuttings of pistillate plants is the preferred propagation material for the pharmaceutical production to ensure continuous supply of products, perfumes and cosmetics. To study the potential use of this plant all over the year it is necessary to establish an in vitro system production and to evaluate the better conditions for its growth. In vitro coriander cultures were started from seeds of *Coriandrum sativum* L. from the Umbellifera family. In Portugal, the use of coriander plants in gastronomy is very common, like in all the countries in the Mediterranean area. This plant species has also several other applications than as an aromatic plant, such as medicinal, being recommended for dyspeptic complaints, loss of appetite, convulsion, insomnia and anxiety. Moreover, the essential oils and various extracts from coriander have been shown to possess antibacterial, antioxidant, anti-diabetic, anticancerous and antimutagenic activities among others, it has also been used as a flavoring agent in food products, perfumes and cosmetics. To study the potential use of this plant all over the year it is necessary to establish an in vitro system production and to evaluate the better conditions for its growth. In vitro coriander cultures were started from seeds of *Coriandrum sativum* L. from a commercial origin. Seeds were inoculated in a MS medium containing different concentration of IBA and BAP. After 6 months of in vitro culture, the plants were separated in two lots named A and B differentiated by their pigmentation (clones with differentiation in flavonoids accumulation), being lot B the less pigmented and lot A the one who presented a higher purple coloration, under the same in vitro growth conditions (nutrition, temperature and light). The growth rates of both lots were determined through fresh and dried weights and evaluating how pigmentation affects these parameters. The medium with better growth rates was MS with 0.1mg/l IBA and 0.1mg/l BAP. The B lot grow better but have the stationary phase after 3 weeks while the A lot was still growing after 4 weeks but grow slower comparing with lot B. These results will be used in further studies concerning the essential oils production in each lot.

Sm08.269
In vitro Culture of *Coriandrum sativum*
Dias, I.; Cardoso, S.; Martins, A.; Sousa, J.
INSTITUTO POLITECNICO DE BRAGANCA, ESCOLA SUPERIOR ACADÉMICA, DEP. BIOLOGIA E BIOTECNOLÒGIA, CAMPO DE ESTUDOS, AMADIM 172, 1504-831, BRAGANÇA, PORTUGAL
Coriander (*Coriandrum sativum* L.) is a plant from the Umbellifera family. In Portugal, the use of coriander plants in gastronomy is very common, like in all the countries in the Mediterranean area. This plant species has also several other applications than as an aromatic plant, such as medicinal, being recommended for dyspeptic complaints, loss of appetite, convulsion, insomnia and anxiety. Moreover, the essential oils and various extracts from coriander have been shown to possess antibacterial, antioxidant, anti-diabetic, anticancerous and antimutagenic activities among others, it has also been used as a flavoring agent in food products, perfumes and cosmetics. To study the potential use of this plant all over the year it is necessary to establish an in vitro system production and to evaluate the better conditions for its growth. In vitro coriander cultures were started from seeds of *Coriandrum sativum* L. from a commercial origin. Seeds were inoculated in a MS medium containing different concentration of IBA and BAP. After 6 months of in vitro culture, the plants were separated in two lots named A and B differentiated by their pigmentation (clones with differentiation in flavonoids accumulation), being lot B the less pigmented and lot A the one who presented a higher purple coloration, under the same in vitro growth conditions (nutrition, temperature and light). The growth rates of both lots were determined through fresh and dried weights and evaluating how pigmentation affects these parameters. The medium with better growth rates was MS with 0.1mg/l IBA and 0.1mg/l BAP. The B lot grew better but have the stationary phase after 3 weeks while the A lot was still growing after 4 weeks but grow slower comparing with lot B. These results will be used in further studies concerning the essential oils production in each lot.

Sm08.270
Determination of Antibacterial and Antiradical Activity of *Oreganum vulgare* Clones Grown in Latvia
Dubova, L.;¹ Alisina, L.;¹ Kruma, Z.;¹ Rungis, D.;² Zukauska, I.;¹ Balins, A.¹
¹LATVIA UNIVERSITY OF AGRICULTURE, LIGZDUS 93, 10054, RIGA, LATVIA
²GENETIC RESOURCES CENTRE LIEPA ‘SILAVI’, LATVIA
Oreganum vulgare is widely used in pharmacies and folk medicine. *Oreganum vulgare* clones grown in Latvia differ from their phytochemical content. The aim of the study was to determine the antimicrobial and antiradical activity of these clones. Antibacterial and antiradical activity of ethanol extracts prepared from 10 *Oreganum vulgare* clones grown in Latvia was screened. The antibacterial activity was assessed against bacteria (*Escherichia coli*, *Pseudomonas aeruginosa*, *Saphyloccus epidinocis*, *Bacillus cereus*). Sensitivity tests were performed in the liquid nutrient media for bacteria. Plant ethanol extracts from leaves and flowers (25-40 g of fresh matter per L) were added to the growth media. Extract and media proportion was 1:20. Microorganisms growth were detected spectrophotometrically at wavelength 550 nm after 24 and 72 hours of incubation at 28 °C. Plant extract antiradical activity was determined by 2,2-diphenyl-1-pircrylhydraylz (DPPH). *Oreganum vulgare* leaves and flowers showed different activity. The antimicrobial and antiradical activity depends on *O. vulgare* clone and sampling time. Different clones showed unlike activity on used microorganisms and it depends on oregano chemical content.
Sm08.271
Experiment with Family Farmers on the Production of Fennel (*Foeniculum vulgare* Mill) in Ecologic Bases in Sergipe’s Semi-Arid Region

Embrapa Tabuleiros Costeiros, Beira Mar Avenue, 3250, CEP 49025-040, Aracaju, Sergipe, Brazil.

The frequent production of fennel in ever-smaller areas without the proper reposition of nutrients is favoring the impoverishment of the soil, such as it was observed in Simão Dias Township, in the state of Sergipe, Brazil. In addition to this, the agro-ecosystems’ imbalance due to the advance of corn monoculture has favored for an increase of plant louse infestation. The action of this aphid takes place during the inflorescence of the plant, affecting fruit and seed production and resulting in great financial loss to farmers. For this reason, Embrapa Tabuleiros Costeiros and EM-DAGRO - Sergipe’s Agronymy and Livestock Development Agency, have joined forces in order to develop a research on the socio-economic and environmental characterization of the reality of small family-owned rural fennel producing properties. The study concentrated on the traditional production of fennel and was developed with the participation of approximately 70 families in three rural communities. This allowed for an exchange of technical knowledge related to agro-ecology. The research took place in two ‘UEs’ - Experimental Units, where informal trials reflected the convergence between the investigative concerns of the farmers and the researchers. These trials were conducted over one productive cycle of fennel of approximately 210 days, under local edafoclimatic conditions. The results demonstrated the pivotal role of the agro-ecological production of this aromatic plant, allowing for new perspectives on plant louse control as well as of soil and water management to be considered in future studies. The indirect sowing was positively evaluated by the farmers since it allowed for early fennel harvest expectancy and consequently the securing of better prices. Moreover, the experiment with farmers represented an important methodological learning process to be enlarged in any future research opportunity that is aimed at familiar agriculture in Sergipe’s semi-arid region.