Therapeutic and adverse effects of chronic oral intake of Mucuna pruriens seed extracts or L-DOPA methyl ester in 6-hydroxydopamine lesioned rats

Jørgensen, Monica; Christensen, Lars Porskjær; Gramsbergen, Jan Bert

Publication date:
2010

Document version:
Final published version

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Chronic levodopa (L-DOPA, L-3, 4-dihydroxyphenylalanine) therapy in Parkinson’s Disease (PD) is associated with motor complications, including dyskinesias. Seeds of Mucuna pruriens (MP) are rich in L-DOPA, and in traditional Ayurvedic Indian Medicine MP preparations are used to treat PD. It has been suggested that MP preparations induce less motor complications in PD patients than synthetic L-DOPA preparations. In a pilot-study, in the unilateral 6-hydroxydopamine (6-OHDA) lesioned rat model of PD, using daily intraperitoneal injections of 12.5 mg DOPA/kg for 3 weeks, we observed less L-DOPA-induced abnormal involuntary movements (AIMs) in MP (methanol extract) -treated rats as compared to L-DOPA methyl ester (LDME) -treated rats, although plasma DOPA levels reached similar levels 30-60 min post injection. Fluctuating plasma DOPA levels are, however, known to contribute to L-DOPA-induced dyskinesias and in PD patients L-DOPA is mainly administered orally. Therefore, we studied here whether chronic (3-4 weeks), oral intake of LDME or MP via drinking water (1-2 mg DOPA/ml) causes AIMs in the 6-OHDA rat model. Plasma DOPA levels reached peak values at the end of the dark, i.e. active, period with about 5-fold higher peak levels in LDME–treated rats. Parkinsonian forelimb use (i.e. contralateral to the 6-OHDA lesion) was improved using 1.5-2 mg/ml DOPA, but six out of eleven LDME-treated rats developed AIMs of variable severity. Whether chronic oral intake of MP extracts - prepared by solvents of different polarities - induces AIMs or other adverse effects remains to be investigated.