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Abstract 10 

The advent of next-generation sequencing technology has revolutionized the field of prokaryotic genetics 11 

and genomics by allowing interrogation of entire genomes, transcriptomes and global transcription factor 12 

binding profiles. As more studies employing these techniques have been performed, the state of the art 13 

regarding prokaryotic gene regulation has developed from the level of individual genes to genetic 14 

regulatory networks and systems biology. When applied to bacterial pathogens, particularly valuable 15 

insights have been gained into the regulation of virulence-associated genes, their relative importance to 16 

bacterial survival in planktonic, biofilm or host infection scenarios, antimicrobial resistance and the 17 

molecular details of host-pathogen interaction. This Review outlines some of the latest developments and 18 

applications of next-generation sequencing techniques to the genus Pseudomonas, with particular focus on 19 

opportunistic human pathogen Pseudomonas species, the biological insights gained from them and the 20 

future directions in which this field could develop. 21 
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Introduction 29 

The development of microarray technology and its application to global gene expression analysis in bacteria 30 

in the late 1990s (1, 2) marked a paradigm shift from the study of single-gene expression to interrogation of 31 

an entire transcriptome in one experiment. However, such experiments still required many a priori 32 

assumptions (primarily from selection of probes to include in the array) and suffered from technical 33 

hindrances such as a limited dynamic range of detection of expression levels and non-specific or cross-34 

hybridization between samples. In addition to these technical issues, it was not usually possible to directly 35 

compare the results of one microarray to another unless complex normalization or statistical 36 

transformation methods were used, and experiments were limited to two-dimensional comparisons of 37 

control to test condition. The evolution of high-throughput sequencing, especially the later iterations 38 

known as next-generation sequencing (NGS) which lacked the primer-dependence of the classical Sanger 39 

sequencing method, revolutionized the field by allowing direct quantification of expression levels based on 40 

digital counts of NGS “reads” (3). With this read-out, the detection range of transcriptomic experiments 41 

was no longer limited by the biophysical constraints of probe fluorescence ratios but only by the total 42 

number of sequencing reads obtained (“sequencing depth”) allowing a far greater dynamic range of 43 

accurate quantification and a reduced signal-to-noise ratio. Moreover, since all RNA transcripts were 44 

represented in the sequenced samples, probe selection bias was no longer a factor, enabling the discovery 45 

of many uncharacterized or unannotated RNA molecules, such as non-coding RNAs or mRNAs of previously 46 

unknown small proteins. 47 

Widespread adoption of this technology, given the popular name RNA-Seq (4), led to an exponential 48 

increase in the number of whole-transcriptome experiments reported in the literature in both prokaryotic 49 

and eukaryotic model organisms from 2009 to the present day. In parallel, NGS-based applications were 50 

developed for other purposes than whole-transcriptome sequencing. Taking advantage of the 51 

independence of NGS from probes or sequencing primers, this technology was applied to DNA obtained 52 

from chromatin immunoprecipitation (ChIP-Seq) from specific transcription factors  to gain a genome-wide 53 

overview of their direct regulons in eukaryotes (reviewed by Park (5)) and prokaryotes (reviewed by Myers 54 

et al. (6)), and to prokaryote-specific applications such as genome sequencing on microbial communities 55 

rather than pure cultures (7). More recently, NGS has been combined with transposon mutagenesis in four 56 

independent but functionally similar methods (reviewed by van Opijnen and Camilli (8)) to illuminate global 57 

conditional essentiality genotypes associated with bacterial survival under specific conditions, in particular 58 

virulence of bacterial pathogens.  59 
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Due to the ubiquitous nature of Pseudomonas species as environmental and human associated bacteria, 60 

and the interest in their ability to form biofilms (9, 10), they were adopted relatively early as model 61 

organisms for NGS-based experiments and continue to be used as such. In this Review, we focus on 62 

genomic and transcriptomic applications of NGS that have led to recent breakthroughs in Pseudomonas 63 

research, especially those which have uncovered novel aspects of Pseudomonas regulatory networks and 64 

virulence-associated genotypes and phenotypes.   65 

The dawn of the unbiased transcriptomics era 66 

By applying RNA-Seq, it was possible for the first time to interrogate the full transcriptome without reliance 67 

on annotation-dependent probe design and the biases associated with it. As such, it was quickly adopted by 68 

the Pseudomonas research community to define the transcriptional responses of P. aeruginosa to 69 

conditions which can be encountered during infection, for example biofilm vs planktonic growth (11), 70 

growth at 28°C vs 37°C (12) or presence of human respiratory mucus (13). While these studies gave 71 

important insights at the time, such as the existence of previously unknown small non-coding RNAs that 72 

were differentially induced under the conditions tested, these binary comparisons of a single test condition 73 

to an untreated control could not replicate the multiple environmental differences experienced by bacteria 74 

grown in vitro and bacteria growing in the context of human infection, and accordingly very little overlap 75 

was observed between the differentially expressed genes found in the different studies. In order to obtain 76 

a more detailed view of the relative importance of genetic and environmental contributions to the global 77 

transcriptomic profile, a large-scale study of 151 P. aeruginosa clinical isolates grown in identical conditions 78 

alongside the laboratory strain PA14 grown under 14 different conditions was performed (14). Comparison 79 

by principal component analysis of the RNA-Seq data sets showed that the transcriptional profiles (and 80 

therefore phenotypic variations) depended more strongly on environmental stimuli than on genetic 81 

variation; the genetically diverse clinical isolates clustered together while the genetically identical 82 

laboratory strain transcriptomes diverged from each other to form environment-specific clusters. 83 

Moreover, when genetic variation was a determining factor, it was restricted to mutations within global 84 

transcriptional regulators, and the phenotypic variation resulted from the pleiotropic downstream effects 85 

of the mutated regulator on its target genes. It therefore became clear that in order to fully understand the 86 

mechanisms leading to expression of environment-specific transcriptional profiles, it would be necessary to 87 

define the regulons of the key transcription factors controlling virulence-related behaviors such as biofilm 88 

formation, motility, quorum sensing or expression of toxin secretion systems.  This approach would 89 

characterize the network relationships between the different regulators and distinguish between direct and 90 

indirect regulation. RNA-Seq was used together with ChIP-Seq (see later) to identify direct and indirect 91 
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targets of virulence regulatory transcription factors such as AmpR (15) and AmrZ (16), which began to 92 

define the full range of cellular processes that these factors provided regulatory input into (often more 93 

than initially anticipated), and laid the groundwork for later studies that profiled the targets of multiple 94 

transcription factors simultaneously (17, 18). Below, we highlight recent RNA-Seq studies using 95 

Pseudomonas as model system which are of particular interest for the methodological innovations and/or 96 

biological insights they provide. We discuss significant advances in the Pseudomonas research field that 97 

have been obtained from ChIP-Seq and transposon insertion sequencing, alone or in combination with 98 

RNA-Seq, and the future research directions in which these techniques may play a leading role. 99 

Transcriptional changes during host-pathogen interaction 100 

As RNA sample preparation methods advanced, it became possible to study transcriptomic profiles of 101 

clinical isolates taken directly from human infection sites, allowing a better characterization of the 102 

transcriptional response to growth in vivo during human infection. Consistent with the work of Dötsch et al. 103 

(14) which had indicated that the environment of the bacteria is more influential over the transcriptional 104 

profile than their genotype, it was seen that that multiple genetically divergent P. aeruginosa lung isolates 105 

displayed highly similar and genotype-independent transcriptional profiles (19, 20). A similar trend was 106 

observed for P. aeruginosa clinical isolates taken from cystic fibrosis patients’ lung expectorate, acute 107 

wounds and chronic wounds compared to cultures grown under a large range of in vitro conditions. The in 108 

vivo isolates had much more similarities in transcriptional profiles to each other than they did to any of the 109 

in vitro cultures, even when they came from different wound sites, patients, geographical locations or 110 

strain backgrounds (21). However, the gene expression pattern observed in pathogen during infection only 111 

tells half of the story; an inescapable component of the environment of the pathogen comes from the 112 

surrounding host cells and their response to the bacterial invasion.  113 

During infection, both pathogen and host must adapt, and this translates into changes in gene expression. 114 

Those changes are studied by “dual transcriptomics” or dual RNA-Seq, which consists of profiling RNA 115 

expression simultaneously in the pathogen and the host (reviewed by Westermann et al. (22)). (28)(29)A 116 

pair of recent studies have focused on P. aeruginosa infection in a mouse (23) and a zebrafish embryo (24) 117 

model and provided novel insights into the infection process. In both cases, as expected, competition for 118 

iron between host and pathogen was evident from the upregulation of iron scavenging genes in the 119 

bacteria, as well as other virulence factors such as type 3 and type 6 secretion systems, but the responses 120 

of the host organisms differed noticeably. The mouse response appeared to be much more narrowly 121 

focused with relatively few changes in gene expression (hundreds, rather than thousands as observed in 122 

the fish) and primarily directed toward iron sequestration, as changes were mostly in the transcripts of iron 123 
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binding factors, as well as other innate immune components. By contrast, the fish model had 124 

approximately one quarter of all its (protein coding) genes differentially regulated in the infection condition 125 

relative to control, and the major focus of the response appeared to be the activation of the innate immune 126 

system simultaneously with an intensive downregulation of protein translation, as ribosomal proteins, 127 

translation accessory factors and the 5.8S rRNA were among the most strongly downregulated transcripts. 128 

Although these studies differed in the infection route (acute lung infection in mouse, direct injection in 129 

zebrafish) and in the analytical methods used to process the RNA-Seq data, they have provided valuable 130 

information on how widely the adaptation process can differ between two different vertebrate hosts 131 

exposed to the same bacterium. As the zebrafish embryo model system in this study was used at a 132 

developmental stage when the innate immune system is functional but the adaptive immune response has 133 

not yet developed, while the mouse model employed adult mice with fully functioning adaptive and innate 134 

immune systems, comparison of the two models allows inferences to be made about the relative 135 

contributions of the two aspects of the vertebrate immune system to fighting Pseudomonas infection.   136 

Bacterial post-transcriptional regulation by small non-coding RNA (sRNA) and RNA-binding proteins (RNA-137 

BPs) 138 

While the transcriptome provides a global profile of which genes are expressed, it cannot be assumed that 139 

the mRNA levels correlate perfectly with the protein levels in the cell. This is due to post-transcriptional 140 

regulation that can up- or down-regulate translation of the mRNA into protein, often mediated by sRNA 141 

binding to a partially or completely complementary mRNA molecule. The annotation-independence of RNA-142 

Seq transcriptomics allowed these sRNAs to be detected without probing specifically for them, allowing a 143 

global view of condition-specific sRNA expression and defining their functions and targets. The most 144 

common (but not exclusive) mode of action of a sRNA is to base pair with its target mRNA molecule, often 145 

mediated by the conserved RNA chaperone Hfq, resulting in RNase recruitment and degradation of the 146 

duplex RNA. This negative regulation is often observed as a stress response to disadvantageous 147 

environmental conditions (reviewed by Hoe et al. (25)), as it allows for a faster response than regulation at 148 

the level of transcription initiation. However, some examples of sRNA binding leading to positive regulation 149 

have also been observed (reviewed by Papenfort and Vanderpool, (26)) and alternative modes of action 150 

such as decoy, sponge or titrating sRNAs have been recently discovered (reviewed by Kavita et al (27)). 151 

Several methods have been developed to study sRNA and RNA-BP interactions in bacteria (dRNA-Seq, 152 

pRNA-Seq, MAP-Seq, RIP-Seq, CLIP-Seq, CLASH, RIL-Seq) each one presenting different advantages and 153 

limitations (Figure 1, and reviewed extensively in (28)). dRNA-Seq and pRNA-Seq specifically allow the 154 

detection of transcription start sites and RNA cleavage sites, respectively, and have been used to 155 
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comprehensively map P. aeruginosa promoter and transcription start site locations, including for the entire 156 

suite of P. aeruginosa sRNAs (29). RIP-Seq and CLIP-Seq are used to study interactants of a specific RNA-BP 157 

by expressing an affinity tagged variant of the RNA-BP allowing it to be purified along with the RNAs bound 158 

to it. MAP-Seq allows the study of sRNA-mRNA binding by using a chimeric sRNA tagged with the MS2 RNA 159 

affinity tag, which enables purification of complexes via the MS2-binding protein. Finally, CLASH and RIL-160 

Seq contain aspects of both since they use affinity enrichment of RNA-BP/RNA complexes to study RNA-161 

RNA interactions and binding sites.  162 

Due to the extensive conservation of the Hfq protein in bacteria and the observation that in Pseudomonas 163 

(30) (and other pathogens (25)) hfq- mutants are defective in virulence, a great deal of interest was 164 

directed towards identifying which sRNAs required Hfq for their activity. As a result, RNA-Seq methods such 165 

as those described above were developed to enrich for Hfq-bound sRNAs (and also applied to other RNA-166 

BPs). However, these also led to the unexpected realization that Hfq could also interact with mRNAs, 167 

independently of chaperoning their interaction with a cognate sRNA. Two recent studies on RNA-BPs of P. 168 

aeruginosa revealed that the RNA-BPs Hfq and Crc (the carbon catabolite repression regulator) act co-169 

transcriptionally with hundreds of nascent mRNA transcripts, many more than previously suspected (31, 170 

32). Crc was shown to be required for this activity of Hfq but dispensable for Hfq’s role as a sRNA 171 

chaperone. Hfq-Crc-mRNA binding leads to repression of translation, particularly of catabolic genes for 172 

alternative carbon sources (32), but a surprising finding was that the Hfq-Crc complex also repressed 173 

transcription of the virulence-associated transcription factors PtxS, AmrZ and ExsA (31), showing that 174 

expression of virulence factors and carbon metabolism may be more closely linked than formerly thought. 175 

Although the methodological innovations presented above are attractive, interpretation of their output 176 

data should be done with caution. In NGS, if the sequencing depth is insufficient and/or the signal to noise 177 

ratio is too high, low abundance but important interactions can be missed. Moreover, the enrichment steps 178 

that rely on retrieval of RNA-BPs or tagged RNA by immunoprecipitation or other types of affinity 179 

purification may create non-specific pull-down. These interactions can lead to false positives arising from 180 

highly represented but nonspecific pulled-down sequences, or alternatively false negatives for low 181 

abundance interactions or RNA complexes with low affinity for their cognate RNA-BP if sequencing depth is 182 

too low to detect them. The development of GRIL-Seq (for global small non-coding RNA target 183 

identification by ligation and sequencing) using P. aeruginosa as model system, provided a significant 184 

advance in the field by removing the dependence on RNA-BP interaction and directly enriching ligated 185 

sRNA-mRNA complexes, as described in detail below.    186 

 187 
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In vivo sRNA-mRNA interactions 188 

Due to the limited complementarity between sRNA and mRNA binding pairs, the possibility of 189 

bioinformatically predicting all mRNA targets of a given sRNA based on its nucleotide sequence is 190 

intrinsically limited, and pre-NGS experimental methods required a priori hypotheses to test. GRIL-Seq is a 191 

recent innovation that allows the study of sRNA-mRNA interactions in vivo (33). Developed in P. 192 

aeruginosa, this method uses inducible expression of both T4 RNA ligase and a specific sRNA in vivo to 193 

create chimaeras of sRNA with their mRNA targets. The total RNA is extracted and enriched for the sRNA of 194 

interest before sequencing, revealing all the targets of that sRNA. Thus, the only RNAs that are recovered 195 

are ones which were genuinely bound to that sRNA in living cells, removing dependence on a priori 196 

predictions and allowing for recovery of low-frequency or transient sRNA-mRNA interactions which might 197 

otherwise have been missed. This method led to identification of 17 transcripts targeted by the iron-198 

regulated sRNA PrrF1. Moreover, by combining GRIL-Seq with RNA-Seq in the same experiment, they were 199 

also able to differentiate between mRNA targets that were differentially regulated by PrrF1 and RNA 200 

targets that were bound but not up- or downregulated, suggestive of alternative modes of action such as 201 

“sponge” sRNAs. This approach was further adapted to ligate endogenously expressed sRNAs with their 202 

targets without relying on artificial overexpression of the sRNA (34), allowing for identification of the 203 

environmental conditions associated with binding of a given sRNA to its targets. Although developed for 204 

sRNA target search, it is also possible with this method to use an overexpressed mRNA to identify sRNAs 205 

that regulate it. The power of this technique to identify in vivo binding, alternative regulatory mechanisms, 206 

and correlation of environmental condition to sRNA-mRNA binding, as well as the possibility to reverse the 207 

method by using mRNA instead of sRNA as the target, makes it an excellent candidate to become a key 208 

technique for future prokaryotic sRNA research on a large scale.   209 

While the techniques described above have led to many advances in the understanding of post-210 

transcriptional regulation in Pseudomonas, ultimately the phenotypes are caused by protein expression, 211 

and while RNA-Seq can predict protein expression levels and subsequent phenotypic traits, it does not 212 

formally prove them. Analysis of the Pseudomonas proteome is likely to become an important complement 213 

to transcriptomic analysis, not only to validate it but also to define the role of post-translational 214 

modifications. Indeed, Pseudomonas sp. post-translationally modify many classes of enzymes and structural 215 

proteins in many different ways (reviewed in Gaviard et al. (35)) and it is probable that many of these will 216 

be significant for the general physiology of the bacterium and/or for virulence. Proteomic analysis is not 217 

only likely to validate predictions generated from transcriptome data, but also to answer questions that 218 

NGS approaches cannot currently address.  219 
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Fishing for DNA with a transcription factor hook 220 

While RNA-seq and its derivatives aim to discover gene regulation and expression, studies utilizing these 221 

methods are not able to determine regulation on a pre-transcriptional level where it is mediated by 222 

transcription factors. Furthermore, all regulation-based studies require annotated candidate genes that 223 

must be discovered through other means. For these purposes, ChIP-Seq and transposon insertion 224 

sequencing (TIS) are revolutionary tools (Figure 2). ChIP-Seq was originally developed in eukaryotic 225 

organisms but modified versions of the method soon became valuable for analyzing protein-DNA 226 

interactions in prokaryotes (6). ChIP-Seq allows simultaneous discovery of hundreds of regulatory binding 227 

sites in a single experiment (Figure 2A), in contrast to classical biochemical assays for DNA-protein binding, 228 

in which only one interaction can be studied at a time. In the study of Pseudomonas, ChIP-Seq has brought 229 

about the discovery of a vast number of novel regulons, as well as novel functions for regulators which 230 

were thought to be already well characterized. Antibiotic resistance, biofilm formation and secretion 231 

systems are all well-known virulence systems of Pseudomonas for which ChIP-Seq has significantly 232 

expanded the state of the art, as we discuss below. 233 

The implication of biofilm in infection settings has been studied in depth and it is widely understood how 234 

biofilm increases antibiotic resistance and nutrient retainment, but with new data derived from NGS 235 

experiments, previous theories and hypotheses have been challenged. The master regulator of flagella and 236 

biofilm-related genes, FleQ, was recently found to be also significantly involved in iron homeostasis (36). 237 

Moreover, ChIP-Seq showed that FleQ binding sites overlap with those of AmrZ, a global regulator of 238 

environmental adaption, and that 39% of the FleQ and AmrZ-bound sites regulated the expression of iron 239 

uptake genes, adding to the importance of biofilm in iron-scarce infection environments. This study also 240 

found that FleQ and AmrZ repress each other’s expression, potentially leading to a bistable switch 241 

mechanism and indicating that these two factors and their respective regulons are intricately linked. ChIP-242 

Seq has also demonstrated novel regulatory pathways linking biofilm and antibiotic resistance. Recently, 243 

the transcriptional regulator pair MdrR1 and MdrR2 (previously PA3898 and PA2100) was shown to both 244 

control P. aeruginosa biofilm formation through regulation of phenazine biosynthesis and also to directly 245 

interact with the promoter region of the mexAB-oprM efflux pump, repressing its transcriptional expression 246 

independently of the MexR regulator (37). Not only does P. aeruginosa biofilm block antibiotics with the 247 

extracellular matrix, it also controls the transcriptional expression of other antibiotic resistance factors.  248 

In addition to biofilm formation, the upstream quorum sensing pathways have been shown to be part of a 249 

higher interactivity network than previously thought. Schultz et al. (18) provided extensive insight into the 250 

regulation network of sigma factors in P. aeruginosa, when they found 43% of the genome to be regulated 251 
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by 10 sigma factors by coupling RNA-seq and ChIP-Seq. Very little, but always function-specific, cross-talk 252 

was present between the sigma factors, with RpoN being the common factor that interacted with the most 253 

other tested sigma factors (notably RpoH, RpoS, FliA, AlgU, SigX, and RpoD) while also attaining the second 254 

largest regulon (680 genes), only outnumbered by the house-keeping sigma factor, RpoD. Since then, RpoN 255 

has been shown to directly interact with genes associated with quorum sensing and genes encoding the 256 

type VI secretion system with the identification of several new direct targets such as lasI, rhlR, rhlI, pqsR, 257 

pqsA, hcpA, and hcpB (38). Not only has a link been established between quorum sensing and the type VI 258 

secretion system, but also with antibiotic resistance when RpoN was shown to promote survival in the 259 

presence of tobramycin (39). Susceptibility and tolerance could be switched between by disrupting the 260 

alternative sigma factor RpoS in a ΔrpoN background, revealing that the two sigma factors together were 261 

involved in regulation of the Gac/Rsm pathway (involved in quorum sensing in P. aeruginosa) (40) and the 262 

GTP pyrophosphokinase (ppGpp synthetase) relA, demonstrating the cross-talk in adaptive genes suggested 263 

by Schultz et al. as well as the massive response RpoN is capable of mounting in given situations.  264 

ChIP-Seq has also aided in determining unexpected regulatory mechanisms of particular DNA binding 265 

proteins by showing that they directly bind more, or fewer, targets than was previously supposed. QscR, 266 

the quorum sensing-gene repressor, had previously been shown to influence transcription of a large 267 

number of genes, but ChIP-Seq revealed that this was due to QscR binding to a single operon of genes of 268 

unknown function (PA1895 through PA1897) (41), for which the downstream mechanism has yet to be 269 

discovered. Conversely, ChIP-Seq was employed in mapping binding sites of the chromosome segregation 270 

factor ParB in P. aeruginosa and revealed that it binds to a specific heptanucleotide sequence motif. 271 

However, in addition to binding to the parS site close to the chromosome origin as expected, it was also 272 

found at many other loci distributed around the chromosome, allowing for P. aeruginosa ParB to be 273 

classified as a nucleoid-associated protein in addition to its chromosome segregation function (42). 274 

An early-adopted variant of ChIP-Seq was its combination with RNA-Seq to differentiate, for a given 275 

transcription factor, the directly bound targets from the indirectly regulated ones. While earlier studies 276 

performed this analysis for single proteins (15, 16, 36), a major recent advance was provided by the work of 277 

Huang et al. (17) which incorporated 20 major virulence-related transcription factors of Pseudomonas 278 

aeruginosa and identified their direct and indirect targets among the protein-encoding genome, creating a 279 

regulatory network map (PAGnet). This work exposed new potential functions of several of these regulators 280 

(especially PhoB, FleQ, AlgR, ExsA and GacA) and revealed highly complex crosstalk among virulence-281 

related transcription factors and an unexpectedly extensive level of indirect regulation. 282 
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Since its first application, ChIP-Seq has provided valuable insight into the regulation of P. aeruginosa and 283 

the understanding of regulatory networks and their interconnection is now much greater. However, as with 284 

all methods, ChIP-Seq requires validation through other assays and should be complemented by e.g. 285 

electrophoretic mobility shift assays (EMSA) or promoter activity assays. The importance of complementing 286 

ChIP-Seq is evident from an attempt at determining the regulon and binding motif of the master regulator 287 

of quorum sensing signaling, VqsM, in which the sequencing data had originally omitted key target genes 288 

(lasI, exsA and nfxB) hidden by non-specific noise. These target genes were instead identified 289 

bioinformatically from the ChIP-Seq determined binding motif, and then validated as experimentally found 290 

targets (43). Only with critical thinking and experimental complementation, is ChIP-Seq an accurate tool, 291 

but at that point also a powerful one. Since many Pseudomonas transcription factors are response 292 

regulators that are activated by external factors via sensor kinases, the regulatory information provided by 293 

ChIP-Seq, especially in conjunction with RNA-Seq data obtained under the same experimental conditions, 294 

provides vital links between environmental stimuli and the resulting patterns of gene expression, and 295 

defines precisely how regulatory networks (such as those controlling biofilm, quorum sensing, antibiotic 296 

resistance and expression of virulence factors) are connected, sometimes in unexpected ways. Future ChIP-297 

Seq studies in this opportunistic pathogen are likely to reveal further interconnections between these and 298 

other gene networks and enable a deeper understanding of the impact of environmental perturbations on 299 

the bacterial transcriptome, particularly when these concern association of the pathogen with its host, or 300 

treatment of the pathogen with antibiotics, and of the probable impact on global gene transcription if the 301 

bacteria undergo adaptations to their environment which involve alteration of transcription factor function.    302 

From transposon mutant library to gene network 303 

Networks of transcriptionally regulated genes come together to produce phenotypes for survival and 304 

colonization in specific niches. All bacterial strains have a certain set of genes that must be present for the 305 

organism to survive known as the essential genome. Genes necessary for other, specialized circumstances 306 

can be grouped together in conditionally essential genomes. The essentiality of a gene relates to the fitness 307 

of the organism, where deletion of a non-essential gene does not alter the fitness of the organism while 308 

deletion of an essential gene leads to a complete loss of fitness. In between are important but non-309 

essential genes, mutations in which produce an attenuated fitness phenotype, and conditionally essential 310 

genes that only produce loss of fitness upon mutation under specific circumstances, and possibly different 311 

fitness-implications in other conditions.  312 

In molecular microbiology, the creation of individual gene-knockout mutants has aided the functional 313 

discovery of many genes as well as their implication in specific phenotypes but the low-throughput nature 314 
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of this process necessitates the establishment of hypothetical gene candidates prior to knockout-mutant 315 

creation, and consequently the consistent availability of gene annotation information. TIS removes this 316 

requirement in a high-throughput screening process of libraries with hundreds of thousands of transposon-317 

mutagenized bacterial cells and permits the discovery of hundreds of phenotype-associated genes in a 318 

single experiment (Figure 2B and (8, 44)).  319 

Gene essentiality is not a novel concept, and multiple databases exist with collections of essential genes 320 

from many organisms, most notably the Database of Essential Genes (DEG) (45). The studies included in 321 

such databases differ greatly in statistical methods and essentiality cutoff thresholds, with no gold 322 

standard. With their development of the statistical method; FiTnEss, coupled with TIS, Poulsen et al. (46) 323 

were able to determine a core essential genome of 321 genes for P. aeruginosa, accompanied by additional 324 

sets of conditionally essential genes associated with the different growth media used in the experiments. 325 

The study provides a set of guidelines for determining essential genes including the number of strains and 326 

different conditions (media) to test in order to have statistical confidence in the results. However, not only 327 

statistical standards must be defined when predicting essential genomes. In a comparison of essential 328 

genomes between three studies and their own, Lee et al. (47) found little overlap between the essential 329 

genomes, only identifying 141 core essential genes. Though the essentiality of these genes was highly 330 

confirmed, several genes generally regarded as essential were absent, such as the replication gene dnaB 331 

and the RNA polymerase-encoding gene rpoC. The list contrasts their own findings of 352 essential genes 332 

from six different types of media as well as the 321 genes found by Poulsen et al. testing eight strains in five 333 

types of media. Where essential genomes predicted by TIS have previously been established as genes 334 

necessary for growth on rich medium, it now seems that “rich medium” is not defined sufficiently 335 

stringently, and that essentiality needs to be determined by comparing data from multiple growth 336 

conditions taking strain and condition specificity into account. 337 

The host-pathogen conditionally essential genome 338 

While the core essential genome provides information on the minimal living conditions of Pseudomonas, 339 

much research is grounded in determining how, when and why interactions occur with a host. Employing 340 

TIS in infection models allow for the determination of fitness-associated genes necessary for colonization 341 

and proliferation within a host even at unchanging expression levels. Thus, TIS has been used to identify 342 

genes implicated in specific diseases such as cystic fibrosis and wounds, as well as genes responsible for 343 

specific virulence systems like type IV pili, biofilm formation and iron acquisition systems. 344 

Skurnik et al. (48) performed the first in vivo Pseudomonas TIS studies, when they established the 345 

conditionally essential genomes of P. aeruginosa PA14 colonizing mice ceca and spleens. In a second 346 
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publication, the same authors used their previously acquired data to show how disruption mutations in 347 

oprD, encoding a carbapenem entry channel, increases PA14 fitness in the murine ceca and spleen (49). A 348 

fitness increase associated with bacteria becoming resistant due to the loss of a gene falls into stark 349 

contrast with preconceived notions that bacteria must “pay” with fitness advantages to gain antibiotic 350 

resistance or other virulence-associated assets. In acute and chronic wounds, TIS has shown that very few 351 

infection type-specific genetic pathways exist between the two types of infection, as genes implicated in 352 

chemotaxis and flagella are essential only in burn wounds and not in chronic wounds. Additionally, long 353 

chain fatty acid metabolism was shown to be essential and highly upregulated in both types of wounds, 354 

suggesting that P. aeruginosa wound infections may be treated by interfering with these pathways (50).  355 

Essential genes, especially in a pathogenic species, often make promising targets for treatment of 356 

infections, with the ability to eradicate only the pathogenic population while the commensal and 357 

mutualistic populations are left unharmed. In many infection settings, the availability of iron is scarce, 358 

prompting many human pathogens to incorporate a set of iron acquisition systems. The P. aeruginosa 359 

Ferric uptake regulator(Fur) controls both metabolism and virulence and was thought to be essential due to 360 

the difficulty in creating a fur deletion mutant. However, with TIS, Fur was shown to only be essential in 361 

colony formation and not in planktonic, biofilm or insect model infectious growth, unless grown under iron-362 

rich conditions. Surprisingly, the reason for reduced growth in iron-rich conditions was shown to not be 363 

because of a high iron uptake, but rather, due to the dysregulation of the biosynthesis of pyochelin, 364 

poisoning the cells in the presence of intracellular iron. Thus, Fur was shown to be a poor target choice for 365 

P. aeruginosa infection treatment, despite its initial classification as an “essential” gene and its role in 366 

virulence regulation, which would a priori have suggested the opposite (51).  367 

Regardless of disease type, the biofilm-forming capabilities of P. aeruginosa is one of its most well-known 368 

traits, with critical implications in infections on both biotic and abiotic surfaces. Crucial for P. aeruginosa 369 

biofilm formation and expansion is the characteristic twitching motility mediated by the type IV pili. To 370 

generate a whole-genome view of the entire twitching motility gene set, TIS was used to compare 371 

twitching-motile to non-motile members of a transposon mutant library by harvesting populations from the 372 

outer edge of a twitching motility-elaborated biofilm and comparing it to the center. By this method, the 373 

full twitching motility gene set was increased from 44 to 942 putatively implicated genes (52). Of these 942 374 

candidate genes, 42 had previously been known to be involved in twitching motility, while 5 novel genes 375 

were experimentally validated in their association with type IV pili; prlC, PA14_66580, pfpI, fliG and motY. 376 

The remainder encoded a wide variety of proteins, previously not expected to be implicated in motility, 377 
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adding hundreds more to the list of potential type IV pili-associated genes that could serve as potential 378 

anti-virulence or biofilm-interrupting drug targets. 379 

Because of its young age, TIS is under constant development with many methodological variants increasing 380 

the specificity and simplicity with which a scientific question can be answered. A recent addition is RB-381 

TnSeq, which utilizes unique barcoded transposons to map transposon insertions to mutant genotypes (53). 382 

The method was applied by Cole et al. (54) who identified 115 genes required for P. simiae colonization of 383 

A. thaliana. Using RB-TnSeq, they were able to compare the functional growth contributions of genes in 90 384 

distinct in vitro conditions. The use of barcodes on transposons removes the need for establishing an input 385 

library at every individual experiment, as the barcode-insertion relations in each library can be categorized 386 

in a single TIS workflow for use in all further experiments. This ability to multiplex experiments increases 387 

the already high throughput of TIS, allowing researchers to easily perform hundreds of distinct mutant 388 

library experiments simultaneously. Barcodes may also allow for intricate polymicrobial TIS experiments as 389 

mixed species can be separated based on their insertion-barcode profile. A possibility that previously 390 

required separate transposons or separate experiments for each transposon mutagenized species (55, 56). 391 

Even more information is made available when sequencing methods are combined for interpretation of 392 

multiple types of data. When assaying transcriptomic data, highly expressed genes may seem necessary to 393 

the cell fitness and survival, and the combination of TIS and RNA-seq data likely brings forth a hypothesis 394 

that gene essentiality and transcriptional expression is negatively correlated, with highly expressed genes 395 

attaining few transposon insertions. However, this seems not to be the case. When comparing P. 396 

aeruginosa grown in defined media to acute and chronic wound infections, no general correlation was 397 

found between expression and fitness. Only when subgrouping based on orthologues (Clusters of 398 

Orthologous Groups of proteins, COG, (57)) could correlation be seen, and only in the group of 399 

metabolically associated genes. In this case, the hypothesis held true; upregulation of metabolically 400 

associated genes in the infection model was predictive of fitness defects in mutants, producing a negative 401 

correlation (50). Though this is the case for P. aeruginosa, it may not be the case for other, more 402 

specialized, pathogens. The opportunistic nature of P. aeruginosa has not selected for regulation necessary 403 

for growth in the “wound” niche and, as such, it would likely require multiple generations for the species to 404 

adapt and upregulate genes, a situation found in P. aeruginosa infections in the cystic fibrosis lung, where 405 

global gene expression adaptation over time has been observed (58). 406 

But attempting to correlate gene expression to gene fitness may not be adequate to see patterns in data. 407 

Jensen et al. (59) showed that both in P. aeruginosa and in Streptococcus pneumoniae, correlations 408 

between these two genetic traits are absent, and while genes in specific metabolic pathways could be both 409 
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upregulated and conferring a fitness increase, very rarely did genes show both. However, using a 410 

mathematical model to increase the scope to include metabolic neighbors (i.e. genes encoding metabolic 411 

enzymes that are separated by zero, one or two metabolites in a pathway) revealed that closer neighbors 412 

had higher products of fitness and expression changes (Δfitness x Δexpression), suggesting that genes 413 

closely related in a pathway collectively are correlated in fitness and expression, though individual genes 414 

are not. The same analysis from datasets studying antibiotic resistance, indicated that the response to 415 

antibiotics is not ordered and neighbors in pathways are not either highly transcribed nor important for 416 

fitness. A meta-analysis with all publicly available S. pneumoniae and P. aeruginosa datasets, additionally 417 

revealed that genes with low expression plasticity (i.e. little change in expression as a function of 418 

conditions) also tended to be either essential or conferring a fitness defect, when mutated, in both species 419 

(59). These conclusions suggest that first of all, the previous negative correlation hypothesis is likely true, 420 

only in situations where modelling is used to describe regulatory relationships within the network and also 421 

the genetic interactions between genes, and secondly, that the nature of the stressor determines if 422 

transcriptional profiles can be used to determine phenotypically important genes. 423 

Studies of antimicrobial resistance have previously relied heavily on transcriptomics to predict functional 424 

importance, but with the poor correlation between the two, a trait that seems universal among bacteria, it 425 

is necessary to take precautions when using transcriptomics to predict gene function importance. Basing 426 

networks only on gene expression data would exclude many fitness-conferring genes, though, on the other 427 

hand, networks based solely on fitness profiles would miss genes that undergo large expression changes. 428 

Thus, applying network topological analyses to contextualize high-throughput sequencing experiments has 429 

the potential to provide value in predicting and re-evaluating current drug target candidates, consistently 430 

made simpler as NGS bioinformatical analysis evolves. 431 

Evolution of NGS computational analysis; from genome alignments to machine learning-led predictions 432 

of antimicrobial resistance 433 

The clinical relevance of Pseudomonas aeruginosa made it an early candidate for whole genome 434 

sequencing when this field was in its infancy and the first sequence, that of the laboratory strain PAO1, was 435 

released in 2000 (60). As more strains were sequenced and made available online, the Pseudomonas 436 

research community collectively adopted the strategy of collating all the available genomes in a central and 437 

publicly available online database (61) which members of the community kept continuously updated as 438 

new gene annotations were added based on published literature and greater functionality was added to 439 

the database structure (62). The increasing size of the genome database allowed for greater degrees of 440 

confidence in detection of mutations, particularly from clinical isolates, that could be linked to 441 
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antimicrobial resistance. However, it soon became clear that such clear-cut genotype-phenotype 442 

associations were in the minority, and that to fully define the relationships between genes and 443 

antimicrobial resistance (and other) phenotypes on a global scale would require more data, in particular on 444 

transcriptome-wide gene expression in as many strains as possible, and from mutation experiments where 445 

the requirement of a given gene for a phenotype could be tested empirically.  446 

This data, from RNA-Seq and TIS experiments respectively, has recently allowed much more integrative 447 

approaches to be used to study antimicrobial resistance determinants in Pseudomonas and to evaluate to 448 

what extent expression data (RNA-Seq), gene-associated fitness data (TIS) or a combination of the two 449 

could be predictive for antimicrobial resistance phenotypes. To allow three-way comparisons between 450 

genome sequences, RNA expression and phenotypes, the database BACTOME was recently developed (63). 451 

This database incorporates genome sequences, RNA-Seq datasets and phenotypic information from a panel 452 

of Pseudomonas aeruginosa clinical isolates (99 at the time of this publication). The phenotypic information 453 

in this database focuses on infection-relevant phenotypes including biofilm, in vivo virulence in a wax moth 454 

larvae model, and resistance levels to a panel of the 5 most common clinically used antibiotics against 455 

Pseudomonas infection. Hence, associations of nucleotide polymorphisms and/or gene expression levels 456 

with a given phenotype could be detected in a centralized manner without individual researchers having to 457 

comb the published literature and sequence repositories for data from individual studies, and subsequently 458 

investigated for their relevance to clinical outcomes for patients. 459 

Prior to the development of TIS, Pseudomonas aeruginosa had been used as the model organism for 460 

creation of one of the first ever bacterial arrayed transposon mutant libraries (64), which was then widely 461 

shared among the Pseudomonas research community. This was used for identifying genes relevant to 462 

tobramycin resistance by screening the individual clones of the library and locating the mutants with 463 

increased tobramycin sensitivity compared to the wild type (65). The resulting set of 14 genes provided a 464 

baseline for the same group to validate the use of TIS to investigate the same phenotype, both to confirm 465 

that the same gene set could be identified by this method and to see if it could detect any other genes 466 

required for growth in tobramycin (66). Their TIS analysis identified 117 genes associated with increased 467 

sensitivity to tobramycin, including 13 of the 14 genes previously found by screening the arrayed library. 85 468 

of these 117 genes were experimentally validated, which confirmed that mutation of genes identified by 469 

TIS as necessary for fitness for growth in tobramycin led to at least 2-fold (74 genes) and in some cases 4-470 

fold decreases in the tobramycin MICs of the mutants. The set of 28 genes with 4-fold decreases in MIC 471 

contained all the genes identified by the arrayed library screen, showing that TIS analysis has a lower 472 

threshold of detection for relevant genes for this antimicrobial resistance phenotype than the arrayed 473 
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library screen and is capable of detecting more subtle effects, while the arrayed library screen had only 474 

captured the strongest drug resistance phenotypes. However, TIS proved not to have much predictive 475 

power for the relative importance of individual genes for survival in tobramycin. Some of the genes most 476 

strongly selected against in the TIS analysis did not have correspondingly large decreases in MIC of their 477 

individual mutants, suggesting that the selection pressure in the context of an antibiotic-exposed pooled 478 

library operates differently than in the context of a pure culture. If TIS was to be used for predicting 479 

genotype-phenotype associations regarding antimicrobial resistance, additional data gained from 480 

alternative experimental methods would be required.  481 

Subsequent work sought to rectify this by generating parallel TIS and RNA-Seq datasets from Pseudomonas 482 

cultures exposed to sub-MIC levels of 14 antimicrobial compounds, to examine whether any correlation 483 

could be observed between fitness associations and gene expression level for genes that were associated 484 

with antimicrobial resistance, either for individual compounds or by antibiotic class or mechanism (67). 485 

Similarly to the studies comparing TIS and RNA-Seq in wound infection models (50), the expected inverse 486 

correlation between RNA expression levels and transposon insertion frequency in resistance-associated 487 

genes was not observed; genes that were highly expressed upon antibiotic exposure were not necessarily 488 

very important for fitness in the presence of that antibiotic. However, although gene expression levels were 489 

not useful for predicting which genes would be TIS fitness determinants, orthogonal comparison of RNA-490 

Seq and TIS datasets across different classes of antibiotics was successful in predicting biologically relevant 491 

cases of antagonism. If a particular antibiotic upregulated expression of a gene that was found to be a 492 

fitness determinant for a second antibiotic, then exposure to the first antibiotic ought to cause increased 493 

resistance during subsequent treatment with the second antibiotic, and this was experimentally validated 494 

for one case (polymyxin B caused increased resistance to gentamicin, tobramycin, neomycin and 495 

ciprofloxacin that was dependent on polymyxin B-induced upregulation of the mexXY genes) (67). Since 496 

treatment of Pseudomonas infections often involves successive courses of antibiotics of different classes, 497 

with the rationale that if resistance to the current antibiotic has evolved during the course of treatment, 498 

the resulting resistant mutants ought to be eliminated by treatment with a different drug, this finding has 499 

significant implications for using this type of data to inform treatment choices so as to avoid such 500 

antagonisms that could not have been predicted otherwise. Conversely, it should be possible to predict 501 

eventual synergies from filtering the data for antibiotics that down-regulate genes which are then fitness 502 

determinants for different drugs, which could then indicate treatment choices with the best chance of 503 

success.   504 
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While RNA-Seq profiles of single strains did not show much correlation with antimicrobial resistance 505 

phenotypes (59, 67), other studies sought to increase the predictive power of transcriptome analysis by 506 

investigating global gene expression profiles across many (clinical) strains for which the antimicrobial 507 

resistance phenotypes were known. Combination of data from multiple isolates could then allow 508 

identification of subtle transcriptomic effects which would be below the threshold of detection in a single 509 

strain but would occur at a statistically significant level if reproduced in a sufficient number of strains 510 

sharing the same antimicrobial resistance phenotype. Khaledi et al. (68) employed this approach to 511 

examine 135 clinical isolates of Pseudomonas aeruginosa for which the MICs of a small set of antibiotics 512 

with different cellular targets (ciprofloxacin, ceftazidime, meropenem and tobramycin) had been previously 513 

determined. The 135 RNA-Seq profiles (performed in the absence of the antibiotics) were used for 514 

transcriptome wide association analysis to identify single genes that displayed a consistent association 515 

across the whole panel of strains between expression level and antimicrobial resistance. This revealed a 516 

small number of relatively weak gene expression-phenotype associations. However, when the datasets 517 

were fed into a machine learning algorithm in order to identify patterns of gene expression from multiple 518 

genetic loci, rather than single genes, that would act as markers predicting antimicrobial resistance 519 

phenotypes, the algorithm was able to discriminate ciprofloxacin resistant from sensitive strains based on 520 

global transcriptome profile even though no single genes had been identified as distinguishing markers for 521 

this phenotype and the direct cause of ciprofloxacin resistance in the majority of the resistant strains was a 522 

single nucleotide polymorphism in the DNA gyrase gene. Therefore, although the gene expression profiles 523 

were a consequence, rather than a cause, of the antimicrobial resistance, they were nonetheless predictive 524 

of an isolate’s resistance status provided that enough data was supplied to the algorithm to allow it to 525 

detect patterns that discriminated between sensitive and resistant phenotypes.  526 

As the quantity of available bacterial NGS datasets has increased, so too has the complexity of the network 527 

connecting the different parameters of bacterial strains, genome sequences, phenotypes, transcription 528 

factor regulons, transcriptomes and genome wide fitness data. To take full advantage of the potential of 529 

this information, advanced machine learning techniques have recently been developed with the goal of 530 

creating an unsupervised machine learning model that is capable of inferring biological information from 531 

such data networks without being supplied with a priori information about them (here, the a priori 532 

information could be annotated gene functions, or the antimicrobial resistance/sensitivity status of an 533 

organism under investigation, such as in (68)). The key difference between “supervised” and 534 

“unsupervised” machine learning models is that a supervised algorithm is trained on existing datasets 535 

where both input and output data are supplied (as used in Cornforth et al. for discriminating 536 

transcriptomes of human infection isolates from those of laboratory-cultured bacteria, (21)), before it is 537 
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used for predicting the expected output of novel input data. Conversely, an unsupervised algorithm is 538 

allowed to make its own output predictions by building a mathematical model based only on the patterns 539 

or clusters it identifies in the input data, without applying any labels or definitions to those patterns or 540 

clusters first. Therefore, a supervised algorithm could be expected to be less error-prone (at least in the 541 

first iterations) than an unsupervised one, but may be more susceptible to unwitting bias present in the 542 

training dataset and/or less good at handling noisy data. Two recent machine learning studies have 543 

employed all the publicly available Pseudomonas aeruginosa gene expression data acquired with the 544 

Affymetrix GeneChip microarray platform to generate unsupervised neural network algorithms and 545 

assessed their performance at extracting meaningful biological information from the collected datasets. 546 

Whether using a single neural network model (69) or an ensemble network generated from 100 individual 547 

models (70), the algorithms were able to make relevant predictions linking gene expression patterns to 548 

biological output information, which were experimentally validated for the patterns associated with strain 549 

identity, transcriptional response to low oxygen and which medium the bacteria had been grown in. 550 

Computational models such as these are likely to provide significant advances to the Pseudomonas 551 

research community’s ability to interpret large numbers of highly interconnected datasets (Figure 3) and 552 

obtain novel biological insights from them.       553 

Future perspectives and concluding remarks  554 

While the genomic and transcriptomic studies outlined here have advanced the field of Pseudomonas 555 

research by allowing systems-level characterisation of the genetic regulatory networks which permit its 556 

extreme adaptability to varied environmental conditions, it is clear that the full potential of these methods 557 

has not yet been reached. The current standard practice is to prepare transcriptomic or genomic DNA 558 

libraries from a population of cells grown in pure culture, but there is much to be gained from “zooming in” 559 

to the level of a single cell, or conversely “zooming out” to study mixed cultures containing more than one 560 

species of micro-organism. Bacterial single-cell transcriptomics, for which methods are under active 561 

development (71, 72) will allow exploration of gene expression patterns associated with micro-level 562 

differences in location within an infected tissue to a higher resolution than currently possible, or 563 

alternatively to explore phenotypic heterogeneity within a population, in particular aspects of phenotypic 564 

heterogeneity that are relevant to chronic infections, such as persister cells (73), response to oxygen 565 

gradients within a biofilm (74), heterogeneous transcription factor activity patterns (37) or antibiotic 566 

tolerance (75). Genomics or transcriptomics performed on multi-species cultures, for example, mixed-567 

species biofilms or mixed cultures comprising species that are commonly found together in Pseudomonas-568 

dominated infection sites, will be able to inform not only about the gene expression patterns and/or 569 
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essential genomes of the individual pathogens but also about the polymicrobial interactions involved in this 570 

mode of growth and conditional essential genotypes required for proliferation in the presence of other 571 

species. The stringent technical challenges of single-cell analysis and mixed-culture experiments are likely 572 

to be overcome by the adaptation of the barcoding approach that was spearheaded by TIS experiments 573 

(53). Adding barcodes to the NGS adaptors allows detection and compensation for PCR bias in single cell 574 

experiments during the cDNA amplification step, since PCR products which are favoured (or not) during the 575 

amplification will be reflected in an increased or decreased level of their barcode, which can then be taken 576 

into account during data normalisation. Barcoding of mixed-culture TIS experiments will similarly ease the 577 

technical bottlenecks of repeated sequencing of output libraries that would otherwise be required, since 578 

the unique barcodes identify not only the genetic locus but the strain background from which that gene 579 

came, and the range of available barcodes can be expanded easily to fit even larger experiments by simply 580 

making the barcodes a base or two longer. Taken together, these approaches are likely to lead to the 581 

development of a new generation of biomarkers based on global pathogen gene expression and fitness 582 

profiles rather than single gene presence/absence. These could eventually lead to fine-tuning of medical 583 

diagnoses and treatments on a case-by-case basis and contribute to the development of “personalised 584 

medicine”, especially with the potential for rapid characterisation of the gene expression patterns of a 585 

given pathogen interacting with a patient’s own cells, as the speed of the technology increases. At the level 586 

of hardware, as NGS sequencers are simplified and miniaturised, it can be anticipated that they will become 587 

indispensable tools for field as well as laboratory research, for example to track geographical spread and/or 588 

genetic evolution of outbreaks of infectious disease.  589 

While the integration of “omics” data into medical practice presents a valuable opportunity for better 590 

targeting of patient treatment, the challenges are also evident. For this approach to succeed, two main 591 

criteria must be fulfilled; the sequencing data must provide a biologically relevant insight that is directly 592 

translatable to patient care, and this biologically relevant insight must be obtained quickly enough that it 593 

can inform treatment choice for the patient at the appropriate time. Sample processing methods and 594 

sequencing software and hardware developments are quickly overcoming the challenges of small bacterial 595 

sample size, the relative over-representation of human relative to bacterial transcripts (if a dual RNA-Seq 596 

approach is being used) and speed of obtaining and analysing the data. However, in order to obtain 597 

clinically useful biological information, it is essential that the right questions are asked and the right 598 

technique is used to answer them. It may be the case that a question about, for example, the antimicrobial 599 

resistance status of a bacterial pathogen is one that cannot be appropriately answered by examining its 600 

genome or transcriptome. Indeed, several of the works highlighted in this Review (50, 59, 67) suggest that 601 

it is not, and that even a combination of global gene fitness profiling by TIS and transcriptome sequencing 602 
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by RNA-Seq is not sufficient to draw clinically relevant conclusions. To counteract these challenges, the 603 

addition of proteomics analysis to sequencing approaches may contribute towards filling the gaps that 604 

transcriptome or gene fitness data cannot fill. Mass spectrometry techniques are being developed to assess 605 

and predict antimicrobial resistance status of pathogens at the proteome level, and although these are 606 

currently not sufficient for clinical application to organisms with complex multifactorial antimicrobial 607 

resistance mechanisms such as Pseudomonas aeruginosa (76) they are likely to improve in accuracy as the 608 

technology improves and more whole-proteome information (especially from clinical isolates) becomes 609 

available. Integration of such data, together with existing genomic, RNA-Seq, ChIP-Seq and phenotypic data 610 

sets into networks or databases spanning large numbers of isolates could eventually permit more accurate 611 

predictions to be made by the use of association studies, which would be expected to possess much more 612 

statistical power than NGS analyses performed on one strain alone. In order to interrogate data networks 613 

of this complexity, however, it is likely that machine learning algorithms will become as indispensable and 614 

mainstream in the near future as the BLAST algorithm (77) is today.  615 

With more and more research in NGS fields, more caveats are also brought to light, and though it has long 616 

been clear that high-throughput experiments always require validation, and that NGS experiments 617 

complement each other well, it is a recent discovery that some studies may actually require multiple types 618 

of high-throughput experiments in order to draw reliable conclusions from them. In this review, we have 619 

presented insight into multiple papers, showing how gene expression and fitness do not generally 620 

correlate, which alters the notion that transcriptomic studies are able to predict genes important for 621 

fitness. Rather, the experimental condition is determining for knowing if expression is indicative of 622 

functional importance. In the future, studies (especially those focusing on developing new pathogen 623 

treatment targets) may have to investigate multiple types of high-throughput data, validating their findings 624 

in each with the findings in the other. Moreover, new mathematical models, likely derived from ChIP-Seq 625 

and RNA-Seq data, may be required to fully define topological network relationships between genes that 626 

are involved in virulence, quorum sensing, biofilm or antimicrobial resistance, analogous to those that have 627 

been constructed for metabolic networks. It is conceivable that a greater degree of coherence between 628 

RNA-Seq and TIS data may be observed when examined in the framework of a context-specific in silico 629 

model than examining data derived from antibiotic perturbation in the context of a model designed to 630 

predict metabolic perturbation effects (59). Combined with computational power, these mixed studies may 631 

determine fitness gene, regulatory factor and expression levels across multiple conditions in a single study, 632 

accelerating the search for treatment targets of P. aeruginosa and other pathogens. 633 

 634 
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 645 

Figure legends 646 

Figure 1. Development of NGS approaches to study RNA-BP and sRNA interactions with the global 647 

transcriptome.  648 

How the basic RNA-Seq method (centre) has been developed into more advanced techniques (inner ring), 649 

and the biological information that is gained from them (outer ring). Clockwise from top-left: Dual RNA-Seq 650 

studies compare transcriptional changes in 2 species (e.g during host-pathogen interaction) by extracting 651 

total RNA and mapping the reads to both the host and the pathogen genomes. MAP-Seq & GRIL-Seq study 652 

sRNA interaction: MAP-Seq employs a MS2 RNA affinity tag bound to a sRNA of interest which will be co-653 

purified with its interacting RNA and sequenced. GRIL-Seq involves co-expression in vivo of a sRNA of 654 

interest and T4 RNA ligase creating chimaeras; total RNA is enriched for transcripts containing the sRNA 655 

chimaeras and sequenced. RIP-Seq & CLIP-Seq identify RNA-BP (shown here as Hfq, but applicable to other 656 

RNA-BPs) targets: RIP-Seq by immunoprecipitation of RNA targets via pull down of the RNA-BP of interest 657 

in cell lysate followed by RNA-Seq. CLIP-Seq by in vivo UV exposure to covalently cross-link RNA to proteins 658 

before co-purification of the RNA-protein complexes and RNA-Seq. RNA trimming by ribonucleases outside 659 

of the binding region enables mapping of the binding region at single-nucleotide resolution. RIL-Seq uses 660 

immunoprecipitation as in RIP-Seq and crosslinking as in CLIP-Seq to bind RNAs to the RNA-BP. After 661 

enzymatic digestion, RNAs are ligated and subjected to RNA-Seq. RNA–RNA interactions are revealed after 662 

mapping and identification of chimeric reads. CLASH uses the same method as RIL-Seq but the bound RNA 663 

is trimmed using an RNase and RNA linkers are ligated to the immobilized RNA molecules in the RNA–BP 664 



   
 

22 
 

complexes. Finally, coupled RNA molecules are ligated into one single molecule of two different types, 665 

either single or chimaeric fragments. dRNA-Seq & pRNA-Seq reveal respectively transcription start sites 666 

and RNA processing sites. dRNA-Seq discriminates primary from processed 5‘ends by sequencing a 667 

differential cDNA library. One is prepared from untreated total bacterial RNA and the other is enriched for 668 

primary transcripts by terminator exonuclease treatment that degrades 5’P but not 5’PPP RNA. pRNA-Seq 669 

sequences specifically processed RNA though adaptors ligated in vitro on 5’P and 3’OH ends, followed by 670 

reverse transcription, amplification of fragments with adaptors by PCR and sequencing. 671 

Figure 2. Application of NGS to achieve molecular resolution of DNA-protein interactions, core genomes 672 

and conditional-essential genes. 673 

 (A) Chromatin immunoprecipitation sequencing works by cross-linking proteins to DNA with formaldehyde 674 

in actively growing cells. The DNA is purified, fragmented, and DNA-protein complexes are enriched for in 675 

an immunoprecipitation assay using an antibody specific to the protein of interest, (discarding the un-676 

enriched DNA-fragments). The crosslinks are reversed, and a DNA library is prepared from the isolated 677 

fragments. The immunoprecipitant DNA library is sequenced alongside an un-enriched, non-treated sample 678 

representing the background signal. Protein binding sites are found as regions of the genome with 679 

enrichment in read count in the immunoprecipitated sample compared to the background sample. 680 

 (B) Transposon insertion sequencing studies start with the creation of a saturated and complex transposon 681 

mutant library. The library is grown under input and output test conditions, input conditions being the 682 

neutral baseline to which the results of the desired output condition are compared. Viable mutants from 683 

the experiments are then harvested and genomic DNA is extracted and prepared for next-generation 684 

sequencing. The samples are sequenced, and data analysis comparing the transposon insertion distribution 685 

between input and output to identify essential (gene C) and conditionally essential genes (gene A) is 686 

performed.  687 

Figure 3. Multi-dimensional interconnectivity between “omics” data sets requires highly efficient 688 

computational tools. 689 

With the increasing quantity of available bacterial NGS datasets, follows a higher degree of complexity in 690 

the network connecting genome sequences, phenotypes, transcription factor regulons, transcriptomes and 691 

genome wide fitness data between strains. With the struggle to understand the complexity of the omics 692 

network in a single strain, it has become clear that the full potential of this information is only available as 693 

more advanced computational tools, such as machine learning and neural networks, are developed and 694 

integrated to fit specific research purposes.  695 
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