Assessment of Physiological Intracranial Calcification in Healthy Adults Using 18F-NaF PET/CT.

Al-Zaghal, Abdullah; Seraj, Siavash Mehdizadeh; Werner, Thomas J.; Gerke, Oke; Høilund-Carlsen, Poul F.; Alavi, Abass

Published in:
Journal of Nuclear Medicine

DOI:
10.2967/jnumed.118.213678

Publication date:
2019

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Assessment of Physiological Intracranial Calcification in Healthy Adults

Using 18F-NaF PET/CT

Abdullah Al-Zaghal,¹, Siavash Mehdizadeh Seraj,¹, Thomas J. Werner,¹, Oke Gerke,², Poul F. Høilund-Carlsen,²,³, Abass Alavi,¹

Affiliations

1. Department of Radiology, Hospital of University of Pennsylvania, PA, USA
2. Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
3. Department of Clinical Research, University of Southern Denmark, Odense, Denmark

Corresponding Author

Abass Alavi

3400 Spruce St, Philadelphia, PA 19104

Office number: 215-662-3069

Fax number: 215-573-4107

Email address: abass.alavi@uphs.upenn.edu
First Author

Abdullah Al-Zaghal
Research fellow
3400 Spruce St, Philadelphia, PA 19104
Telephone number: 215-834-3014
Fax number: 215-573-4107
Email address: abdullah.alzaghal@uphs.upenn.edu

Word Count 4045

Funding

This study was funded by the Anna Marie and Christian Rasmussen’s Memorial Foundation, University of Southern Denmark, Odense, Denmark, and the Jørgen and Gisela Thrane’s Philanthropic Research Foundation, Broager, Denmark.

Short running title

Intra-cranial calcification/NaF PET
ABSTRACT

The aim of this research study was to determine the role of 18F-Sodium fluoride (NaF) PET/CT imaging in the assessment of physiologic molecular calcification in the intra-cranial structures. We also examined the association of NaF accumulation with age as well as Hounsfield unit (HU) in certain anatomical sites that are known to calcify with normal aging.

Methods: A total of 78 healthy subjects from the Cardiovascular Molecular Calcification Assessed by 18F-NaF PET/CT (CAMONA) clinical trial (38 females and 40 males) were included in this retrospective study. The mean age was 45.28 ± 14.15 years (21-75). Mean standardized uptake values (SUVmean) was used to measure NaF accumulation in the choroid plexus and epithalamus (pineal gland and habenula). Maximum HU was also measured for each ROI. Correlation analysis was conducted to assess the association between parameters.

Results: Mean SUVmean was 0.42 ± 0.26 in the right choroid plexus, 0.39 ± 0.25 in the left choroid plexus, and 0.23 ± 0.08 in the epithalamus. Significant positive correlations were present between NaF uptake and age in the right choroid plexus ($r=0.61, p<0.0001$), left choroid plexus ($r=0.63, p<0.0001$), and epithalamus ($r=0.36, p=0.001$). NaF uptake significantly correlated with HU in the right choroid
plexus ($r=0.52, p<0.0001$), left choroid plexus ($r=0.57, p<0.0001$), and epithalamus ($r=0.25, p=0.03$).

Conclusion: NaF could be used in the assessment of physiological calcification in several intracranial structures. We report significant associations between NaF uptake and aging as well as HU in the calcified choroid plexus and epithalamus. Our findings further support the growing interest to utilize NaF for detecting extra-osseous, molecular calcification, and this powerful probe has potential applications in the evaluation of various age-related, neurodegenerative brain processes.

Keywords:
NaF, choroid plexus, pineal gland, brain calcification, PET
INTRODUCTION

18F-labeled Sodium fluoride (NaF) was first employed as a molecular imaging probe in 1962 by Blau et al (1) and was approved by the U.S Food and Drug Administration (FDA) in 1972 for routine assessment of osseous disorders including metastasis from various malignancies. NaF gained a great deal of popularity as an excellent bone-seeking agent due to its high skeletal uptake and rapid blood clearance from the circulation following its intravenous administration. However, due to lack of appropriate imaging instruments (positron emission tomography – PET), efforts were made to synthesize compounds that could be used with conventional nuclear medicine techniques. Therefore, routine use of NaF declined since conventional gamma cameras were unable to detect the high energy positron annihilation following 18F decay. The introduction of modern positron emission tomography (PET) scanners and the increased availability of NaF have resulted in a renewed interest in this tracer. Its sensitivity in detecting benign and malignant osseous disorders is significantly higher than that of 99mTechnetium-labeled phosphates (2-4).

Extra-osseous accumulation of NaF as a marker of soft tissue calcification has been reported in many settings (5,6). NaF uptake in the arterial wall of arteries such
as the aorta, carotid and coronary arteries indicate an active calcifying atherosclerotic plaque (7-9). NaF is also taken up in the extra-osseous microscopic calcification, dystrophic calcification, and calcified metastatic lesions (10-13).

Intracranial calcification is a common neuro-imaging finding in otherwise asymptomatic, normal individuals or in patients with a wide range of underlying maladies such as neurological, metabolic, infectious, hemorrhagic, neoplastic or other disorders (14). Choroid plexus calcification is very common finding, usually in the atrial portions of the lateral ventricles. Pineal region calcification is known to be present histologically from fetal life to adulthood. Idiopathic intracranial calcification is defined as the deposition of calcium within brain parenchyma in the absence of neurological deficits or an apparent underlying pathological cause (15).

During the human life span, the choroid plexus, pineal gland, and habenula tend to accumulate physiologic calcifications.

The purpose of this study was to determine the use of NaF PET in the detection and characterization of active calcification in intra-cranial structures. We also investigated the possible association between NaF uptake and age as well as HU at the sites selected for this research project.
MATERIALS AND METHODOLOGY

NaF PET/CT scans used in this retrospective study are part of the ‘Cardiovascular Molecular Calcification Assessed by 18F-NaF PET/CT” (CAMONA) protocol. CAMONA is a prospective trial and was approved by the Danish national committee on biomedical research ethics, registered at ClinicalTrials.gov (NCT01724749), and conducted from 2012 to 2016 in accordance with the Declaration of Helsinki. Details of the CAMONA study were previously published by Blomberg BA, et al. (16).

Subject Selection

The CAMONA study included 89 healthy volunteers who were recruited from the general population by local advertisement or from the blood bank of Odense University Hospital, Denmark. Negative history of cardiovascular disease, oncologic disease, chronic inflammatory disease, autoimmune disease, immunodeficiency syndromes, alcohol abuse, illicit drug use, or any prescription medication were inclusion criteria for healthy volunteers. Active smokers and pregnant ladies were excluded. Adults were preselected by sex and age to ensure a balanced inclusion of males and females aged 20–29, 30–39, 40–49, 50–59, and 60 years or older.
Framingham Risk Score (FRS) was used to evaluate the modifiable cardiovascular risk factors and only subjects with score below the upper limits of the recommended levels were included; systolic blood pressure below 160 mm Hg and a diastolic blood pressure below 100 mm Hg, total serum cholesterol below 6.2 mmol/L, and glycated hemoglobin (HbA1c) below 48 mmol/L (17). Further detailed description of the healthy subjects of the CAMONA study were previously published by Blomberg BA, et al. (18).

In the current study, 6 subjects were excluded as their scans were not available within our lab database. Another 5 subjects were excluded due to motion artifact that degraded image quality and prevented optimal images analysis. A total of 78 healthy subjects, 38 females and 40 males, were included, mean age was 45.28 ± 14.15, range 21 – 75. (Table 1). The Danish national committee on biomedical research ethics approved this study and all subjects signed a written informed consent.
Study Design

Study participant were evaluated by blood pressure measurements, blood chemistry testing, Framingham risk score (FRS), 18F-NaF PET/CT imaging. Information regarding smoking habits, family history of CVD, and prescription medication were collected through questioners. Three blood pressure measurements were done for each patient with an interval of 30 minutes while resting in supine position. The average of last two systolic and diastolic measurements were recorded. Blood chemistry tests included fasting total cholesterol, serum low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, fasting serum glucose, HbA1c, serum creatinine, and the Modification Diet and Renal Disease (MDRD) estimated glomerular filtration rate (eGFR). SCORE % was calculated for each subject based on gender, age, total serum cholesterol, serum HDL cholesterol, systolic blood pressure, and smoking status.

NaF PET/CT scans were performed according to the previously published methodology by Blomberg BA (19). In Summary, NaF PET/CT imaging was performed on integrated PET/CT scanners (GE Discovery 690, VCT, RX, and STE (General Electric, Chicago, Illinois, USA)) with comparable spatial resolutions. PET images were obtained 90 minutes after the intravenous administration of 2.2 MBq of 18F-NaF/kg of body weight. The acquisition time per bed position was 2.5
minutes. Total body PET images were acquired in 3D-mode and reconstructed into coronal, transverse, and sagittal slices by an iterative reconstruction algorithm (GE VUE Point). Corrections were applied for attenuation, scatter, random coincidences, and scanner dead time. For attenuation correction and anatomic orientation, low-dose CT imaging (140 kV, 30-110 mA, noise index 25, 0.8 seconds per rotation, slice thickness 3.75 mm) was performed. Total body PET images were acquired in 3D-mode and reconstructed into coronal, transverse, and sagittal planes by an iterative reconstruction algorithm (GE VUE Point).

Image Analysis

Osirix MD v 9.0 (DICOM viewer and image-analysis program, Pixmeo SARL; Bernex, Switzerland) was used for the analysis of fused PET/CT images. Three fixed-size spherical regions of interest (Volume = 1.5 cm³, Diameter = 1.42 cm) were drawn to encompass the calcified choroid plexus in the inferior horn of the lateral ventricle in each cerebral hemisphere and the epithalamus (including both the pineal gland and habenula) (Fig. 1). SUVmean and maximum HU were measured for each ROI.
Statistical Analysis

Correlation analysis by means of Pearson correlation coefficients and scatterplots was performed to investigate the relation of age with NaF uptake and maximum HU values. The association between NaF uptake and maximum HU was also investigated by correlation analysis. Exploratory multivariable linear regression was applied for all endpoints using all available demographic data (additional online data supplement 1). Due to the limited sample size, the number of explanatory variables was reduced by application of variance inflation factor analysis first and backward variable selection (with $p_{\text{stay}}=0.7$) thereafter, but age and gender were maintained irrespectively of their p-values. A two-tailed P value below 0.05 was regarded statistically significant. Statistical analysis was conducted using Stata/MP 15.0 (StataCorp, College Station, Texas 77845 USA).
RESULTS

Mean SUV was 0.42 ± 0.26 in the right choroid plexus, 0.39 ± 0.25 in the left choroid plexus, and 0.23 ± 0.08 in the epithalamus. The average of maximum HU was 148 ± 66.01 in the right choroid plexus, 141 ± 61.31 in the left choroid plexus, and 235 ± 130.69 in the epithalamus.

Significant positive correlations were present between NaF uptake and age in the right choroid plexus ($r = 0.61$, $p < 0.0001$), left choroid plexus ($r = 0.63$, $p < 0.0001$), and epithalamus ($r = 0.36$, $p = 0.001$). HU values also had a positive correlation with aging in both the right ($r = 0.43$, $p = 0.0001$) and left ($r = 0.40$, $p = 0.0003$) choroid plexus, but not in the epithalamus ($r = 0.19$, $p = 0.09$) (Fig. 2). Exploratory multivariable linear regression supported the statistically significant influence of age on NaF uptake and HU values after adjustment for demographic variables (Additional Online Data Supplement 1).

Significant positive correlations were observed between NaF uptake and HU in the right choroid plexus ($r = 0.52$, $p<0.0001$), left choroid plexus ($r = 0.57$, $p < 0.0001$), and epithalamus ($r = 0.25$, $p = 0.03$) (Fig. 3).
DISCUSSION

Idiopathic intracranial calcification is thought to be related to normal physiological aging and neurodegenerative processes (20). It is most commonly found in the choroid plexus, pineal gland, habenula, and dura matter. It is present in 50-70% of adults above the age of 30 years and its incidence increases with age (21,22), but it is not uncommon to encounter these finding in young adolescents (23,24).

Hydroxyl-apatite (Ca$_{10}$[PO$_4$]$_6$[OH]$_2$) is a major component of calcified intracranial lesions (25,26). The 18F-Fluorine ion of NaF exchanges with hydroxyl ions (OH-) on the surface the hydroxyapatite matrix to form fluoro-apatite (27). The rate of NaF accumulation depends on the number of binding sites on the surface of hydroxyl-apatite available to react with 18F (28). Any anabolic or catabolic process that alters calcium metabolism affects the hydroxyl-apatite surface area, and thus, increases the degree of availability of binding sites, consequently resulting in higher NaF uptake (29-31).

Our results showed that NaF-PET could detect and semi-quantify calcium metabolism and its turnover in calcified choroid plexus and epithalamus. We also found significant positive associations between aging and NaF accumulation as well
as HU values in the choroid plexus and epithalamus. NaF accumulation in the regions selected for this study had a significant positive correlation with HU values.

Kwak et al. retrospectively studied 2,877 cranial computed tomography (CT) scans and noted a strong association between the calcification of choroid plexus and pineal gland with normal aging (32,33). Whitehead et al. examined head CT scans of 500 subjects in their first decade of life and reported a correlation between choroid plexus and pineal gland calcification with age (34).

In the population examined, calcification in the epithalamus had higher maximum HU values than that seen in the choroid plexus on CT images. However, the choroid plexus had higher NaF uptake on PET. This may indicate that calcium deposits in the pineal gland were more mature and less metabolically active than the calcification of the choroid plexus. This consolidates the role of PET as a functional imaging modality that reflects the metabolic activity of the investigated organ in contrast to other structural imaging modalities. Pathological studies suggested that the architecture of pineal gland calcifications does not change with age (35).

Imaging studies are routinely used in the evaluation of brain calcifications and its associated disorders. Non-enhanced CT scanning is the most commonly used
modality to image brain calcification; calcium deposits have a distinct hyper-dense appearance on CT (36,37). Calcifications have variable signal intensity on T1-weighted, and T2-weight images. However, iron and calcium deposition in the basal ganglia both have a hypo-intense signal on T2-weight images (38), making conventional magnetic resonance imaging (MRI) less reliable than CT in detecting calcifications (39). Susceptibility-Weighted Imaging (SWI) has improved the ability of MRI in detecting brain calcification (40). The sensitivity of Ultrasound for detecting intracranial calcification is highly comparable to that of CT in early childhood, but it is only feasible to perform in newborns before the closure of the fontanelles which occurs by the 18th month of age (41,42). Plain radiography is not a reliable modality to detect intracranial calcification, but extensive calcifications could be seen on radiographs as opaque lesions similar to that in the pineal gland or the falx.

Our study was limited by the imaging protocol; images were acquired 90 minutes after administration of NaF instead of the routine 60 minute-protocol, however, these scans originate as stated from the CAMONA project, which deals with molecular arterial calcification, whereas the SNM guideline is for NaF PET/CT bone scans. Molecular imaging with PET to detect intracranial calcification is an important domain of research and may not replace the established methods in the
near future. However, as the experience with this powerful approach becomes substantial, NaF-PET may play a major role in the evaluation of the metabolic activity of calcified brain lesions.

CONCLUSION

Based on the scientific data that we have described in this article, NaF could be used in the assessment of physiological calcification in several intracranial structures. We report a significant association between NaF uptake and aging as well as HU in the calcified choroid plexus and epithalamus. Our findings further support the growing interest to utilize NaF for detecting extra-osseous, molecular calcification and this powerful probe has potential applications in the evaluation of various age-related, neurodegenerative brain calcifications.

ACKNOWLEDGEMENTS

We thank the staff of the CAMONA study and the study participants for their valuable contributions.
DISCLOSURE

This study was funded by the Anna Marie and Christian Rasmussen’s Memorial Foundation, University of Southern Denmark, Odense, Denmark, and the Jørgen and Gisela Thrane’s Philanthropic Research Foundation, Broager, Denmark.

CONFLICTS OF INTEREST

The authors declare that they have no conflict of interest.

ETHICAL APPROVAL

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

INFORMED CONSENT

Informed consent was obtained from all individual participants included in the study.
REFERENCES

 description of extent of metastatic bone disease in breast cancer with fluoride
 ion and positron emission tomography. *J Clin Oncol*. 1999;17:2381-2389

 with 18F-sodium fluoride PET as a biomarker for calcium metabolism. *Curr
 Osteoporos Rep*. 2016;14:115-125

4- Adesanya O, Sprowson A, Masters J, Hutchinson C. Review of the role of
 dynamic 18F-NaF PET in diagnosing and distinguishing between septic and

 diagnosis via PET imaging of microcalcifications using (18)F-NaF. *J Nuc Med*.
 2014;55:1138-1143

6- Wu J, Zhu, H, Ji H. Unexpected detection of brain metastases by 18F-NaF

7- Blomberg BA, de Jong PA, Thomassen A, et al. Thoracic aorta calcification but
 not inflammation is associated with increased cardiovascular disease risk:

12- Al-Zaghal A, Werner TJ, Høiland-Carlsen PF, Alavi A. The detection of uterine leiomyoma (fibroid) calcifications on 18F-NaF PET/CT. *Clin Nucl Med*. 2018; doi: 10.1097/RLU.0000000000002122

19- Blomberg BA, Thomassen A, Takx RA, et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification

25- Beall SS, Pattern BM, Mallette L, Jankovic J. Abnormal systemic metabolism of iron porphyrin, and calcium in Fahr’s syndrome. *Ann Neurol.* 1989;569-575

42- Lago EG, Baldisserotto M, Hoefel Filho JR, Santiago D, Jungblut R.

Figure 1. Axial PET, CT, and fused PET/CT brain images of a 59-year-old man illustrating the ROIs set over the calcified epithalamus and right and left choroid plexus. Mean NaF uptake and maximum HU were measured for each ROI.
Figure 2. The correlation of NaF uptake (A, C, E) and maximum HU (B, D, F) in the choroid plexus and epithalamus with age.

- A: Right Choroid Plexus ($r = 0.61, P < 0.0001$)
- B: Right Choroid Plexus ($r = 0.42, P = 0.0001$)
- C: Left Choroid Plexus ($r = 0.63, P < 0.0001$)
- D: Left Choroid Plexus ($r = 0.40, P = 0.0003$)
- E: Epithalamus ($r = 0.36, P = 0.001$)
- F: Epithalamus ($r = 0.19, P = 0.09$)

r: Pearson’s Correlation Coefficient
P: P-Value

SUVmean: Mean standardized uptake value
Figure 3. The correlations of NaF uptake with HU values in the right choroid plexus [A], left choroid plexus [B], and epithalamiums [C].

r: Pearson’s Correlation Coefficient
P: P-Value
SUVmean: Mean standardized uptake value
Table 1. Subject Demographics

<table>
<thead>
<tr>
<th></th>
<th>Female (n=38)</th>
<th>Male (n=40)</th>
<th>P-Value</th>
<th>Total (N=78)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>45.28 ± 14.56</td>
<td>45.27 ± 13.93</td>
<td>0.99</td>
<td>45.28 ± 14.15</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>25.30 ± 3.12</td>
<td>27.57 ± 4.31</td>
<td>< 0.01</td>
<td>26.46 ± 3.92</td>
</tr>
<tr>
<td>BP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>124.75 ± 17.03</td>
<td>133.88 ± 16.91</td>
<td>0.02</td>
<td>129.43 ± 17.47</td>
</tr>
<tr>
<td>Diastolic</td>
<td>74.55 ± 10.39</td>
<td>78.61 ± 9.64</td>
<td>0.07</td>
<td>76.63 ± 10.15</td>
</tr>
<tr>
<td>Creatinine (mmol/L)</td>
<td>71.44 ± 9.97</td>
<td>87.72 ± 9.91</td>
<td>< 0.01</td>
<td>79.79 ± 12.83</td>
</tr>
<tr>
<td>MDRD-eGFR (mL/min/1.73m²)</td>
<td>79.52 ± 13.66</td>
<td>83.72 ± 12.63</td>
<td>0.16</td>
<td>81.67 ± 13.23</td>
</tr>
<tr>
<td>Serum blood sugar (mmol/L)</td>
<td>5.36 ± 0.50</td>
<td>5.66 ± 0.43</td>
<td>< 0.01</td>
<td>5.51 ± 0.48</td>
</tr>
<tr>
<td>HbA1c (mmol/L)</td>
<td>33.05 ± 3.54</td>
<td>34.55 ± 4.56</td>
<td>0.10</td>
<td>33.82 ± 4.14</td>
</tr>
<tr>
<td>Fibrinogen (mmol/L)</td>
<td>9.20 ± 1.50</td>
<td>9.04 ± 1.37</td>
<td>0.63</td>
<td>9.12 ± 1.42</td>
</tr>
<tr>
<td>WBC (10⁹/L)</td>
<td>5.79 ± 1.56</td>
<td>6.22 ± 2.14</td>
<td>0.28</td>
<td>5.99 ± 1.88</td>
</tr>
<tr>
<td>Triglyceride (mmol/L)</td>
<td>0.84 ± 0.30</td>
<td>1.26 ± 0.85</td>
<td>< 0.01</td>
<td>1.06 ± 0.67</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.99 ± 0.86</td>
<td>4.86 ± 0.87</td>
<td>0.50</td>
<td>4.92 ± 0.86</td>
</tr>
<tr>
<td>LDL</td>
<td>2.98 ± 0.79</td>
<td>3.11 ± 0.79</td>
<td>0.50</td>
<td>3.05 ± 79</td>
</tr>
<tr>
<td>HDL</td>
<td>1.69 ± 0.46</td>
<td>1.20 ± 0.29</td>
<td>< 0.01</td>
<td>1.44 ± 0.45</td>
</tr>
</tbody>
</table>

PET/CT systems

<table>
<thead>
<tr>
<th>System</th>
<th>Female</th>
<th>Male</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE Discovery STE</td>
<td>23</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>GE Discovery RX</td>
<td>8</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>GE Discovery 690/710</td>
<td>7</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>GE Discover VCT</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Values are mean ± the standard deviation
MDRD-eGFR, glomerular filtration rate estimated by the Modification of Diet and Renal Disease formula
LDL, Low-Density Lipoprotein
HDL, High-Density Lipoprotein
BP, Blood Pressure
BMI, Body Mass Index