IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma

Published in:
Allergy: European Journal of Allergy and Clinical Immunology

DOI:
10.1111/all.13759

Publication date:
2019

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma

Short title: IL-4Rα blockade during allergen-specific immunotherapy

Dennis Russkamp1*, Antonio Aguilar-Pimentel2*, Francesca Alessandrini1, Valérie Gailus-Durner2, Helmut Fuchs2, Caspar Ohnmacht1, Adam Chaker1,3, Martin Hrabe de Angelis4,5, Markus Ollert6,7, Carsten B. Schmidt-Weber1 and Simon Blank1,§

1Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany; 2German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany; 3Department of Otolaryngology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; 4Chair of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, Freising, Germany; 5German Center for Diabetes Research (DZD), Neuherberg, Germany; 6Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; 7Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark

*These authors contributed equally to this work as first authors

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/all.13759

This article is protected by copyright. All rights reserved.
To whom correspondence should be addressed

Address correspondence to:

PD Dr. Simon Blank
Center of Allergy and Environment (ZAUM)
Technical University of Munich and Helmholtz Center Munich
Ingolstädter Landstraße 1, D-85764 Munich, Germany
Phone: +49-89-318-726-25
Fax: +49-89-318-725-40
Email: simon.blank@tum.de

Conflict of interest

AC has consultant arrangements via Technical University Munich with Allergopharma, ALK-Abello, HAL Allergy, Mundipharma, and Lofarma; has conducted clinical studies and received research grants via Technical University Munich from Allergopharma, Novartis, the German Federal Environmental Agency, Bencard/Allergy Therapeutics, ASIT Biotech, GlaxoSmithKline, Roche and Zeller AG; has received payment via Technical University Munich for lectures from Allergopharma, ALK-Abello, and GlaxoSmithKline, outside the submitted work. MO reports personal fees and/or non-financial support from Thermo Fisher Scientific and Siemens Healthcare, consultancy fees as scientific advisor on the advisory board of Bencard Allergie GmbH and of Hycor Diagnostics, outside the submitted work. CS-W reports grants and personal fees from Bencard, grants from Leti Pharma, grants and personal fees from Allergopharma, grants and personal fees from PLS-Design, outside the submitted work. In addition, CS-W has a patent on diagnostic success prediction in AIT, which is pending. SB reports non-financial support from ALK-Abelló, grants, personal fees and non-financial support from Technical University Munich for lectures from Allergopharma, Novartis, the German Federal Environmental Agency, Bencard/Allergy Therapeutics, ASIT Biotech, GlaxoSmithKline, Roche and Zeller AG; has received payment via Technical University Munich for lectures from Allergopharma, ALK-Abello, and GlaxoSmithKline, outside the submitted work.

This article is protected by copyright. All rights reserved.
support from Bencard Allergie GmbH, personal fees from Teomed AG, personal fees from Thermo Fisher Scientific, grants from Allergy Therapeutics, outside the submitted work. The other authors have nothing to disclose.

Abstract

Background: Allergen-specific immunotherapy (AIT) is the only causal treatment for allergy. However, success rates vary depending on the type of allergy and disease background of the patient. Hence, strategies targeting an increased therapeutic efficacy are urgently needed. Here, the effects of blockade of IL-4 and IL-13 signaling on different phases of AIT were addressed.

Methods: The impact of the recombinantly produced IL-4 and IL-13 antagonist IL-4 Mutein (IL-4M) on allergic sensitization and AIT outcome in experimental allergic asthma were analyzed in a murine model. The effects of IL-4M administration were assessed prior/during sensitization, immediately after AIT under allergen challenge, and two weeks post treatment.

Results: Intervention with IL-4M prior/during sensitization led to strong induction of IgG1, IgG2a, IgG2b and IgG3, decrease of specific and total IgE as well as of IL-5 in serum. Similar effects on the serum immunoglobulin levels were observed immediately after IL4M-supplemented AIT during allergen challenge. Additionally, IL4M markedly suppressed type-2 cytokine secretion of splenocytes beyond the effect of AIT alone. These effects were equaled to those of AIT alone two weeks post treatment. Intriguingly, here, IL-4M induced a sustained decrease of Th2-biased Tregs (ST2⁺FOX3⁺GATA3Intermediate).

Conclusions: IL-4 and IL-13 blockade during experimental AIT demonstrates beneficial effects on immunological key parameters such as immunoglobulin and cytokine secretion immediately after AIT. Although two weeks later these effects were dropped to those of AIT alone, the number of potentially disease-triggering Th2-biased Tregs was further significantly decreased by IL-4M.
treatment. Hence, IL-4/IL13-targeting therapies prime the immune memory in therapy success-favoring manner.

Key words

Allergic asthma, allergen-specific immunotherapy, cytokine antagonist, IL-4-receptor-α, Th2-like regulatory T cells

Abbreviations

AIT; allergen-specific Immunotherapy

Alum; aluminum hydroxide magnesium hydroxide formulation

BAL; bronchoalveolar lavage

CHO; Chinese hamster ovary

FoxP3; forkhead box P 3

GATA3; GATA binding protein 3

HE; hematoxylin and eosin stain

IL-4M; IL-4 Mutein, interleukin-4/interleukin-13 antagonist

i.n.; intranasal

i.p.; intraperitoneal

OVA; ovalbumin

PAS; periodic acid-Schiff stain

This article is protected by copyright. All rights reserved.
s.c; subcutaneous

SD: standard deviation

sIgE; specific IgE

sIgG; specific IgG

ST2; interleukin-33 receptor

tIgE; total IgE

tIgG; total IgG

Author contributions

DR performed the experiments, analyzed the data, and wrote the manuscript. AA-P performed the experiments and analyzed the data. FA performed the experiments and analyzed the histological data. VG-D planed experiments and discussed the data. HF coordinated mouse experiments and discussed the data. CO contributed to in vitro experiments and interpretation of data. AC contributed to the interpretation of data and revised the final version of the manuscript. MHdA contributed to the interpretation of data and revised the final version of the manuscript. MO contributed to the interpretation of data and revised the final version of the manuscript. CS-W initiated and supervised the study, contributed to the interpretation of data, and wrote the manuscript. SB initiated and supervised the study, analyzed the data, designed the figures, and wrote the manuscript.

This article is protected by copyright. All rights reserved.
Funding

Supported by the Helmholtz-Gemeinschaft, Zukunftsthema "Immunology and Inflammation" (ZT-0027) to CS-W and SB and by the German Federal Ministry of Education and Research (Infrafrontier grant 01KX1012) to MHdA.

Introduction

Depending on the type of allergy and the physical condition of the patient, efficiency of allergen-specific immunotherapy (AIT) varies strongly (1, 2). Hence, there is a need for novel advanced strategies for the improvement of therapeutic efficacy of AIT in several disease conditions. In this context, different studies of frontier research focused on the evaluation of immunomodulatory molecules as adjuvant substances during AIT. Toll-like receptor agonists (3), vitamin D (4) and JAK-inhibitors (5) are only a few exemplary substances whose effect on AIT has been examined recently. The wide variety of action of these candidate-substances illustrates that the exact mechanisms of a successful AIT have not been fully understood yet. Although suppression of allergen-specific Th2 cells (6), regulation of IgE and IgG4 (7), and induction of allergen-specific regulatory T (Treg) (8) and B (Breg) cells (9) are alterations that can be observed under AIT, none of these parameters represents a definite biomarker for positive therapeutic outcome.

Numerous hallmarks of allergic pathogenesis such as sensitization (10), several allergic symptoms (11) and the IgE switch in B cells (12) seem to be associated with IL-4/IL-13 receptor signaling. Interestingly, this receptor complex appears to play an important role for the prevention of tolerance induction. More recently, it could be observed that IL-4/IL-13 signaling has several effects on Treg populations. Our previous work showed that IL-4 signaling suppresses FoxP3 expression and that injection of IL-4 reduces the number of induced Tregs in vivo (13). Furthermore, it was demonstrated that IL-4 signaling is able to promote the differentiation of so-called “Ex-FoxP3

This article is protected by copyright. All rights reserved.
Th2 cells” during helminthic infections and that these cells are characterized by Th2 cytokine production (14).

The relevance of IL-4/IL-13 signaling for both, Th2-mediated inflammation as well as the suppression of Treg induction and stability, make it an extraordinary interesting target for the treatment of allergic disorders. In recent years, numerous IL-4/IL-13-blocking treatments have been studied (15-18) and are now applied for the treatment of atopic dermatitis (19) and asthma (20).

In the current study the effects of IL-4-receptor-α blockade on allergy onset as well as on different AIT treatment phases were investigated. Instead of targeting IL-4/IL-13 signaling using an IL-4-receptor-α specific antibody, which is characterized by a long-lasting serum half-life (21), a mutant variant of IL-4 (IL-4M) that was developed by Grunewald et al. (22) and reached a phase 2 study as inhaled asthma medication (23) was used. It binds to the IL-4-receptor-α chain and prevents binding and signaling of IL-4 and IL-13. The shorter half-life of IL-4M is an ideal characteristic of this molecule for the simultaneous administration during AIT, since a sustained cytokine inhibition during the extended phase of AIT might be accompanied by unwanted side-effects. Therefore, the presence of the biological AIT adjuvant in the organism is desired to be limited to the presence of the allergen priming phase.

For this study, IL-4M was recombinantly produced for the first time in a mammalian expression system. Its antagonizing abilities were tested in cellular assays and in vivo. In order to assess the importance of IL-4/IL-13 signaling for AIT outcome, the effects of IL-4M administration on experimental AIT of murine allergic asthma with increased systemic levels of IL-4, IL-13 and IgE that closely resembles the situation in allergic patients (24-26) were analyzed.

The understanding of the sequence of immunological events might be a prerequisite for the development of novel therapeutic strategies. Hence, in addition to the typical disease-associated parameters, a special focus of this study was the effect of IL-4/IL-13 receptor inhibition on lung-
resident populations of Th2 and Treg cells at different time points of therapy, some of which are hypothesized to represent an intermediate cell population on the edge between allergen reactivity and tolerance loss (27).

Methods

Animals

Female C57BL/6 and BALB/c mice between 5-7 weeks of age were purchased from Charles River (Sulzfeld, Germany). Reporter mice for Foxp3 (Foxp3tm1Flv) (28) and IL-4 transcript (IL4tm1Lky) (29) were maintained on a C57BL/6 background and used for in vitro experiments. All experiments were carried out under federal guidelines for the use and care of laboratory animals and approved by the government of the district of upper Bavaria (Reference numbers of ethical approvals for all performed animal experiments are 55.2-1-54-2532-50-2017 and 55.2-1-54-2532-104-13).

Murine model of allergic sensitization

For allergic sensitization, mice were intraperitoneally (i.p.) injected with 10 µg Ovalbumin (OVA) (Grade V, Sigma-Aldrich, Taufkirchen, Germany) complexed with 2 mg aluminum hydroxide (alum) (Imject Alum, Thermo Fisher Scientific, Waltham, MA, USA) in 200 µL PBS. Mice in the negative control group (non-sensitized) were i.p.-injected with alum in PBS. Mice in the test group (sensitized + IL-4M) were treated with i.p. injections of 100 µg IL-4M in 100 µL PBS 2 h before and 2 h after the sensitization. 100 µg IL-4M were further administered i.p. on days 2, 4, 6 and 8. Mice from all groups were euthanized on day 10. Shown are the results of one experiment.
Murine model of AIT during allergen exposure

Non-allergic mice were treated on days 1, 7 and 21 with PBS-alum (i.p.). Subsequently, they received subcutaneous (s.c.) 200 µL injections of PBS on days 35, 38 and 41. Allergic mice were sensitized on days 1, 7 and 21 with OVA-alum (i.p.). Subsequently, they received 200 µL of PBS on days 35, 38 and 41 (s.c.). Allergic-AIT mice were sensitized on days 1, 7 and 21 with OVA-alum (i.p.). Subsequently, they received 500 µg OVA in 200 µL PBS on days 35, 38 and 41 (s.c.). In addition to this treatment, Allergic-AIT + IL-4M mice received daily i.p. injections of 100 µg IL-4M in 100 µL PBS on days 34-42. On days 34, 37 and 40 mice of all groups were challenged for 15 min in a challenge chamber with 1% nebulized OVA. Half of the mice were euthanized on day 43. The other half was kept until a second challenge block with 1% nebulized OVA was performed (days 56, 59 and 62). These mice were euthanized on day 63. Shown are the results of one experiment.

Recombinant production of IL-4M

Cloning, recombinant production of IL-4M in dehydrofolate reductase (DHFR)-deficient Chinese hamster ovary cells (CHO) and purification by affinity- and size exclusion chromatography are described in detail in the Data S1.

Cellular in vitro assays

A detailed description of Th2 and Treg polarization assays using naïve T cells from IL-4-GFP and FoxP3-RFP reporter mice, respectively, and OVA-specific restimulation of splenocytes can be found in the Data S1.
Isolation of BAL cells and lung-resident lymphocytes

Detailed protocols for the isolation of BAL cells and lymphocytes from the lung are given in the Data S1.

Other methods

SDS-PAGE, Western blotting, immunoglobulin- and cytokine-ELISAs, FACS, CTLL2 assay, allergen-specific restimulation of splenocytes, histology and the HDM-mouse model are described in the Data S1.

Statistical analyses

Gaussian distribution was tested by D’Agostino & Pearson omnibus normality test. Gaussian and non-Gaussian distributed results were further analyzed by unpaired t test or Mann Whitney test, respectively (GraphPad Prism, San Diego, CA, USA). P-values of >0.05, ≤0.05, ≤0.01, ≤0.001 and ≤0.0001 are shown as ns, *, **, *** and ****, respectively.

Results

CHO-derived IL-4M alters Th2 and Treg differentiation in vitro

The amino acid sequence of IL-4M (22) differs from native IL-4 in only two positions (Q116D, Y119D) (Fig. S1A). In this study, for the first time a mammalian expression system (CHO cells) was chosen for recombinant production of IL-4M with high yields (8mg/L) (Fig. S1B). An IL-4 ELISA kit (OptEIA, BD Biosciences, San Jose, CA, USA) could be utilized for the quantification of correctly folded IL-4M out of the total recombinant IL-4M. Unsurprisingly, the fraction of functionally folded
IL-4M was many times higher in CHO cells compared to *E. coli*-derived IL-4M that was used in former studies (Fig. S1C).

In order to quantify the inhibitory capacity of CHO-derived IL-4M, a viability assay using IL-4-dependent CTLL2 cells was performed. IL-4 alone provided the cells with a survival signal; concurrent IL-4M presence resulted in a decreased viability. A 30-fold excess of IL-4M to IL-4 induced half-maximal decrease of viability (Fig. 1A).

In a Th2 differentiation assay, naïve T cells from IL-4 reporter mice were polarized to IL-4-expressing Th2 cells by the presence of IL-4. Simultaneous administration of IL-4M abolished Th2 differentiation (Fig. 1B).

Additionally, naïve T cells from FoxP3 reporter mice can be skewed to a regulatory phenotype, characterized by FoxP3 expression, by the presence of IL-2 and TGF-β. IL-4 suppressed FoxP3 expression under these conditions while simultaneous administration of IL-4M rescued FoxP3 expression (Fig. 1C).

IL-4M prevents allergic sensitization

Sensitization of mice (Fig. 2A) with OVA-alum resulted in increased levels of OVA-specific IgE (sIgE), total IgE (tIgE) and total IgG1 (tIgG1) when compared to PBS-alum-treated mice (non-sensitized) (Fig. 2B). IL-4M treatment prior/during sensitization (sensitized + IL-4M) suppressed induction of sIgE and tIgE. Residual IgE is very low and may originate from incomplete suppression of IL-4 or from IL-4-independent mechanisms of IgE switching (30). In contrast, tIgG1 was even further increased in IL-4M-treated mice. IgG2a, IgG2b and IgG3 were not altered by sensitization. However, mice that received IL-4M displayed significantly increased levels of all three isotypes (Fig. 2B).
Sensitization induced several changes on serum cytokine levels (Fig. 2C). It led to an increased abundance of IL-5 while IL-4M treatment prevented this effect. Sensitization itself did not increase the level of IL-4. However, large amounts of IL-4M were detected in the serum of IL-4M-treated mice. Whereas concentrations of IL-10 and IFNγ were not significantly affected by sensitization or IL-4M treatment, the levels of IL-1β and IL-6 showed a minor but significant decrease after sensitization. IL-4M treatment reversed both effects.

Acute effects of IL-4M administration on AIT

The effect of IL-4/IL-13 signal blockade on AIT was assessed in murine allergic asthma (Fig. 3A). Mice were sensitized with OVA-alum before OVA-specific AIT. Moreover, mice were repeatedly exposed to nebulized OVA during the phase of AIT, a setting that, in contrast to classical models (31), induces elevated levels of IL-4, IL-13 and sIgE (Fig. S2).

Here, directly after AIT, total BAL cells (Fig. 3B) and differential BAL counts (Fig. S3A) were not yet significantly affected by AIT or AIT combined with IL-4M treatment. Histological analyses confirmed these results. Lungs of all groups displayed no differences regarding inflammatory infiltration and mucus production (Fig. 3C, D).

While AIT alone significantly increased the level of IL-17A in the BAL fluid, the combined therapy abolished this effect completely. Both therapeutic strategies had no further effects on IL-5 and IL-13 levels in the BAL despite the presence of high amounts of IL-4M (Fig. S3B).

Total IgE was significantly increased in mice that were sensitized and challenged (allergic) compared to non-sensitized but challenged mice (non-allergic) (Fig. 3E). This acute IgE production stabilizes at lower concentrations in later observation windows (Fig. 4E). Whereas the level of tIgE was even further increased in mice that received AIT (allergic-AIT), the combination of AIT with IL-4M suppressed this effect. The concentration of sIgE that was reduced by AIT alone could be further
decreased by the combination of AIT with IL-4M (Fig. 3E). Interestingly, IgG2b levels that were equally increased in allergic and AIT-treated mice were significantly higher in the allergic-AIT + IL-4M group (Fig. 3E). IgG2a levels were not similarly affected (Fig. S4A).

Allergen-specific restimulation of isolated splenocytes showed that AIT alone had no significant effects on the level of secreted cytokines. In contrast, AIT in the presence of IL-4M resulted in decreased levels of IL-4, IL-5, IL-13 and IL-10 (Fig. 3F).

Long-lasting effects of IL-4M administration on AIT

In order to analyze the long-lasting effects of IL-4/IL-13 signal blockade on AIT outcome, mice were treated as described above but kept for another two weeks before an additional allergen challenge was performed (Fig. 4A).

At this time point, total BAL cells (Fig. 4B) and BAL cell subsets (Fig. S5A) were already significantly decreased in mice that received AIT alone and the combination of AIT with IL-4M treatment showed an equal improvement. IL-4M alone induced a slight reduction of BAL cell numbers. These results were confirmed by histological analyses. Allergic mice exhibited the characteristic inflammatory infiltrate and goblet cell hyperplasia. The lungs of mice that received either IL-4M, AIT alone or the combination of AIT and IL-4M were characterized by a diminished perivascular and peribronchiolar inflammatory infiltrate and, by trend, mucus hypersecretion compared to allergic mice (Fig. 4C, D). The levels of BAL cytokines exhibited no major differences between mice that received AIT alone or in combination with IL-4M (Fig. S5B).

Immunoglobulin titers showed only minor differences in this phase of therapy (Fig. 4E, Fig. S4B). Solely IgG1 was increased in mice that had received AIT in presence or absence of IL-4M when compared to allergic mice.
Allergen-specific restimulation of splenocytes resulted in slightly increased levels of IL-4, IL-5, IL-13 and IL-10 production in allergic mice. Splenocytes from mice that were treated with AIT alone or in presence of IL-4M displayed a cytokine secretion pattern similar to non-sensitized mice (Fig. 4F).

IL-4M administration during AIT alters lung-resident lymphocyte populations

Immediately after AIT in presence or absence of IL4M, the levels of GATA3$^+$ST2$^+$FoxP3$^-$ Th2 cells were not decreased when compared to allergic mice (Fig. 5A). Two weeks and an additional challenge phase later, already AIT-treated mice displayed a significant decrease of these Th2 cells. This effect was not further enhanced by the addition of IL-4M (Fig. 5B).

The level of FoxP3$^+$ cells amongst the CD4$^+$ subset was slightly decreased immediately after AIT alone. A further significant reduction could be observed in the group that received AIT and IL-4M (Fig. 5A). Two weeks later, this alteration was exclusively sustained in mice that had received the combination of AIT and IL-4M (Fig. 5B).

Allergic mice showed higher numbers of FoxP3$^+$ST2$^+$ among CD4$^+$ cells than non-allergic animals. AIT alone was able to reduce the level of these cells at both analyzed time points. AIT in the presence of IL-4M treatment resulted in an even stronger decrease of this cell population (Fig. 5A, B). For the analysis of these cells, CD3$^+$CD4$^+$ cells were gated for ST2 expression (Fig. 5C left). Subsequently, the fraction of FoxP3$^+$GATA3$^\text{Intermediate}$ cells was analyzed and demonstrated to be highly decreased in mice treated with the combination of AIT and IL-4M compared to allergic mice (Fig. 5C middle and right).

This article is protected by copyright. All rights reserved.
To further characterize this cell population, lymphocytes from house dust mite (HDM)-allergic mice (Fig. 5D) were isolated from the lung, treated with PMA/ionomycin and brefeldin A and analyzed by FACS. Here, the fraction of ST2⁺ FoxP3⁺GATA3_{intermediate} cells showed a higher secretion of IL-5 than ST2⁺ FoxP3⁺GATA3_{intermediate} cells (Fig. 5E).

Discussion

The current study demonstrates that IL-4 and IL-13 signaling play an important role in the balance of T cell differentiation and immunoglobulin isotype levels in the context of AIT. To elucidate the effects of IL-4 and IL-13 blockade on allergic sensitization and different phases of AIT, the IL-4 receptor-α (IL-4Rα) antagonist IL-4 Mutein (IL-4M) was used (22). In this study, IL-4M was recombinantly produced in mammalian cells for the first time and, therefore, exhibits a significantly higher activity than *E. coli*-derived IL-4M (32). This study underlines the suitability of non-antibody-based cytokine-blocking approaches in atopic diseases. The short half-life of IL-4M (33) makes it an ideal candidate for temporary limited suppression of IL-4 and IL-13 signaling which would be difficult to achieve with IL-4Rα-specific antibodies which are much slower cleared from the system (34).

A special focus of the study lay on the impact of combining systemic IL-4M administration with AIT on local Treg (13) and Th2 (22) cell populations in vivo as previous in vitro experiments revealed a critical role of IL-4R signaling for both cell types. By employing IL-4M in in vitro polarization assays, its capacity to prevent the development of Th2 cells and to rescue the development of Tregs could be confirmed. Similar effects on T cell populations have been observed in patients undergoing regular AIT (6, 35).
Administration of IL-4M prior/during allergic sensitization induced several serological changes that are, according to recent studies, also seen after successful AIT. Besides the suppression of IgE (12), enhanced induction of the blocking antibodies IgG2a and IgG2b could be detected. Similar observations could be made in a study using IL-4-deficient mice (36). The observed IgG2b-inducing effect of IL-4M is in concordance with a study that observed an inhibitory effect of IL-4 on TGF-β-induced IgG2b secretion (37). Moreover, IL-4M reversed the OVA-alum-induced changes on cytokine level back to the levels of healthy mice. It can be hypothesized that the restored cytokine status is beneficial for immunological tolerance.

Via repeated allergen exposure during the phase of AIT, this study aimed at adjusting the model of experimental AIT to the situation that patients are exposed to during the allergen season. Indeed, this approach resulted in an increase of IL-4, IL-13 and IgE as observed in patients suffering from allergic asthma (24-26). Additionally, the IL-4M dosage was adjusted to the short serum half-life in vivo (38).

Immediately after AIT and simultaneous exposure to allergen, IL-4M induced similar changes of the IgE and IgG2b level that were also visible after IL-4M administration during the sensitization phase. While tIgE is generally not affected by AIT in man, the AIT-mediated induction of sIgE was also observed in grass-specific AIT in humans (27). IL-4M administration prevented this IgE-inducing effect: sIgE and tIgE were significantly decreased in mice treated with AIT and IL-4M. However, the diminished levels of IgE in combination with increased abundance of IgG2b did not result in attenuated lung inflammation at this phase, what is likely to be related to the limited role of IgE for inflammation in the lung tissue of mice (39).

Two weeks after AIT, the IL-4M-mediated effects on immunoglobulin levels were not detectable. Here, the immunoglobulin levels of all groups did not display major differences. Still, the IgG1 titer was significantly increased by AIT in presence or absence of IL-4M.
AIT alone or in presence of IL-4M resulted in an immediate and sustained decrease of IL-13 levels in the BAL. Interestingly, co-administration of IL-4M prevented the increase of IL-17A in the BAL that was induced by AIT alone. A recent study observed that AIT is followed by increased numbers of IL-17A-producing T cells in nasal scrapings of allergic rhinitis patients (27). The fact that IL-4M prevented this AIT-mediated effect illustrates that IL-4/IL-13 blockade does not only affect type-2 immune responses but also alters other types of inflammation.

Following these lines, AIT in presence of IL-4M exhibited numerous remarkable effects on T cell populations and thus on allergen memory. Allergen-specific restimulation of splenocytes isolated from IL-4M-treated mice immediately after AIT exhibited a reduced production of Th2 cytokines when compared to splenocytes from mice that had received AIT alone. This reduction in Th2 cytokine production is most likely caused by the suppressive effect of IL-4M on type-2 differentiation. This effect was not present two weeks later as all treatment groups returned to the cytokine levels observed in non-allergic mice. Unfortunately, the effect of IL-4M treatment on the IL-4 level cannot be assessed as it is not possible to discriminate between IL-4 and IL-4M in an in vivo setting.

Other IL-4M-induced changes on the T cell level turned out to be sustained. One of these long-lasting effects is the decrease of FoxP3+ T cells at the site of inflammation. This observation is likely to be a result of the migratory behavior of the cells and, therefore, reflects the inflammatory process rather than the process of tolerance induction. Increased numbers of Tregs were also observed in asthmatic patients in a phase of active inflammation (40) indicating that rather the quality than the quantity of Tregs is decisive for the anti-inflammatory capacity of Tregs.

Whereas AIT in presence and absence of IL-4M did not result in an immediate decrease of Th2 cells, both treatments induced a similar reduction two weeks later. The fact that IL-4M did not affect the level of Th2 cells implies that IL-4R signaling is rather important for the differentiation of Th2 and has only minor effects on already differentiated Th2 cells (41, 42).

This article is protected by copyright. All rights reserved.
Enhanced type-2 disease susceptibility can be caused by intensified IL-4R signaling activity which poises Tregs to a Th2-like phenotype that causes impaired tolerance induction and contributes to disease pathogenesis such as food allergy (43). Therefore, plastic Treg subpopulations are thought to be involved in the balance between tolerance and immunity. We demonstrate that IL-4M treatment prevents the type-2 skewing of a plastic lung-resident Treg cell population that is characterized by the co-expression of FoxP3 and GATA3 as well as the IL-33 receptor ST2. This population is abundant in lungs of allergic, untreated mice. AIT in combination with IL-4M treatment prevented the expansion of this population even two weeks after treatment when immunoglobulin levels already returned to baseline. These lung-resident type-2-poised Tregs were described to represent hyperactivated Tregs that are homing to non-lymphoid tissues, efficiently suppress T cell responses, independently of IL-10 and TGF-β, but which can respond to IL-33 with IL-5 and IL-13 secretion (44, 45). It appears that they can escape their role as suppressive cells in response to epithelial-derived IL-33. The existence of these cells in man remains unclear, however, it was demonstrated that house dust mite allergens in vitro induce GATA3’FoxP3’ T cells that contribute to the polarization of the Th2-associated response (46). Future experiments need to clarify the role of these cells in AIT and their suppressive capacity.

In addition to the Treg-stabilizing effect caused by IL-4M as co-administered adjuvant during AIT, also the IL-4M treatment alone reduced the immune cell infiltration into the lung as well as the IL-4 level in the BAL in a long-lasting manner, possibly due to a decreased type-2 differentiation of T cells.

In conclusion, inhibition of IL-4/IL-13 receptor signaling during experimental AIT of allergic asthma mediated acute changes on immunoglobulin levels and cytokine production exceeding the impact of AIT alone. Moreover, the observed long-lasting changes on a recently identified plastic or transitory type-2-poised Treg population indicate that IL-4Rα blockade during AIT could be of value in the human allergic situation.

This article is protected by copyright. All rights reserved.
Acknowledgements

We gratefully acknowledge the technical assistance of Julia Wittmann, Stefanie Etzold, Benjamin Schnautz, Barbara Berens and Johanna Grosch.

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Figure legends

Figure 1. *In vitro* characterization of IL-4M. A, Viability of CTLL2 cells in dependence of the IL-4M to IL-4 ratio. FI, fluorescence intensity. B, Effect of IL-4M on the polarization of naïve T cells from IL-4-reporter mice to IL-4-producing Th2 cells. Presented is one representative experiment performed in duplicates. C, Effect of IL-4 and IL-4M on the polarization of naïve T cells from FoxP3-reporter mice to FoxP3-expressing regulatory T cells. Presented is one representative experiment performed in duplicates. Shown is the mean with SD.

Figure 2. IL-4M prevents allergic sensitization. A, Schematic overview of the *in vivo* treatment scheme (n = 14 in the non-sensitized and sensitized + IL-4M group and n = 13 in the sensitized group). B, Measurement of immunoglobulins in serum samples of mice at the endpoint of the experiment. C, Concentration of cytokines in serum samples of mice at the endpoint of the experiment. Here the ELISA for the detection of IL-4 also measures the level of IL-4M. Bars indicate the mean. Gaussian and non-Gaussian distributed results were analyzed by unpaired t test or Mann Whitney test, respectively.

Figure 3. Acute effects of IL-4M administration on AIT. A, Schematic overview of the *in vivo* treatment scheme. B, Counts of total BAL cells. C, Lung histology 2 days after the last AIT and 24 h after the last IL-4M treatment (periodic acid–Schiff staining). Arrows, inflammatory infiltrate; arrowheads, mucus hypersecretion; scale bar, 50 µm. Representative pictures are shown. D, Inflammatory cell infiltrate and mucus hypersecretion scores of the lung tissue after the last AIT and 24 h after the last IL-4M treatment. Shown is the mean with SD. E, Measurement of immunoglobulins in serum samples of mice at the endpoint of the experiment. F, Measurement of cytokine levels in culture supernatants of splenocytes after OVA-restimulation *in vitro*. Bars indicate
the mean. Gaussian and non-Gaussian distributed results were analyzed by unpaired t test or Mann Whitney test, respectively. Analyses of lung and serum immunoglobulins were performed for \(n = 12 \) in the non-allergic, allergic and allergic + IL-4M group, for \(n = 9 \) in the allergic-AIT group and \(n = 11 \) in the allergic-AIT + IL-4M group. Splenocyte restimulation assay was performed for \(n = 5 \) in the allergic and allergic-AIT+IL-4M group and \(n = 4 \) in the allergic-AIT group.

Figure 4. Long-lasting effects of IL-4M administration on AIT. A, Schematic overview of the *in vivo* treatment scheme (\(n = 9\)-12). B, Counts of total BAL cells. C, Lung histology 24 h after the last OVA aerosol challenge (periodic acid–Schiff staining). Arrows, inflammatory infiltrate; arrowheads, mucus hypersecretion; scale bar, 50 \(\mu \)m. Representative pictures are shown. D, Inflammatory cell infiltrate and mucus hypersecretion scores of the lung tissue 24 h after the last OVA aerosol challenge. Shown is the mean with SD. E, Measurement of immunoglobulins in serum samples at the endpoint of the experiment. F, Measurement of cytokine levels in culture supernatants of splenocytes of \(n = 4\)-5 mice after OVA-restimulation *in vitro*. Bars indicate the mean. Gaussian and non-Gaussian distributed results were analyzed by unpaired t test or Mann Whitney test, respectively. Analyses of lung and splenocytes were performed for \(n = 5 \) in the allergic and allergic-AIT+IL-4M group and \(n = 4 \) in the non-allergic and allergic-AIT group. Immunoglobulin levels in serum were measured for \(n = 4 \) in the non-allergic group, \(n = 10 \) in the allergic and allergic-AIT+IL4M group and \(n = 8 \) in the allergic-AIT group.

Figure 5. IL-4M administration during AIT alters lung-resident lymphocyte populations. A, Analysis of lung-resident lymphocyte populations immediately after AIT (\(n = 4\)-5). B, Analysis of lung-resident lymphocyte populations two weeks and an additional challenge block after AIT (\(n = 8\)-12). The complete gating strategy is shown in Fig. S6. C, Gating strategy for the identification of
FoxP3^+ST2^+GATA3intermediate cells and their abundance in the different treatment groups. D, Schematic overview of the \textit{in vivo} treatment scheme for the induction of house dust mite allergy (n = 9). i.n., intranasally. E, IL-5 production of FoxP3^+ST2^+ and FoxP3^+ST2^- T cells. MFI, mean fluorescence intensity.