Exciton blocking layers in organic photovoltaic devices

Patil, Bhushan Ramesh; Caliò, Laura; Ahmadpour, Mehrad; Liu, Yiming; Rubahn, Horst-Günter; Ahmad, S.; Madsen, Morten

Publication date:
2018

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
EXCITON BLOCKING LAYERS IN ORGANIC PHOTOVOLTAIC DEVICES

1. NPD as exciton blocking layer [1]
 - NPD is an internal organic semiconductor with a large HOMO-LUMO gap of 5.4 eV.
 - It is often used as hole-injection layer as well as the light-emitting layer in OLEDs.
 - High LUMO (2.5 eV) of NPD compared to LUMO of PPV (1.5 eV) helps blocking excitons from generating in PPV/NPD interface.

2. P3 as exciton blocking layer [2]
 - Prototype (P3) has LUMO at 3.5 eV and HOMO at 7.0 eV hence a good candidate as EBL in OPVs.
 - Upon silver Ag cathode evaporation on top of P3 layer, new P3-Ag complex is formed.
 - The P3-Ag complex facilitates efficient electron transport and outer charge in OPV devices.
 - However, in inverted OPV configuration, P3-Ag complex is absent — making the thickness of P3 layer crucial.
 - The optimum P3 layer thickness hence is different for standard (180 nm) and inverted OPVs (150 nm).

3. P3T-TTPA as exciton blocking layer [3]
 - A small molecule based on P3T-TTPA moieties, composed of three electron-acceptor (TTPA) cores with two electron-rich triphenylamine (TPA) cores, was synthesized in a yellow powder using a Suzuki cross-coupling reaction.
 - The presence of TPA moieties provide on anodized silver ITO with efficient light transport properties.
 - The P3T-TTPA core presents leads to a slightly extended absorption, energy matching with the HOMO of P3 layer in OPV.
 - High LUMO of 3.2 eV (LUMO of TTPA at 3.5 eV) allows P3T-TTPA to be used as EBL in PPV-based OPVs.
 - P3T-TTPA films were prepared using chlorobenzene to form an interfacial EBL between Ag and PPV layers.

Stability measurements of Inverted vs. Standard OPVs with P3 as exciton blocking / electron transport layer

- Current-Voltage characteristics of fresh and degraded OPVs.
- Properties of OPVs were monitored over 1,000 hours in environmental chamber.
- The test conditions were as follows:
 - Humidity: 50% ± 5%.
 - Relative humidity: 50% ± 5%.
- The OPVs, after 1,000 hours, showed no significant degradation.

Physical properties of OPVs

- Bandgap: 1.5 eV.
- HOMO level: 5.0 eV.
- LUMO level: 2.5 eV.
- Phenomenon: phenol.

Conclusion

- Exciton blocking layers (EBLs) reflect off-tracks excitons both in the active layer and thus prevent exciton recombination and quenching.
- Reflective excitons improve charge separation yields at the P3-Ag complex interface in OPVs.
- Exciton blocking efficiency of EBLs are primarily due to their high-lying LUMO and/or lowlying HOMO compared to LUMO of donor and HOMO of acceptor, respectively.

[1] Forth et al., Small, 2010, 6, 2262