A smartphone application supporting patients with psoriasis improves adherence to topical treatment
a randomized controlled trial

Svendsen, M T; Andersen, F; Hammond Andersen, Kirsten; Pottegård, A; Johannessen, H; Möller, S; August, B; Feldman, S R; Andersen, Klaus Ejner

Published in:
British Journal of Dermatology

DOI:
10.1111/bjd.16667

Publication date:
2018

Document version
Final published version

Document license
CC BY-NC

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 24. Apr. 2021
A smartphone application supporting patients with psoriasis improves adherence to topical treatment: a randomized controlled trial*

M.T. Svendsen1,2,3,4 F. Andersen,1,5 K.H. Andersen,5 A. Pottegård,6,7 H. Johannessen,8 S. Möller,3,4 B. August,9 S.R. Feldman1,10 and K.E. Andersen1,2,5

1Department of Dermatology and Allergy Centre, 3Odense Patient data Explorative Network (OPEN) and 7Hospital Pharmacy, Odense University Hospital, Odense, Denmark
2Centre for Innovative Medical Technology (CIMT), Clinical Institute, 4Department of Clinical Research, 5Dermatological Investigations Scandinavia, 6Clinical Pharmacology and Pharmacy and 8Research Unit of User Perspectives, Department of Public Health, University of Southern Denmark, Odense, Denmark
9LEO Pharma, Ballerup, Denmark
10Department of Dermatology (Center for Dermatology Research), Wake Forest School of Medicine, Winston-Salem, NC, U.S.A.

Summary

Background Adherence to topical psoriasis treatments is low, which leads to unsatisfactory treatment results. Smartphone applications (apps) for patient support exist but their potential to improve adherence has not been systematically evaluated.

Objectives To evaluate whether a study-specific app improves adherence and reduces psoriasis symptoms compared with standard treatment.

Methods We conducted a randomized controlled trial (RCT, clinicaltrials.gov registration: NCT02858713). Patients received once-daily medication [calcipotriol/betamethasone dipropionate (Cal/BD) cutaneous foam] and were randomized to no app (n = 66) or app intervention (n = 68) groups. In total, 122 patients (91%) completed the 22-week follow-up. The primary outcome was adherence, which was defined as medication applied ≥ 80% of days during the treatment period and assessed by a chip integrated into the medication dispenser. Secondary outcomes were psoriasis severity measured by the Lattice System Physician’s Global Assessment (LS-PGA) and quality of life, measured using the Dermatology Life Quality Index (DLQI) at all visits.

Results Intention-to-treat analyses using regression was performed. More patients in the intervention group were adherent to Cal/BD cutaneous foam than those in the nonintervention group at week 4 (65% vs. 38%, P = 0.004). The intervention group showed a greater LS-PGA reduction than the nonintervention group at week 4 (mean 1.86 vs. 1.46, P = 0.047). A similar effect was seen at weeks 8 and 26, although it did not reach statistical significance.

Conclusions This RCT demonstrates that the app improved short-term adherence to Cal/BD cutaneous foam treatment and psoriasis severity.

What’s already known about this topic?

- Psoriasis affects 2–4% of the Western adult population, has detrimental socioeconomic effects and negatively affects quality of life.
- Topical corticosteroid/calcipotriol combinations are recommended first-line treatments for mild-to-moderate psoriasis, but poor adherence to topical treatments result in low efficacy.
- Several smartphone applications (apps) are available to patients with psoriasis, but the adherence-improving potential of this technology has not been evaluated in a randomized controlled setting.

DOI 10.1111/bjd.16667

© 2018 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Psoriasis is a chronic inflammatory disease affecting 2–4% of the Western population. Mild-to-moderate psoriasis can be treated with topical corticosteroid preparations, but adherence rates to these treatments are generally low and present a barrier for treatment success.

Previous studies including patients with psoriasis treated with topical corticosteroids in Western dermatology outpatient clinics have reported nonadherence rates from 8 to 88%. Patients tend to self-report higher adherence rates than those obtained by objective measurements, therefore it is recommended to measure adherence objectively by using either an electronic monitor (gold standard) or medication weight. Two studies have reported interventions improving adherence to topical corticosteroid treatment. One study tested the effects of weekly self-reporting of psoriasis status to a webpage for 1 year. That intervention improved adherence to topical fluorocinonide ointment in the intervention group relative to the control group. The other study did not use a control group and reported that 2 months of an individualized multifactorial patient-supporting intervention provided at dermatology clinics led to improved adherence rates relative to baseline. There is a new and growing field of eHealth interventions for adherence improvement; however, there is a little evidence for their effectiveness.

The aim of this study is to test whether the use of a study-specific smartphone application (app, Table 1) for 4 weeks improves short-term adherence to a recommended standard topical treatment regimen with calcipotriol/betamethasone dipropionate (Cal/BD) cutaneous foam (LEO Pharma, Ballerup, Denmark). As secondary outcomes, we also evaluated (i) short (week 4) and long-term (week 8 and 26) psoriasis severity [Lattice System Physician’s Global Assessment (LS-PGA)] and (ii) quality of life [Dermatology Life Quality Index (DLQI)].

Patients and methods

A 6-month investigator-initiated single-site, parallel-group, phase-IV superiority block randomized controlled trial (RCT) with an allocation ratio of 1:1 was conducted according to the principles expressed in the Declaration of Helsinki as revised in 1983, the International Conference on Harmonisation Good Clinical Practice Guideline E6 (R2), and Danish national laws (clinicaltrials.gov registration NCT02858713). The protocol was approved by the Regional Ethics Committees on Health Research Ethics for Southern Denmark and the Danish Medicines Agency (EudraCT 2016-002143-42). The study was conducted between 9 January 2017 and 29 August 2017 at an outpatient clinic for dermatology at Odense University Hospital. Written informed consent was obtained from all patients at inclusion and prior to randomization. Potential study patients were recruited at the dermatology outpatient clinic and by advertisement. We included legally competent patients between 18 and 75 years of age who owned a smartphone or had skills for the use of a smartphone provided by the investigator (if the study-specific app was not supported by the patient’s smartphone’s operating system), who were diagnosed with mild-to-moderate psoriasis, and who were candidates for topical treatment with Cal/BD cutaneous foam.

Individuals were excluded if they: (i) had a known sensitivity to topical Cal/BD, (ii) were unable to complete all study-related procedures, and (iii) received an acute treatment during the study period.
related visits, (iii) had inadequate internet access or skills for use of a smartphone with an English-language app, (iv) had extensive disease not amenable to topical treatment, (v) were reluctant to be treated with a foam product, (vi) were breastfeeding or pregnant women, or (vii) were fertile women who did not use reliable contraception.

Patients were block randomized in eight blocks based on sex and age and the investigator was masked to allocation sequence using a computer-generated sequence in a 1 : 1 ratio. Patients were not paid for participating in the study. They received study medication free of charge (estimated market value £33 after reimbursement from the National Health Service). The medication was prescribed for once-daily application in a 28-day treatment period, excluding body sites for which treatment with topical Cal/BD cutaneous foam is contraindicated (face, axillae and genitals).

Cal/BD cutaneous foam was delivered in canisters with foam dispensers containing an electronic monitor with a chip registering the day and time the patient used the dispenser. Patients were given Cal/BD cutaneous foam in the canister with attached dispenser at the initial study visit, the canister could be replaced whenever empty. Patients were told to bring their medication canisters and dispensers for destruction at the week 4 return visit, but were not told in advance about the use of the data obtained by the electronic monitor or that each medication canister was weighed before and after use [on a precision balance Mettler Toledo PR802 (Mettler Toledo Ltd, Leicester) weight with 0.01 g accuracy] until the final study visit (week 26). The appropriate quantity for each application on diseased skin was calculated by determining the involved area expressed as body surface area (BSA) and multiplying by 0.5 g foam per 1% BSA. This dosage was then multiplied by 28 for once-daily application during the 28-day treatment period. The intervention group additionally received a supporting app, which provided once-daily compulsory treatment reminders and information on number of treatment applications and amount of prescribed Cal/BD cutaneous foam applied. The information was obtained by the electronic monitor chip synchronized to the app via Bluetooth® (Table 1). A laboratory assistant provided guidance on how to install and synchronize the app to the electronic monitor. The patients were also entitled to telephone support provided by the laboratory assistant, who answered any questions regarding use of the supporting app and electronic monitor. The app design was informed by previous research published by members of this research team,10,18,22–24 and the tested prototypes were MyPso SmarTop™ Version 1.0 (the app, LEO Pharma, Ballerup, Denmark) (see Fig. S1 in the Supporting Information for a detailed description of the app) and SmarTop™ number 053776 (the electronic monitor, LEO Pharma) (Fig. 1). After 28 days, use of the app was terminated and no further adherence data were obtained. From week 4 to 26 all patients were provided with Cal/BD cutaneous foam to be used once daily when needed.

Fig 1. The smartphone application (app) and electronic monitor.

To make the visits similar to a normal visit, the investigator and laboratory assistant were not masked to the intervention and data. Data were reviewed by a nonmasked Good Clinical Practice-experienced person. All sociodemographic and clinical data10 were obtained by the investigator through interviews and medical chart reviews at baseline visits prior to randomization (Table S1; see Supporting Information).

Return visits were scheduled for weeks 4, 8 and 26. The primary outcome variables for adherence rates over 28 days were collected at week 4 by the chip in the electronic monitor measuring number of treatment applications, an electronic balance at the clinic and by patient self-reporting on a study-specific scale (four-point ordinal scale). The secondary variables were collected using the validated measurements for psoriasis severity (LS-PGA, eight-point ordinal scale25). The LS-PGA was chosen as a measurement of psoriasis severity, as it takes less time than, for example, the Psoriasis Area and Severity Index (PASI) score and, unlike the PASI, is consistent with the European Medicines Agency’s recommendations for psoriasis scoring in clinical trials.19

Data on the LS-PGA and DLQI (30-point ordinal scale21) were obtained at baseline and weeks 4, 8 and 26. Secondary long-term variables were obtained long term after termination of the intervention, as recommended by the Cochrane Group.26

Sample size calculation

The study was powered assuming that use of the app would increase treatment applications by at least 8% in the intervention group compared with the nonintervention group. Based on findings from Alinia et al.,15 the mean number of treatment sessions in the nonintervention group was assumed to be 63% of the recommended number of applications/28 days, the mean number of applications in the intervention group was assumed to be 71% of the recommended number of applications/28 days and the standard deviation in the nonintervention and intervention groups was assumed to be 15% of the recommended number of applications/28 days. We required a
power of 80%, a two-sided significance of 95%, 1 : 1 treatment allocation, and expected dropout of 12-5%. We applied a sample size calculation for an unpaired t-test as we modelled the mean adherence of each patient (numerically on a percentage scale, expected to be normally distributed due to the Central Limit Theorem). This calculation resulted in a planned sample size of 128 participants (Stata-script provided in File S1; see Supporting Information).

Statistical analyses

Normality assumptions were checked by quantile plots. No adjustments for baseline covariates were considered relevant in the main analyses. P-values < 0.05 were considered statistically significant, and we conducted all analyses using Stata 15 (StataCorp, College Station, TX, U.S.A.). Baseline characteristics for the two treatment groups are presented as counts and percentages.

Analyses of the primary outcome: adherence

For chip data, all registered applications within 1 h were regarded as a single treatment session. We set chip adherence as binary, defined as treated or nontreated each day, to avoid errors related to multiple treatments in 1 day. Data were analysed using an intention-to-treat approach.

For the main analysis of adherence we dichotomized adherence rates obtained by chip and medication weight with a selected cut-off of 80%, with adherence rates above 80% considered adherent (a cut-off typically used when studying adherence in other chronic diseases). We compared the dichotomized adherences by using logistic regression.

For the sensitivity analysis of adherence the adherence measures or their natural logarithm (if necessary to ensure normality of model residuals) were compared between treatment groups using linear regression. The analyses were carried out excluding missing data and after 100 multiple imputations by multivariate normal regression on the logarithms of the three adherence measures, without included covariates in addition to with an imputation including treatment, age, sex and smoking as covariates.

Analysis of secondary outcomes

Changes in LS-PGA and DLQI measurements from baseline to week 4 and from baseline to weeks 8 and 26 were compared between the two treatments by linear regression. LS-PGA and DLQI measurements including means are presented in box plots.

Results

In total, 134 patients with mild-to-moderate psoriasis and a mean age of 48 years (21–75 years) were enrolled (Table S1; see Supporting Information). The study participants were mostly men under 50 years of age, who were married, nonsmokers and employed full-time in a vocational or academic profession. The majority of patients had been diagnosed with psoriasis for more than 20 years and only a few had a history of using systemic antipsoriatic treatments (Table S1).

The included patients were randomized into nonintervention (n = 66) and intervention (n = 68) groups at the baseline visit. The two groups were comparable based on measured baseline covariates (Table S1). Smartphones were borrowed from the investigator for the intervention period for 21 of 68 (31%) of the patients in the intervention group. In total, 122 of 134 (91%) of all patients returned for the week 26 visit (Fig. 2), and the numbers of patients lost to follow-up were equally divided between the nonintervention and intervention groups. Missing data on primary outcome measurements obtained at week 4 were comparable for both groups (nonintervention vs. intervention group), whether they were chip-registered applications [6/66 (9%) vs. 8/68 (12%)], canister weight [1/66 (2%) vs. 4/68 (6%)] or patient-reported non-adherence rates [1/66 (2%) vs. 3/68 (4%)] (Fig. 2). Comparisons between missing data for the three adherence measurements in the two groups are provided in Tables S2–S4 (see Supporting Information) and considered missing at random. No serious adverse reactions were observed.

In the main analysis of chip adherence data (data were coded for adherent patient rates, defined as medication applied ≥ 80% of days in the treatment period), more patients in the intervention group were adherent than patients in the nonintervention group (65% vs. 38%, P = 0.004) (Table 2). The sensitivity analysis of chip adherence data revealed that patients in the intervention group were more adherent to number of treatment sessions compared with patients in the nonintervention group (82% vs. 69%, P = 0.001) (Table 2), similar results were obtained when allowing for multiple treatments sessions on the same day (data not shown), and imputing for missing data did not change the results (Table 2).

Adherence to amount of cutaneous foam in the main analysis showed that more patients in the intervention group were adherent compared with patients in the nonintervention group, although not reaching statistical significance (14% vs. 8%) (Table 2). Also, in the sensitivity analysis, adherence to amount of cutaneous foam used revealed that patients in the intervention group were more adherent than those in the nonintervention group (43% vs. 33%, P = 0.026) (Table 2); data imputed for missing values revealed similar results (Table 2).

Adherence rates reported by patients were higher than those objectively obtained by weight, but there was no significant difference between the nonintervention and intervention groups (59% vs. 67%), or when imputed for missing values (Table 2).

Impact of the intervention on severity of psoriasis and quality of life

Improved adherence was associated with a greater change in LS-PGA from baseline to week 4 between the intervention and
Patients recruited by advertisement

\(n = 144 \)

Not eligible for randomization \((n = 10) \)
1 did not meet inclusion criteria
9 declined to participate

Randomized

\(n = 134 \)

Allocated to non-intervention
(Cal/BD foam)
\(n = 66 \)

Lost to follow-up \((n = 1) \)
1 did not return with reason appointments took too much time

Missing data:
Adherence rates obtained by chip\(^a\) \((n = 6) \)
Adherence rates obtained by weight\(^b\) \((n = 1) \)
Adherence rates patient-reported \((n = 1) \)
LS-PGA \((n = 1) \); DLQI \((n = 1) \)

Returned for week 4 appointment \((n = 65) \)

Lost to follow-up \((n = 2) \)
1 excluded due to pregnancy
1 did not return with no given reason

Missing data: LS-PGA \((N = 3) \); DLQI \((n = 3) \)

Returned for week 8 appointment \((n = 63) \)

Lost to follow-up \((n = 2) \)
1 did not return with no given reason
1 did not return with reason on vacation

Missing data: LS-PGA \((n = 5) \); DLQI \((n = 5) \)

Returned for week 26 appointment
\((n = 61) \)

Allocated to intervention
(Cal/BD foam + app)
\(n = 68 \)

Lost to follow-up \((n = 3) \)
1 did not start treatment
1 excluded due to pregnancy
1 did not return with no given reason

Missing data:
Adherence rates obtained by chip\(^a\) \((n = 8) \)
Adherence rates obtained by weight\(^b\) \((n = 4) \)
Adherence rates patient-reported \((n = 3) \)
LS-PGA \((n = 3) \); DLQI \((n = 3) \)

Returned for week 4 appointment \((n = 65) \)

Lost to follow-up \((n = 1) \)
1 did not return with reason treatments took too much time

Missing data: LS-PGA \((n = 4) \); DLQI \((n = 4) \)

Returned for week 8 appointment \((n = 64) \)

Lost to follow-up \((n = 3) \)
2 did not return with no given reason
1 did not return with reason SAE (hospitalization)

Missing data: LS-PGA \((n = 7) \); DLQI \((n = 7) \)

Returned for week 26 appointment
\((n = 61) \)

Fig 2. Participant flowchart. \(^a\)Adherence rates obtained by chip, number of days with at least one treatment session were divided by number of days in the treatment period. \(^b\)Adherence rates obtained by weight, weight of returned canisters were divided by weight of estimated amount of use for the treatment period. Cal/BD, calcipotriol/betamethasone dipropionate cutaneous foam; app, smartphone application; SAE, serious adverse event; LS-PGA, Lattice System Physician’s Global Assessment; DLQI, Dermatology Life Quality Index.
Table 2. Primary outcomes: adherence rates and rate of adherent patients in a 28-day treatment period^a

<table>
<thead>
<tr>
<th>Patients, n</th>
<th>Rate of adherent patients, n (%)</th>
<th>OR (95% CI)</th>
<th>Coefficient (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonintervention</td>
<td>Intervention</td>
<td>Nonintervention</td>
<td>Intervention</td>
</tr>
<tr>
<td>Main analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate of adherent patients, based on dichotomized adherence rates (without imputation)</td>
<td>61</td>
<td>59</td>
<td>23 (38) 26–51</td>
<td>39 (65) 53–77</td>
</tr>
<tr>
<td>Adherent to treatment sessions<sup>b</sup></td>
<td>65</td>
<td>64</td>
<td>5 (8) 1–14</td>
<td>9 (14) 5–23</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adherence rates for patients, numerical outcomes (without imputation)</td>
<td>61</td>
<td>59</td>
<td>0.686 (0.629–0.742)</td>
<td>0.822 (0.764–0.879)</td>
</tr>
<tr>
<td>Adherence rates obtained by chip<sup>d</sup></td>
<td>65</td>
<td>64</td>
<td>0.325 (0.265–0.385)</td>
<td>0.427 (0.353–0.501)</td>
</tr>
<tr>
<td>Adherence rates obtained by weight<sup>e</sup> (log)<sup>f</sup></td>
<td>65</td>
<td>65</td>
<td>0.591 (0.530–0.652)</td>
<td>0.665 (0.613–0.716)</td>
</tr>
<tr>
<td>Adherence rates reported by patients<sup>g</sup></td>
<td>66</td>
<td>68</td>
<td>0.691 (0.625–0.757)</td>
<td>0.824 (0.749–0.898)</td>
</tr>
<tr>
<td>Adherence rates obtained by chip<sup>d</sup></td>
<td>66</td>
<td>68</td>
<td>0.327 (0.264–0.391)</td>
<td>0.429 (0.350–0.508)</td>
</tr>
<tr>
<td>Adherence rates obtained by weight<sup>e</sup> (log)<sup>f</sup></td>
<td>66</td>
<td>68</td>
<td>0.592 (0.530–0.655)</td>
<td>0.666 (0.608–0.723)</td>
</tr>
<tr>
<td>Adherence rates reported by patients<sup>g</sup></td>
<td>66</td>
<td>68</td>
<td>0.684 (0.620–0.749)</td>
<td>0.833 (0.753–0.913)</td>
</tr>
<tr>
<td>Adherence rates obtained by chip<sup>d</sup></td>
<td>66</td>
<td>68</td>
<td>0.324 (0.264–0.385)</td>
<td>0.426 (0.348–0.505)</td>
</tr>
<tr>
<td>Adherence rates reported by patients<sup>g</sup></td>
<td>66</td>
<td>68</td>
<td>0.590 (0.528–0.652)</td>
<td>0.667 (0.609–0.725)</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval. ^aNonintervention and intervention groups measurements were compared by regression analyses. ^bPatients adherent to number of treatment sessions, defined as having applied foam treatment ≥ 80% of days in the treatment period. ^cPatients adherent to prescribed amount of foam, defined as having used ≥ 80% weight of estimated amount of foam for the treatment period. ^dAdherence rates obtained by chip, number of days with at least one treatment session were divided by number of days in the treatment period. ^eAdherence rates obtained by weight, weight of returned canisters were divided by weight of estimated amount of use for the treatment period. ^fMean of the original (nonlogarithmized) observations presented in the table. ^gAdherence rates were reported by patients on a study-specific ordinal scale from 0 to 4, from 0 (did not use treatment) to 4 (used all prescribed medication). ^hMultiple imputations by multivariate normal regression on the logarithms of the three adherence measures with an imputation including treatment, age, sex and smoking as covariates. ⁱStatistically significant results (significant results are in addition highlighted in bold).
nonintervention groups (mean 1.86 vs. 1.46, P = 0.047) (Table 3). A similar trend was seen at weeks 8 and 26, although it did not reach statistical significance (Fig. 3).

DLQI initially changed from baseline to week 4 in the nonintervention vs. intervention group (4.54 vs. 4.12) (Table 3), which is considered a reduction above the minimal clinically important difference (MCID).31 DLQI was further reduced at week 8, followed by a minor relapse at week 26 (Fig. 4 and Table 3).

Discussion

This RCT demonstrates that an app designed to support daily topical treatment by patients with psoriasis improved treatment adherence (as measured by electronic monitors or medication canister weight) and reduced psoriasis severity (as measured by LS-PGA).

The app improved adherence rates to topical treatment during a 28-day intervention period, in agreement with one

Table 3 Secondary outcomes: quality of life and psoriasis severity during the 26-week treatment period

<table>
<thead>
<tr>
<th>Patients, n</th>
<th>Mean (95% CI)</th>
<th>Coefficient (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS-PGA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change 0 to 4 weeks</td>
<td>65</td>
<td>1.46 (1.17–1.75)</td>
<td>0.400 (0.005 to 0.795)</td>
</tr>
<tr>
<td>Change 0 to 8 weeks</td>
<td>64</td>
<td>2.16 (1.86–2.46)</td>
<td>0.091 (0.000 to 0.504)</td>
</tr>
<tr>
<td>Change 0 to 26 weeks</td>
<td>61</td>
<td>1.98 (1.66–2.31)</td>
<td>0.180 (0.064 to 0.625)</td>
</tr>
</tbody>
</table>

DLQI					
Change 0 to 4 weeks	65	4.54 (3.47–5.61)	4.45 (4.27–4.98)	0.945 (–1.770 to 0.939)	0.545
Change 0 to 8 weeks	64	5.17 (3.92–6.43)	4.59 (3.71–5.48)	–0.581 (–2.099 to 0.938)	0.450
Change 0 to 26 weeks	61	5.00 (3.69–6.31)	4.23 (3.25–5.21)	–0.770 (–2.389 to 0.848)	0.348

CI, confidence interval; LS-PGA, Lattice System Physician’s Global Assessment; DLQI, Dermatology Life Quality Index. *Nonintervention and intervention group measurements were compared by regression analyses. *Statistically significant results (significants result are additionally highlighted in bold).

© 2018 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
study reporting improved adherence rates when patients reported their psoriasis status weekly. Another study reported improved adherence rates for use of systemic treatment in patients with psoriasis when they received daily text messages. The app used in this study also improved severity of psoriasis, in agreement with reports of adherence-improving interventions for psoriasis and other chronic diseases. Inspired by previous adherence studies, we dichotomized adherence rates obtained by chip and canister weight with a cut-off of 80%, and classified adherence rates above 80% as adherent. The optimal cut-off should be based on the adherence level necessary for the drug to work. In this case we do not know how forgiving the drug is to missed doses, which represents a weakness of the study.

Adherence was measured by the number of treatment sessions, and patients in the nonintervention group had a 69% adherence rate, meaning that they used medication on 69% of days. This result is in agreement with Alinia et al., who measured adherence to topical fluocinonide ointment by number of treatment days in patients with psoriasis over 1 year and reported that adherence among patients receiving standard treatment of care was 63% during the first month.

Adherence was also measured by canister weight, and we found that patients in the nonintervention group used 33% of the prescribed amount of medication. This is in agreement with a report by Storm et al., who found that patients seen at a dermatology clinic used 35% of the expected doses of topical treatments over a 2-week treatment period. The low rate of patients who were adherent to amount of medication in both the nonintervention and intervention group (8% vs. 12%) suggest that the estimated amount of cutaneous foam used during the 4 weeks was too high. Measuring adherence by weight is challenging and requires that the prescriber first estimate the amount of topical treatment to be used during a treatment period. One limitation of the study is that we do not know the amount of medication that should be applied to get the full benefits of treatment. The majority of the patients in this study had been diagnosed with psoriasis for over 20 years and may be less inclined to follow a dosing instruction that would pose a risk of side-effects (mainly pain, erythema and pruritus). The generally low rates of adherence measured by weight might also indicate a need for clinicians to provide patients with specific advice and motivation for the appropriate quantity of medication to be used.

A strength of the study is the collection and comparison of adherence measurements by number of treatment sessions, applied medication weight and patient self-report. It is important that adherence studies reflect what is considered to be clinically relevant; that is we consider it more important for patients to apply the topical product regularly than in large amounts.

The LS-PGA and DLQI improved considerably over the study period as an effect of the topical treatment (Figs 3 and 4), in agreement with the international literature. The reduction in DLQI for both groups was caused by the Cal/BD foam treatment. The DLQI measurement should be interpreted with caution: the DLQI is unidimensional and under-represents the emotional aspects of dermatological patients’ lives. In order to capture the full range of the quality of life aspect, we could have combined the DLQI measurement with one of the available psoriasis-specific quality of life instruments. It is a
limitation of the study that we did not obtain outcomes on patient-perceived severity and patient–physician relationship as reported in other adherence-improving interventions.32 as an improved patient–physician relationship may motivate patients and improve treatment adherence and outcome.43 We did not report patients’ use of the optional diary functions or patients’ satisfaction with the app, which is a limitation for interpreting the results for app designers and medical device engineers.

The patients received study drugs, which may provide better results than those obtained in real-life settings, such as that reported by Storm et al. in which a third of prescriptions were never redeemed.44 Our study patients were partly recruited by advertisement, which poses a risk of including patients who are more motivated to adhere to prescribed topical treatment than the background psoriasis population.35,45

The local ethics committee would not approve masking patients to the fact they were in a trial until the end of the study, a method used in other adherence studies.46 The assessors were not masked, which introduced a risk of attrition and observer bias.47 This study was performed simultaneously with the introduction of the new Cal/BD cutaneous foam on the Danish market. The patient information session at the initial study visit was focused on the new drug reformulation48 and to a lesser degree on the adherence measurement, which partially concealed that the primary outcome of the study was adherence.

In conclusion, this RCT demonstrated that a study-specific patient-supporting app improved adherence rates and psoriasis severity in a statistically and clinically significant manner. There is potential for implementing patient-supporting apps in the dermatology clinic.

References

Testing an adherence-improving app for patients with psoriasis, M.T. Svendsen et al. 1071

Appendix

Conflicts of interest: Part of M.T.S.’ salary during the trial was paid by funding from LEO Pharma. A.P. has received funding from LEO Pharma. B.A. is an employee at LEO Pharma, which has the copyright for the calcipotriol/betamethasone dipropionate foam used as the study medication and is the owner of the electronic monitor and app used in this trial. S.R.F. is a speaker for Janssen and Taro; a consultant and speaker for Galderma, Stiefel/GlaxoSmithKline, Abbott Labs, LEO Pharma Inc.; has received grants from Galderma, Janssen, Abbott Labs, Amgen, Stiefel/GlaxoSmithKline, Celgene and Anacor; is a consultant for Amgen, Baxter, Caremark, Gerson Lehrman Group, Guidepoint Global, Hanall Pharmaceutical Co Ltd, Kikaku, Lilly, Merck & Co Inc., Merz Pharmaceuticals, Mylan, Novartis Pharmaceuticals, Pfizer Inc., Quirient, Suncare Research and Xenopore; is on an advisory board for Pfizer Inc.; is the funder of and holds stocks of Causa Research and holds stocks of and is majority owner of Medical Quality Enhancement Corporation; he receives royalties from UpToDate and Xlibris. K.E.A. has received funding from LEO Pharma for the trial.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website.

- **Fig S1.** The smartphone application and instructions for its use.
- **File S1** Sample size calculation, script from Stata 15.
- **Table S1** Baseline characteristics.
- **Table S2** Missing outcomes on chip-measured adherence rates.
- **Table S3** Missing outcomes on weight-measured adherence rates.
- **Table S4** Missing outcomes on patient-reported adherence rates.
- **Powerpoint S1** Journal Club Slide Set.
- **Video S1** Author video.