Mast cell activation syndrome

Importance of consensus criteria and call for research

Valent, Peter; Akin, Cem; Bonadonna, Patrizia; Hartmann, Karin; Broesby-Olsen, Sigurd; Brockow, Knut; Butterfield, Joseph H.; Reiter, Andreas; Gotlib, Jason; Castells, Mariana; Milner, Joshua D.; Carter, Melody C.; Komarow, Hirsh; Radia, Deepti; Pardanani, Animesh; Sotlar, Karl; Triggiani, Massimo; Horny, Hans Peter; Arock, Michel; Schwartz, Lawrence B.; Metcalfe, Dean D.

Published in:
Journal of Allergy and Clinical Immunology

DOI:
10.1016/j.jaci.2018.06.004

Publication date:
2018

Document version
Accepted manuscript

Document license
CC BY-NC-ND

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version
Mast Cell Activation Syndrome: Importance of Consensus Criteria and Call for Research

Peter Valent, MD, Cem Akin, MD, PhD, Patrizia Bonadonna, MD, Karin Hartmann, MD, Sigurd Broesby-Olsen, MD, Knut Brockow, MD, Joseph H. Butterfield, MD, Andreas Reiter, MD, Jason Gotlib, MD, Mariana Castells, MD, PhD, Joshua D. Milner, MD, Melody C. Carter, MD, Hirsh Komarow, MD, MD, Deepti Radia, MD, Animesh Pardanani, Karl Sotlar, MD, Massimo Triggiani, MD, PhD, Hans-Peter Horny, MD, Michel Arock, PharmD, PhD, Lawrence B. Schwartz, MD, PhD, Dean D. Metcalfe, MD

PII: S0091-6749(18)30854-6
DOI: 10.1016/j.jaci.2018.06.004
Reference: YMAI 13474

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 22 April 2018
Revised Date: 25 May 2018
Accepted Date: 7 June 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Letter to the Editor

Mast Cell Activation Syndrome: Importance of Consensus Criteria and Call for Research

Peter Valent, MD1, Cem Akin, MD, PhD2, Patrizia Bonadonna, MD3, Karin Hartmann, MD4, Sigurd Broesby-Olsen, MD5, Knut Brockow, MD6, Joseph H. Butterfield, MD7, Andreas Reiter, MD8, Jason Gotlib, MD9, Mariana Castells, MD,PhD10, Joshua D. Milner, MD11, Melody C. Carter, MD11, Hirsh Komarow, MD, MD11, Deepi Radia, MD12, Animesh Pardanani13, Karl Sotlar, MD14, Massimo Triggiani, MD, PhD15, Hans-Peter Horny, MD16, Michel Arock, PharmD, PhD17, Lawrence B. Schwartz, MD, PhD18, Dean D. Metcalfe, MD11

1Department of Internal Medicine I, Division of Haematology, Medical University of Vienna, Austria; 2Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA; 3Allergy Unit, Verona University Hospital, Verona, Italy; 4Department of Dermatology, University of Luebeck, Luebeck, Germany; 5Department of Dermatology and Allergy Centre Odense University Hospital, Odense, Denmark; 6Department of Dermatology and Allergy Biederstein, Technical University of Munich, Germany; 7Mayo Clinic, Division of Allergic Diseases, Rochester, MN, USA; 8III. Medizinische Klinik, Universitäts-Medizin Mannheim, Universität Heidelberg, Mannheim, Germany; 9Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA; 10Division of Allergy and Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 11Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA; 12Department of Haematology, Guys and St Thomas’ NHS Foundation Trust, Guys Hospital, London, U.K., 13Division of Hematology, Mayo Clinic, Rochester, MN, USA; 14Institute of Pathology, Paracelsus Medical University Salzburg, Austria; 15Division of Allergy and Clinical Immunology University of Salerno, Italy; 16Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany; 17LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France; 18Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, Virginia Commonwealth University, Richmond, VA, USA;

This study was supported in part by the Austrian Science Funds (FWF) projects F4701-B20 and F4704-B20 and by the Division of Intramural Research, NIAID.

Disclosure Statement: The authors declare that they have the following conflict of interest in this study: Virginia Commonwealth University receives royalties from ThermoFisher for the tryptase assay, which are then shared with LBS, its inventor. The authors declare that they have no additional conflicts of interest to disclose in this project.
Corresponding Author:

Peter Valent, MD
Department of Internal Medicine I
Division of Hematology & Hemostaseology and
Ludwig Boltzmann Cluster Oncology
Medical University of Vienna
Waehringer Guertel 18-20,
A-1090 Vienna, Austria
Phone: +43 1 40400 -60850, -54880
Fax: +43 1 40400 -40300
E-mail: peter.valent@meduniwien.ac.at

To The Editor:

Mast cell activation syndrome (MCAS) as defined by existing consensus criteria is a condition characterized by mediator-related symptoms associated with a substantial systemic activation of mast cells (MCs) (1,2). Referrals to centers with experience in MC disorders of individuals with the diagnosis of MCAS have recently dramatically increased. The patients referred often do not meet the definition of MCAS and have often undergone extensive evaluations. Referral centers frequently find that in the face of these extensive prior evaluations and in the absence of evidence that MCs are involved, they have little to offer. This letter is written to summarize this situation and propose a way forward.

Originally, and to develop a uniform and thoughtful basis for the clinical study and diagnosis of MCAS, a consensus group consisting of an international panel of allergy, hematology, pathology and dermatology specialists met and introduced diagnostic criteria for MCAS based on the logic that if MCs are responsible, then clinical data must support the involvement of the MC compartment (1,2). The consensus group set forth criteria for the diagnosis of MCAS to include the following: First, the episodic occurrence of typical MC-related clinical symptoms, such as urticaria, angioedema, flushing, pruritus, nausea, hoarseness, vomiting, diarrhea, abdominal cramping, hypotensive syncope, tachycardia, wheezing, conjunctival injection, nasal congestion, and headache. To meet this first diagnostic criterion, the episodic occurrence of such symptoms affecting two or more organ systems should be observed (1,2). Second, an increase of the serum tryptase level by 20%
over the individual baseline plus 2 ng/ml total (e.g. from 10 ng/ml to at least 14 ng/ml; or from
30 ng/ml to at least 38 ng/ml) within a 4-hour window after the reaction. Third, a clear
response (improvement) of the symptoms to drugs targeting MC derived mediators and/or
MC stabilizing agents (2). When these criteria are met in patients with systemic
mastocytosis, by consensus, MCAS is referred to as primary or clonal MCAS. MCAS is also
observed in patients with evidence of clonal MC not fulfilling criteria of mastocytosis (3,4).
When fulfilled in patients with IgE-dependent allergic reactions or other reactive processes,
the term applied is secondary MCAS (Table 1) (1,2). When no underlying etiology is
identified, the diagnosis is idiopathic MCAS (2). MCAS criteria are widely accepted and have
been validated in specific situations (5).

The diagnosis of MCAS is currently being applied to patients with unresolved complex
medical problems following extensive medical evaluations, and a substantial number of these
patients do not meet the diagnostic criteria for MCAS. Once the referral center providers
eliminate diseases in the differential diagnosis, they find they have little to add in the way of
providing a satisfactory response or therapy as no MCAS is found. In other cases, an
underlying disease unrelated to MCAS is (later) detected, and an unnecessary delay of such
a diagnosis may be a consequence of the ‘MCAS-referal’.

Finally, the suggestion to patients that they have a MC disorder beyond (or in addition to)
MCAS is not without consequences. Suggestion of a MC disorder may lead to unjustified
anxiety and fear for patients, especially when the concept of MCAS is understood as
synonymous to systemic mastocytosis, which can lead to hematological malignancy.
Moreover, in those without typical clinical symptoms, there may be increased costs and
health care utilization in an effort to implicate MCs in pathology.

Is it possible that there are MC diseases outside of what we currently understand?
Certainly this possibility exists. There are individuals with chronic symptoms who do not
appear to flare in the classical sense. One example is hereditary (familial) tryptasemia, where
tryptase is consistently elevated and where many patients complain of non-episodic itch,
hives and abdominal pain (6). This more recent discovery raises the possibility that there
may be people for whom other mediators are elevated chronically and other cell types additionally involved, either locally of systemically. Another such example is elevated tryptase in patients with a myeloid or eosinophil neoplasm who may have clonal MCs and similar symptoms, including pruritus, abdominal pain and skin rashes.

The solution to this emerging problem, we suggest, is four-fold. First, caution is needed in applying the diagnosis of MCAS; and consensus criteria should be met (1,2). MCAS should not be applied on the basis of a persistently elevated basal serum tryptase level and not on the fact that the condition has resisted previous attempts to establish a medical diagnosis.

Secondly, if the diagnosis is applied, referral centers must be prepared to evaluate these individuals and eliminate diseases in the differential diagnosis. It is important to recognize that other pathologic conditions, including sepsis, cytokine storm associated with administration of biologics, acute intoxication, poisoning, and endocrinology emergencies may mimic MCAS (2). And in those with elevated basal tryptase, diverse hematologic neoplasms, chronic inflammation or familial tryptasemia may be detected (2). Third, referral centers must implement a follow-up plan for monitoring and care of these patients and/or until a research protocol is in place to understand the difficulties that lead to this diagnosis.

Fourth, clinical research programs are needed to explore the possibility that there are yet to be defined MC activation disorders. Such studies need to evaluate the consensus criteria for MCAS. Strategies need to be in place to identify specific phenotypes/endotypes with underlying genetic variants that will lead to uniform diagnostic approaches. Intervventional trials with agents known to decrease MC numbers or MC mediator release and the downstream actions of these mediators are needed. Subjects for discussion include consideration of the possibility that there are chronic and local forms of MC activation not fulfilling MCAS criteria where patients present with multiple symptoms and how to document such a possibility? Are there unrecognized MC diseases that involve tissue specific or regional MC activation? Are there additional clinically useful markers of MC activation and how can these conditions be defined?
Currently only a few biomarkers are recognized as implicating MC activation in pathology. One example is histamine or its metabolites when measured in urine, although histamine is produced by MC and basophils. Measurement of tryptase in bodily fluids is more specific and is generally considered the most reliable diagnostic test of MC involvement and thus strongly recommended within consensus diagnostic criteria (1-2,7). Prostaglandin D2 and histamine metabolite levels in urine can both increase over baseline in MCAS and have also been measured and used as guide for treatment (8), although their elevation may not always be associated with MC activation (2). Chromogranin A is not produced by MC in mastocytosis and thus is not a reasonable marker of MC activation. Similarly, plasma levels of heparin have not been generally demonstrated to be a sensitive or specific biomarker for MC activation, although this requires further study.

With the goal of alleviating patients suffering, a balanced approach is thus clearly warranted to both deal with current issues surrounding patients with suspected MC disorders and to promote well-designed and thoughtful prospective clinical research protocols to answer these critical questions (9).
References

7. Schwartz LB, Sakai K, Bradford TR, Ren S, Zweiman B, Worobec AS, Metcalfe DD. The alpha form of human tryptase is the predominant type present in blood at baseline in normal
subjects and is elevated in those with systemic mastocytosis. J Clin Invest 1995;96(6):2702-
10.

combined determinations of serum tryptase and 24-hour urine 11β-prostaglandin2α. J Allergy

Table 1

Estimated percent of patients with a specific disorder (underlying condition) that have events that meet the diagnostic criteria of MCAS*

<table>
<thead>
<tr>
<th>Disorder/underlying condition</th>
<th>Estimated % of those that have events meeting the definition of MCAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous mastocytosis (CM)</td>
<td>10</td>
</tr>
<tr>
<td>Systemic mastocytosis (SM)</td>
<td>10-20</td>
</tr>
<tr>
<td>KIT D816V+ mast cells without CM or SM</td>
<td>unknown</td>
</tr>
<tr>
<td>CM or SM with concomitant allergy</td>
<td>30-50</td>
</tr>
<tr>
<td>IgE-dependent allergy</td>
<td>10-20</td>
</tr>
<tr>
<td>IgE-independent allergy</td>
<td>unknown</td>
</tr>
<tr>
<td>Acute drug hypersensitivity reactions</td>
<td>10-20</td>
</tr>
<tr>
<td>Intoxications**</td>
<td>1-3</td>
</tr>
<tr>
<td>Acute infections</td>
<td>1-3</td>
</tr>
<tr>
<td>Acute autoimmune disease episode</td>
<td>1-3</td>
</tr>
<tr>
<td>Sickle cell disease – acute episode</td>
<td>1-3</td>
</tr>
<tr>
<td>Solid tumors</td>
<td><1</td>
</tr>
<tr>
<td>Clonal myeloid neoplasms/leukemia</td>
<td><1</td>
</tr>
<tr>
<td>Clonal lymphatic neoplasms/leukemia</td>
<td><1</td>
</tr>
<tr>
<td>Neurologic disorders***</td>
<td><1</td>
</tr>
<tr>
<td>Hereditary metabolic disorders</td>
<td><1</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td><1</td>
</tr>
<tr>
<td>Ehlers-Danlos syndrome</td>
<td><1</td>
</tr>
</tbody>
</table>

*MCAS based on MCAS-criteria as defined in Valent et al. (2). The frequency of MCAS was estimated on the basis of published results and data presented in conferences in the years 2010-2018. Experience may differ substantially depending on the referral center. **Food intoxication resulting from high histamine content (e.g. scombroid fish poisoning) can mimic MCAS, unless pre- and post-event tryptase levels were measured. ***Including autonomic dysfunction such as postural tachycardia syndrome and gastrointestinal motility disorders.