Hearing aid processing strategies for listeners with different auditory profiles

Insights from the BEAR project

Wu, Mengfan; El-Haj-Ali, Mouhamad; Sanchez Lopez, Raul; Fereczkowski, Michal; Bianchi, Federica; Dau, Torsten; Santurette, Sébastien; Neher, Tobias

Publication date:
2018

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 05. Apr. 2020
Hearing aid processing strategies for listeners with different auditory profiles: Insights from the BEAR project

Mengfan Wu¹, Mouhamad El-Haj-Ali¹, Raúl Sanchez-Lopez², Michal Fereczkowski², Federica Bianchi², Torsten Dau², Sébastien Santurette² & Tobias Neher¹

¹ Institute of Clinical Research, University of Southern Denmark
² Hearing Systems, Technical University of Denmark
BEAR outline

- **Time frame:** 2016-2021
- **Funding:** Innovation Fund Denmark (~4.5m $), Danish hearing industry (~2.3m $), other project partners (~1m $)
- **Purpose:** Improve hearing rehabilitation through evidence-based renewal of clinical practice

Phase 1: Recruitment, method development
- WP1: Centralized clinical database \((N = 2000) \)
- WP2: New aided performance measures
- WP3: New clinical profiling and fitting strategies

Phase 2: Apply new methods
- WP4: Validation of new fitting strategies (field study)
- WP5: Subpopulations with abnormal aided benefit

Phase 3: Evaluate and iterate
- WP6: Improved clinical efficiency
- WP7: Patient-driven diagnostics and fitting

Phase 4: Implement and disseminate
- WP8: Revised standards for diagnostics and fitting

New clinical profiling & fitting strategies

Participants

- **Aim:** \(N = 2 \times 30 \) habitual HA users

Study design

- **N = 30**, 60-80 yrs

3 – Neher et al, IHCON 2018

4 – Neher et al, IHCON 2018
Hypothesis & test battery

- Classification of listeners into small number of auditory profiles
- Beyond audibility: Supra-threshold distortions (e.g. Plomp, JASA 1978)

![Temporal resolution deficit?](Image)

Auditory profiling

- Data-driven classification based on dimensionality reduction followed by archetypal analysis (Sanchez-Lopez et al, Trends Hear, under review)
HA fitting evaluation

- Test setup: Virtual acoustics, ‘realistic’ HA simulator

- Comprehensive instrumental evaluation
 - SNR improvement, temporal and spectral distortion, speech intelligibility and quality
 - Spatially diffuse cafeteria noise, target signal from 0° or 90°, various input SNRs and standard audiograms (Bisgaard et al, 2010)

Instrumental evaluation

- Selection of six candidate settings
 - Objective: Maximize differences through the use of different HA parameter sets

(Sanchez-Lopez et al, Euronoise 2018)
Perceptual evaluation

- **Stimuli**
 - Target speech: Sentences from 0° or 90°
 - Speech-like interferer from 90° or 0°
 - Spatially diffuse cafeteria noise

- **Speech-in-noise reception**
 - Individual SRT_{50} measurements, then fixed-SNR speech recognition scores; test-retest measurements

- **Overall quality and noise annoyance**
 - Multi-stimulus comparison; SRT_{50} + 4 dB SNR; four repetitions

Speech-in-noise reception

- **Auditory profile**

<table>
<thead>
<tr>
<th>HA setting</th>
<th>Auditory profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Omni, NR off, slow compression</td>
</tr>
<tr>
<td>2</td>
<td>Omni, strong NR, fast compression</td>
</tr>
<tr>
<td>3</td>
<td>Bin. beamformer, NR off, slow compression</td>
</tr>
<tr>
<td>4</td>
<td>Bin. beamformer, strong NR, slow compression</td>
</tr>
<tr>
<td>5</td>
<td>Bin. beamformer, strong NR, fast compression</td>
</tr>
<tr>
<td>6</td>
<td>Cardioid, mild NR, slow compression</td>
</tr>
</tbody>
</table>

- **Preliminary statistics**
 - Spatial condition, HA setting, spatial condition × HA setting: all $p < .0001$
 - Auditory profiles: ????
Summary

- BEAR project: Unique constellation; large-scale approach
- Auditory profiling
 - Data-driven approach; Reasonably consistent results for two separate datasets
 - More data needed for cross-validation (incl. other audiometric configurations)
- HA fitting evaluation
 - Instrumental evaluation: SNR improvement, temporal and spectral distortion; Selection of six candidate HA settings
 - Perceptual evaluation: Preliminary data show expected effects of spatial condition and HA settings; More data needed for probing auditory profiles

Acknowledgments

Mengfan Wu
Mouhamad El-Haj-Ali
Raúl Sanchez-Lopez

Federica Bianchi
Michal Fereczkowski
Torsten Dau
Sébastien Santurette