Influence of signal enhancement algorithms on auditory movement detection in acoustically complex situations

Lundbeck, Micha; Grimm, Giso; Hohmann, Volker; Bramsløw, Lars; Neher, Tobias

Publication date: 2018

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 12. Dec. 2019
Hearing loss can negatively influence the spatial hearing abilities of hearing-impaired listeners, not only in static but also in dynamic auditory environments [4]. Thus, ways of addressing these deficits with advanced hearing aid algorithms need to be investigated. In a previous headphone-based study, we found that two simulated directional processing algorithms could substantially improve the detectability of left-right (L-R) and near-far (N-F) source movements in the presence of reverberation and multiple interfering sounds for a group of older hearing-impaired (OHI) listeners [5]. Here, we used a loudspeaker-based setup and wearable hearing aids to explore the effects of a set of directional hearing aid settings on movement detection and other aspects of spatial awareness perception. Our aims were:

1) To investigate the extent to which our earlier movement detection results obtained with a headphone-based setup and simulated HA settings can be transferred to a loudspeaker-based setup and head-worn devices (experiment 1)

2) To extend our earlier results towards other aspects of spatial awareness perception (experiment 2)

RESULTS

L-R and N-F movement detectability

![Graph showing movement direction and number of concurrent sources](image)

Experiment 2

- **Movement direction and number of concurrent sources:**
 - On each trial, random number of sounds (1-5) from random positions (0°, 45°, 90°, 135°, 180°, 225°, 270° or 315°)
 - Two tasks administered using graphical user interfaces (see figures)
 - Task 1: Indicate number of concurrent sound sources
 - Task 2: Indicate movement direction of target sound

PARTICIPANTS

- OHI listeners with symmetric moderate sensorineural hearing losses
- Division into groups for experiment 1 (but not experiment 2)
 - Group 1+2 (tested with two masker sounds): mean age of 66.9 yr, mean PTA of 37 dB HL
 - Group 1+4 (tested with four masker sounds): mean age of 64 yr, mean PTA of 34.1 dB HL

SUMMARY

- In principle, the transition from a headphone-based setup with simulated hearing aid algorithms towards a loudspeaker-based setup with head-worn devices is possible
- So far, however, no effects of the different hearing aid conditions observable:
 - L-R and N-F movement detectability: For group 1+2 (tested with two masker sounds) no significant differences measured; for group 1+4, trend towards lower thresholds for DIR condition in the N-F-dimension (similar to the results in [5])
 - Significant effects of number of concurrent sound sources and starting position for the movement direction and number of concurrent sound sources tasks
- Outlook: Design of scenarios that can show effects of the small differences among hearing aid settings already at the acoustical level

Acknowledgements: Funded by the Oticon Foundation and the DFG Cluster of Excellence EXC 1077/1 “Hearing4all”

REFERENCES