Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

Andrade, Thalles Allan; Al-Kabalawi, Ibrahim F.; Errico, Massimiliano; Christensen, Knud Villy

Publication date:
2018

Document version
Final published version

Document license
Unspecified

Citation for published version (APA):
Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

Thalles A. Andrade (thal@kbm.sdu.dk), Ibrahim F. Al-Kabalawi, Massimiliano Errico, Knud V. Christensen
Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark
Campusvej 55, 5000 Odense M, Denmark

INTRODUCTION

- Biodiesel: From vegetable oils or animal fats
 - Renewal
 - Biodegradable
 - Non-toxic
 - Lubricating
- Castor oil
 - Non-edible
 - Diverse weather conditions
 - Unique properties: ricinoleic acid
- Enzymes
 - Available in LIQUID and IMMOBILIZED forms
 - Alternative biocatalyst
 - Mild reaction conditions
 - High raw material compatibility
 - Better glycerol separation

MATERIALS AND METHODS

- Castor oil transesterification performed for 8 hours
- Methanol
- Ethanol
- Solution 96% (v/v)
- Absolute
- Alcohol stepwise additions to avoid enzyme inhibition
- Immobilized enzyme Lipozyme 435 as catalyst
- Different reaction conditions were evaluated

<table>
<thead>
<tr>
<th>Condition</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>35, 50, 60</td>
<td>°C</td>
</tr>
<tr>
<td>Alcohol-to-oil molar ratio</td>
<td>3:1 – 6:1</td>
<td>—</td>
</tr>
<tr>
<td>Enzyme content</td>
<td>3 – 15</td>
<td>wt%</td>
</tr>
<tr>
<td>Water content</td>
<td>0 – 15</td>
<td>wt%</td>
</tr>
<tr>
<td>N-hexane content</td>
<td>0 – 75</td>
<td>wt%</td>
</tr>
</tbody>
</table>

Reaction conditions have different impacts in FAME and FAEE content

- FAME: 96.8% was obtained using 3:1 methanol-to-oil, 5 wt% enzymes, 7.5 wt% water, 50 wt% n-hexane, at 50 °C.
- FAEE: 98.0% was obtained at 60 °C, 4:1 ethanol-to-oil, 5 wt% enzymes, 40 wt% of n-hexane with no water.

RESULTS AND DISCUSSION

- Identification of fatty acid alkyl esters
- Influence of the reaction conditions
 - Enzyme content
 - Favorable influence on the yield
 - High cost of enzymes
 - Temperature
 - Increase in the temperature favors the yield
 - Higher temperature may cause enzyme denaturation
 - Water content
 - Addition of water results in higher hydrolysis rate
 - Alcohol-to-oil ratio
 - Small variations in FAME and FAEE content: enzyme inhibition compensated by the increase on esterification rate
 - N-hexane content
 - Reduction on the mass transfer limitations

CONCLUSIONS

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778168.
The authors are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for the scholarship and Novozymes A/S for providing the enzymes.