Does Aerobic Exercise Increase 24-Hour Ambulatory Blood Pressure Among Workers With High Occupational Physical Activity? - A RCT

Korshøj, Mette; Krause, Niklas; Clays, Els; Søgaard, Karen; Krustrup, Peter; Holtermann, Andreas

Published in:
American Journal of Hypertension

DOI:
10.1093/ajh/hpw197

Publication date:
2017

Document version:
Final published version

Document license:
CC BY-NC-ND

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:
- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 07. Jun. 2021
Does Aerobic Exercise Increase 24-Hour Ambulatory Blood Pressure Among Workers With High Occupational Physical Activity?—A RCT

Mette Korshøj,1,2 Niklas Krause,3,4 Els Clays,5 Karen Søgaard,6 Peter Krstrup,6,7 and Andreas Holtermann1,6

OBJECTIVE
High occupational physical activity (OPA) increases cardiovascular risk and aerobic exercise has been recommended for reducing this risk. This paper investigates the effects of an aerobic exercise intervention on 24-hour ambulatory blood pressure (ABP) among cleaners with high OPA.

METHODS
Hundred and sixteen cleaners between 18 and 65 years were randomized. During the 4-month intervention period, the aerobic exercise group (AE) (n = 57) performed worksite aerobic exercise (2 × 30 minutes/week), while the reference group (REF) (n = 59) attended lectures. Between-group differences in 4-month ABP changes were evaluated by intention-to-treat analysis using a repeated-measure 2 × 2 multiaadjusted mixed-models design.

RESULTS
Relative to REF, 24-hour ABP significantly increased in AE: systolic 3.6 mm Hg (95% confidence interval (CI) 1.6–5.7) and diastolic 2.3 mm Hg (95% CI 0.9–3.8). Cleaners with high aerobic workload exhibited particularly high 24-hour ABP increases: systolic 6.0 mm Hg (95% CI 2.4–9.6), and diastolic 3.8 mm Hg (95% CI 1.3–6.4).

CONCLUSION
Aerobic exercise increased 24-hour ABP among cleaners. This adverse effect raises questions about the safety and intended benefits of aerobic exercise, especially among workers with high OPA and a demanding aerobic workload.

CLINICAL TRIAL REGISTRATION
Trial Number ISRCTN86682076.

Keywords: blood pressure; cleaners; hypertension; objective measurements; worksite intervention.

doi:10.1093/ajh/hpw197

Workers exposed to high occupational physical activity (OPA), such as cleaners, have an increased risk of cardiovascular disease (CVD).1,2 High OPA combined with low cardiorespiratory fitness,3 results in high aerobic workloads,4,5 that explain an increased risk for atherosclerosis,6,7 hypertension,8 and CVD.9

Aerobic exercise enhancing cardiorespiratory fitness has been recommended for reducing high aerobic workloads and the associated CVD risk.4,10 In a recent randomized controlled trial involving an aerobic exercise intervention, we observed enhanced cardiorespiratory fitness as well as reduced aerobic...
workload, resting heart rate (RHR), and inflammation, but unfortunately, also increased resting systolic blood pressure (BP). Average 24-hour ambulatory BP (ABP) is superior to resting BP for indicating CVD risk. Therefore, the aims of the present study were to investigate (i) if the aerobic exercise intervention increased ABP, and (ii) to determine if increases in ABP were particularly pronounced among workers exposed to high aerobic workloads (≥30% VO₂max).

METHODS

The Danish Data Protection Agency and the Ethics Committee for the Capital Region of Denmark (journal number H-2-2011-116) approved the study. The study was a cluster-randomized controlled worksite intervention, as described elsewhere. Initially, AE was offered as aerobics, cycling on a stationary bike, treadmill running, and circuit training.

Recruitment of worksites and study participants

Cleaning companies in the suburban area of Copenhagen, Denmark, were recruited. Companies were eligible to participate if they employed >50 cleaners and if cleaners were permitted to participate during paid working hours. The recruited cleaners completed a screening questionnaire, including a question about their wish to participate in the study. Eligible participants were 18–65 years old, cleaned at least 20 hours a week and provided informed consent. Exclusions were based on pregnancy, congestive heart failure, hospital admission for myocardial infarction or acute coronary syndrome within the previous 2 years, angina pectoris, severe hypertension (≥160/100 mm Hg), serious or chronic illness, severe trauma, frequent migraine, or fever at the time of the testing. Allergy to adhesive plasters excluded diurnal measurements.

Sample size

The power calculation yielded a sample size of 52 per group to detect an expected 4% increase in cardiorespiratory fitness at an alpha level of 0.05. Assuming 40% recruitment and 30% dropout rates, we planned to enroll 130 cleaners in the study.

Randomization

Randomization was performed at cluster level, a cluster was set within strata, and strata were formed according to which manager the participant reported to. Clusters were formed by the geographical work-location, and pairwise matched on sex, age, and job seniority. The randomization was carried out by a blinded researcher and supervised by 3 researchers. All paired clusters assigned to the specific strata were drawn from an opaque, tossed bag, and alternately allocated to either the reference (REF) or aerobic exercise group (AE), depending on the flip of a coin.

Intervention

REF was offered 2 lectures of 2 hours duration each, not addressing physical activity. AE was offered supervised aerobic exercise of 2 × 30 min/week in 32 sessions, at an intensity of ≥60% maximal oxygen consumption (VO₂max), sufficient to enhance cardiorespiratory fitness. Through a modified intervention mapping approach AE was tailored to each of the enrolled companies. Initially, AE was offered as aerobics, cycling on a stationary bike, treadmill running, and circuit training.

Data collection

Data collection consisted of a structured interview, physical testing of health- and capacity-related measures, and objective diurnal measures of HR and ABP. The interview assessed demographics, job seniority, occupational and leisure time physical activity, smoking, diagnosed illnesses, and daily use of heart disease or antihypertension medication.

Physical tests included body weight (kg) (Tanita BC418) and height (Seca model 213 1721009). Resting BP was measured (Omron M6 Comfort) on the upper left arm after 15 minutes of sitting. Cardiorespiratory fitness was estimated using a submaximal step-test conducted on a bench of 30 cm height for females and 35 cm for males. Diurnal ABP was measured over 24 hours on a work day. ABP measurements were performed with Spacelabs 90217, www.spacelabshealthcare.com mounted on the nondominant upper arm with a tube connecting cuff and sampler. Measurements were repeated every 20 minutes during waking hours and every 40 minutes during sleep. The participants were instructed to keep quiet and not move while the measurement was performed, to live their normal every-day life, and to keep a log of working hours, sleeping and waking times, and unmonitored periods.

HR was measured with an Actiheart monitor (www.camtech.com) mounted with ag-ag-cl pre-gelled electrodes (Ambu blue sensor VL-00-S/25).

Variable coding

Body mass index was calculated as body weight (kg) divided by squared body height (m²). Ethnicity was classified as western or nonwestern based on country of birth. Cardiorespiratory fitness was coded categorically in tertiles (low, medium, and high). Participants missing the cardiorespiratory fitness test constituted an additional category. ABP measurements were used for analysis if ≥25% measurements were complete, corresponding to ≥5 during work, ≥8 during leisure, and ≥3 during sleep. Physiological outliers (systolic BP <80 and >240 mm Hg, diastolic BP <50 and >130 mm Hg) were excluded. HR was measured during the 5 minutes preceding each ABP measurement. Only HR measurements with beat error of ≤5% were included in analysis. HR reserve (HRR) was calculated as maximal HR (HRmax estimated as 208 – 0.7 * age), minus RHR. RHR was defined as the 10th lowest recorded HR value during 24 hours. Aerobic workload (%HRR) was calculated as (observed HR − RHR) * 100%/HRR.

American Journal of Hypertension 30(4) April 2017 445
Statistical analysis

Analyses followed the intention-to-treat principle, including all randomized participants. Missing values were not imputed. Within- and between-group differences in 4-month changes in ABP were computed with SEs and 95% confidence intervals (CI). Differences in 4-month ABP change were analyzed in a repeated-measures 2 × 2 mixed-model design. Independent categorical variables (fixed factors) were group (AE and REF), measurement time (baseline and 4-month follow-up), and interaction between group and time. Participants were entered in the model as a random effect nested in clusters. The dependent variable was 4-month ABP change and the independent variable was intervention group. The following covariates were included stepwise in the analysis (reference value in parenthesis): model 1: mean baseline ABP from the respective time period; model 2: additionally age, sex (male), daily use of antihypertension and/or heart medication (none), smoking (nonsmoker), and baseline cardiorespiratory fitness (high).

A sensitivity analysis excluded participants reporting daily use of antihypertension and/or heart medication.

Analysis stratified by aerobic workload

The subgroup analysis stratified by baseline aerobic workload (< or ≥30% HRR during work) and adjusted for the same covariates as in Table 2 (model 2) showed that ABP among those exposed to a high aerobic workload in AE,
compared to REF, increased by 6.0 ± 1.8 mm Hg (CI 95% 2.4–9.6) systolic, and 3.8 ± 1.3 mm Hg (CI 95% 1.3–6.4) diastolic over 24 hours; 9.6 ± 2.5 mm Hg (95% CI 4.5–14.6) systolic, and 7.8 ± 1.5 mm Hg (95% CI 4.8–10.8) diastolic during leisure; and 5.0 ± 2.4 mm Hg (95% CI 0.2–9.8) systolic, and 5.9 ± 1.9 mm Hg (95% CI 2.2–9.6) diastolic during sleep (Table 3). During work, ABP differences between subgroups were nonsignificant.

Among those exposed to low aerobic workload at baseline, the ABP between-group differences were smaller, with only systolic ABP during leisure reaching a statistically significant increase of 4.2 ± 1.9 mm Hg (95% CI 0.4–8.0).

DISCUSSION

The main finding of this randomized controlled trial is that the aerobic exercise intervention in cleaners resulted in a significantly increased 24-hour ABP during 4 months of follow-up in AE relative to REF. The previously reported

Mean ± SDs or percent (n) are reported. Differences between aerobic exercise and reference groups were analyzed with student's t-test for continuous variables, and with Chi squared test for categorical variables. Abbreviations: ABP, ambulatory blood pressure; AE, aerobic exercise; BMI, body mass index; HRR, heart rate reserve; REF, reference.

*Statistical significant difference between subgroups (P ≤ 0.05).
increase in resting BP following this aerobic exercise intervention\(^9\) is confirmed by these 24-hour ABP findings.

The average adjusted between-group differences in 24-hour ABP change ranged from 2.3 mm Hg diastolic to 3.6 mm Hg systolic (Table 2), and up to 9.6 mm Hg systolic during leisure in subgroup analyses. Although the small size of the population limits the precision of estimates, the observed unintended ABP increases in AE up to 9.6 mm Hg were highly statistically significant \((P < 0.001)\). This increase in ABP could translate into an 20–40\% increased CVD risk based on the known hazards of BP increases in population-based studies.\(^29\)–\(^31\)

Between-groups differences in 4-month ABP change were relatively small during work but rather large during both leisure and sleep. These results cannot be explained by pre–post intervention changes in physical activity at work or during leisure because the number of objectively measured steps per hour during work and leisure did not change during follow-up. The relatively small ABP changes during work

Table 2. Within-group means pre-intervention and post-intervention, between-group (aerobic exercise group minus reference group) differences in pre-intervention to post-intervention changes of ABP

<table>
<thead>
<tr>
<th></th>
<th>ABP (mm Hg)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AE</td>
<td>REF</td>
<td>Model 1</td>
<td></td>
<td>Model 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Δ</td>
<td>SE</td>
<td>95% CI</td>
</tr>
<tr>
<td>Systolic</td>
<td>119.9</td>
<td>123.4</td>
<td>120.1</td>
<td>119.8</td>
<td>4.5</td>
<td>1.0</td>
<td>2.6, 6.4</td>
</tr>
<tr>
<td>Diastolic</td>
<td>77.3</td>
<td>78.7</td>
<td>77.2</td>
<td>76.4</td>
<td>2.6</td>
<td>0.7</td>
<td>1.3, 3.9</td>
</tr>
<tr>
<td>Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>119.8</td>
<td>118.3</td>
<td>119.4</td>
<td>119.6</td>
<td>−1.0</td>
<td>1.3</td>
<td>−3.5, 1.5</td>
</tr>
<tr>
<td>Diastolic</td>
<td>79.4</td>
<td>77.8</td>
<td>78.9</td>
<td>78.5</td>
<td>−1.1</td>
<td>0.8</td>
<td>−2.8, 0.5</td>
</tr>
<tr>
<td>Leisure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>122.0</td>
<td>125.8</td>
<td>122.2</td>
<td>120.2</td>
<td>6.7</td>
<td>1.3</td>
<td>4.2, 9.3</td>
</tr>
<tr>
<td>Diastolic</td>
<td>77.8</td>
<td>79.4</td>
<td>77.9</td>
<td>75.7</td>
<td>4.5</td>
<td>0.9</td>
<td>2.7, 6.2</td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>108.8</td>
<td>108.6</td>
<td>107.7</td>
<td>105.7</td>
<td>3.2</td>
<td>1.6</td>
<td>0.1, 6.3</td>
</tr>
<tr>
<td>Diastolic</td>
<td>66.4</td>
<td>67.0</td>
<td>66.1</td>
<td>64.6</td>
<td>2.3</td>
<td>1.1</td>
<td>0.1, 4.5</td>
</tr>
</tbody>
</table>

Model 1 adjusted for mean of ABP at baseline from the respective time period. Model 2 additionally adjusted for age, sex, daily use of hypertension and/or heart medication, smoking, and cardiorespiratory fitness at baseline. Abbreviations: ABP, ambulatory blood pressure; AE, aerobic exercise; CI, confidence interval; REF, reference.

Table 3. Between-group (aerobic exercise group minus reference group) differences in pre-intervention to post-intervention change of 24-hour ABP stratified by baseline aerobic workload (< or ≥30% HRR) fully adjusted for baseline values of BP, age, sex, daily use of hypertension and/or heart medication, smoking, and cardiorespiratory fitness at baseline (same as model 2 in Table 2)

<table>
<thead>
<tr>
<th></th>
<th>Aerobic workload ≥30% HRR</th>
<th>Aerobic workload <30% HRR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AE</td>
<td>REF</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>SE</td>
</tr>
<tr>
<td>Systolic</td>
<td>6.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Diastolic</td>
<td>3.8</td>
<td>1.3</td>
</tr>
<tr>
<td>Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Diastolic</td>
<td>−0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Leisure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>9.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Diastolic</td>
<td>7.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>5.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Diastolic</td>
<td>5.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Abbreviations: ABP, ambulatory blood pressure; CI, confidence interval; HRR, heart rate reserve.
may be explained by the significantly reduced aerobic workload previously reported.
Analyses stratified by aerobic workload at baseline (%HRR during work) showed that those in AE exposed to high aerobic workloads experienced the highest increases in ABP over 24 hours during leisure and sleep, whereas ABP during work was unaltered (Table 3). These increases do raise concerns about the intended benefit of an aerobic exercise intervention in workers exposed to high aerobic workloads.

The results are in line with the hypothesis of Krause et al. that workers exposed to high OPA may overload the cardiovascular system if exposed to additional physical activity. Such an overload is plausible if there is already an imbalance between workers’ cardiorespiratory fitness (capacity) and their physical work demands as well as limited possibilities for recovery. Hence, this study provides additional empirical evidence that aerobic exercise interventions among workers exposed to high OPA might overload the cardiovascular system and increase the risk of atherosclerosis, CVD, and mortality. The net effect on CVD risk from the previously reported enhanced cardiorespiratory fitness, reduced aerobic workload, RHR, and level of inflammation combined with the potentially damaging increases in ABP can only be determined in larger longitudinal studies with CVD endpoints. However, the present findings indicate a need for more focus on interventions aimed at reducing aerobic workloads. Meanwhile, we recommend that aerobic exercise interventions among those exposed to high OPA should monitor BP, preferably by 24-hour ABP, because the strongest adverse ABP increases were seen during leisure.

To our knowledge, no other physical activity intervention studies have evaluated effects on ABP.

Strengths and limitations

The strengths of this paper are: (i) the high reliability and validity of the objective diurnal field measurement, reducing the risk of bias from self-reporting, and/or differential misclassification, (ii) the cluster-randomized controlled trial design, reducing contamination bias, (iii) the mixed-model analysis without imputation, and (iv) the comprehensive assessment and control of potential confounders during follow-up. Exclusions based on low quality of diurnal data could have introduced selection bias. However, a differential bias is unlikely since exclusions based on quality of data were minimal (<0.01% of all ABP measurements) and equally distributed across intervention groups.

An overall 29% drop-out is to be expected in interventions during work, and are in line with presumptions, but needs to be considered as a possible source of selection bias. More subjects (n = 19) were lost to follow-up in AE than in REF (n = 15) and those lost to follow-up had lower cardiorespiratory fitness and higher mean aerobic workload at baseline compared to participants not lost to follow-up. This may have caused a selection bias toward a more healthy population being followed up, possibly indicating an underestimation of increase in 24-hour ABP which was especially pronounced among those with high aerobic workloads.

The sensitivity analysis excluding the 14 participants using antihypertension and/or heart medication showed larger between-group differences in 24-hour ABP (5.2 ± 1.0 mm Hg (CI 95% 3.2–7.2) systolic and 3.4 ± 0.8 mm Hg (CI 95% 1.9–4.9) diastolic) compared to the results in the entire randomized population. This could indicate that participants not using antihypertension and/or heart medication may be more prone to unintended consequences of exercise interventions than participants not undergoing medical treatment.

In conclusion, the results support the hypothesis that an aerobic exercise intervention increases 24-hour ABP among workers with high OPA. The hypothesis that the largest ABP increases occur among workers exposed to high relative aerobic workloads was also supported. The overall risks and benefits of aerobic exercise interventions need to be evaluated in prospective studies that monitor ABP not only at work but also during leisure and sleep where this study observed the greatest changes in ABP.

Acknowledgments

A special thanks to Mark Lidegaard for his assistance with data collection. Also, thanks to: data manager Lisbeth Nielsen; statistician Hans Bay; and senior researcher and engineer Jørgen Skotte. The study was funded by the Danish Working Environment Research Fund (journal number 20100019624/5).

Disclosure

The authors declared no conflict of interest.

References

