Correction: Analysis of computational models for an accurate study of electronic excitations in GFP (vol 17, pg 2582, 2015)

Schwabe, T.; Beerepoot, MTP; Olsen, Jógyan Magnus Haugaard; Kongsted, Jacob

Published in:
Physical Chemistry Chemical Physics

DOI:
10.1039/c5cp90225h

Publication date:
2016

Document version
Final published version

Document license
CC BY

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Correction: Analysis of computational models for an accurate study of electronic excitations in GFP

Tobias Schwabe,* Maarten T. P. Beerepoot, Jógvan Magnus Haugaard Olsen and Jacob Kongsted

On page 2585, Table 4, the results in the last row are incorrect. The correct values are shown below:

<table>
<thead>
<tr>
<th>R_{cut}</th>
<th>Neutral</th>
<th>Anionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all/AmberFF94)</td>
<td># Sites</td>
<td>E_{exc}</td>
</tr>
<tr>
<td>3991</td>
<td>3.48</td>
<td>3992</td>
</tr>
</tbody>
</table>

These revised values do not affect any conclusions drawn in our paper. In fact, the absolute excitation energies of the corrected AMBER potential are even closer to the results obtained with the PE(M2P0) potential and underline the observation that neglect of polarization leads to blue-shifted results.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.