Aging patterns in different environments of isoclonal individual E.coli

Jouvet, Lionel; Steiner, Ulrich

Publication date: 2017

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Aging patterns in different environments of isoclonal individual E.coli

Lionel Jouvet¹, Ulrich Steiner
University of Southern Denmark, Department of Biology
Max Planck Odense Center on the Biodemography of Aging
lionel@biology.sdu.dk

Introduction

Senescence patterns are influenced by genetics, the environment and often neglected stochastic events.

Here, we work with isogenic populations and control the environment by using a high throughput microfluidic device, that traps thousands of individual E. coli cells and tracks them over their lifespan.

We evaluate how changes in temperature and nutrient levels change senescence patterns.

Method

A population of E.coli MG1655 is grown from a single colony to its early exponential growth phase (OD 0.4-0.5). The cells are concentrated and loaded on a microfluidic chip by centrifugation.

The chip is connected to a constant flow of nutrient media and placed under an inverted microscope. In such chips, we follow cells throughout their lifespan.

The time-lapse images are then treated by images analysis. The output data are then analyzed to measure the rates of cell elongation, cell division and cell survival.

The cells are grown in range of temperature (33°C to 42°C), or at 37°C with 0, 0.04, 0.4, 4mg/ml glucose


Conclusion and future work

With changing temperature, we observed a scaling of mortality patterns and shifting of mortality with nutrient level. Low calorie diet appear to lower mortality, higher levels increasing mortality. This might indicate that the intrinsic stochastic processes are scaled to the environment.

We are only at the beginning in understanding the evolution of stochastic variation across genotypes and environments. In future work, we aim at investigating if stochastic variability is adaptive and how phenotypic variability evolves.

The experimental setup opens the door to move from descriptive to a predictive approach of biodemographic parameters.