Vanadium oxide nanotubes as cathode material for Mg-ion batteries

Christensen, Christian Kolle; Sørensen, Daniel Risskov; Bøjesen, Espen Drath; Kristensen, Jonas Hyldahl; Iversen, Bo Brummerstedt; Ravnsbæk, Dorthe Bomholdt

Publication date:
2016

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk.
Vanadium Oxide Nanotubes as Cathode Material for Mg-ion Batteries

Christian Kolle Christensen, a Daniel Risskov Sørensen, a Espen Drath Bojesen, b Jette Mathiesen, b Jonas Hyldahl Kristensen, b Bo Brummerstedt Iversen, b and Dorthe Bonholdt Ravnsbæk a

a Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, b Department of Chemistry, Aarhus University, c DTU Energy, Danish Technical University

Introduction
Vanadium oxide compounds as cathode material for secondary Li-ion batteries gained interest in the 1970’s due to high specific capacity (>250 mAh/g), but showed substantial capacity fading. 1 Developments in the control of nanostructured morphologies have led to more advanced materials, and recently vanadium oxide nanotubes (V\textsubscript{O}\textsubscript{2-NT}) were shown to perform well as a cathode material for Mg-ion batteries.2 In this study we have synthesized a series of VO\textsubscript{x}-NTs with varying spacer molecules. The mechanism for Mg-intercalation and deintercalation was studied by TEM-EDX and operando synchrotron powder X-ray diffraction measured during battery operation.

- The VO\textsubscript{x}-NTs consists of multiwalled scrolls of crystalline VO\textsubscript{2} layers with approximate composition VO\textsubscript{16} and primary amines in between the layers acting as spacer molecules.
- Formal Vanadium oxidation states VV/VIV = 2/5.
- Primary amines can be exchanged with metal cations with a subsequent change in layer spacing.4
- The structure allows for reversible intercalation and deintercalation of guest ions.

Discussion

The VO\textsubscript{x}-NTs are able to accommodate large change in layer spacing (~50%) upon exchange of the intercalated ions and retain their structural integrity. This ability makes it a interesting cathode material for Mg-ion batteries.

In the operated battery the (001) diffraction signal moved to lower angles during discharge, corresponding to a larger interlayer spacing. Simultaneously a new peak formed at a higher angles corresponding to shorter interlayer spacing. Mg-intercalation in the multiwalled VO\textsubscript{x}-NTs occurs within the space between the individual vanadium oxide layers of the nanotubes while the underlying VO\textsubscript{2} frameworks constructing the walls are affected only to a minor degree by the intercalation.

Materials and Methods
- VO\textsubscript{x}-NTs hydrothermally synthesized V\textsubscript{2}O\textsubscript{3} + 2C\textsubscript{12}H\textsubscript{25}NH\textsubscript{3} \xrightarrow{160^\circ\text{C},7 \text{ days}} C\textsubscript{12}V\textsubscript{O}\textsubscript{x}-NT
- Ion exchanged with Mg

- C\textsubscript{12}V\textsubscript{O}x-NTs with approximate composition V\textsubscript{7}O\textsubscript{16} and interlayer spacing, c = 27.7 Å, when dodecyl amine \(\text{C}_{12}H_{25}\text{NH}_3 \) is used as spacer molecule.
- TEM micrographs (Fig. 3-4) of the VO\textsubscript{x}-NT structure. Five fold (square pyramidal) coordinated V are depicted in blue and four fold (tetrahedral) coordinated V are depicted in green. In red the protonated primary amines, acting as spacer molecules can be exchanged with metal cations such as Mg2+ resulting in a characteristic layer spacing.

Results
- In house PXD diffraction (Fig 2) of the VO\textsubscript{x}-NTs as prepared was obtained on a Rigaku Miniflex diffractometer.
- 00l reflections are found at low angles. These are associated with the interlayer spacing, c = 27.7 Å, when dodecyl amine \(\text{C}_{12}H_{25}\text{NH}_3 \) is used as spacer molecule.
- 40l reflections are found at higher angles. These can be fitted to the 2D tetragonal basal layer (Fig. 1) with \(a = b = 6.12 Å \).

Conclusions
- Mg2+ was successfully intercalated into C\textsubscript{12}V\textsubscript{O}x-NTs
- Expansion and subsequent distortion of V\textsubscript{O}\textsubscript{2}-layers
 - Increase in interlayer spacing
 - Second and smaller interlayer spacing forms
- Results indicate 150 mAh/g reversible capacity at C/10-rate

References

Contact information
E-mail: christiankc@sdu.dk
Phone: +45 61 71 21 84