This article is an intriguing and in depth going exegetical investigation of those parts of Quine’s philosophy which center around the idea of there being “no fact of the matter” (NFM), thus especially of his thesis of the indeterminacy of translation and of the special form of physicalism endorsed by him. There is NFM with respect to a certain issue iff there is nothing on which a decision on this issue could be made; hence there is no actual matter to decide on that issue. This is what Taylor (p. 606) calls the “core concept” of NFM. Examples are provided by borderline cases of vague predicates. Thus when, e.g., Tom is a borderline case of baldness, there is no fact of the matter whether Tom is bald (p. 606). Another example of (the core concept of) NFM cited by Taylor involves counterfactual conditionals: if Obama had lost the elections, would have Biden stood to the left or right of him during Obama’s concession speech? Two possible explication of the core concept of NFM are discussed in the first section of Taylor’s article. According to the first (“semantic”) one, there is NFM regarding X if our sentences about X lack a truth-value. The second (“ontological”) explication diagnoses NFM regarding X in exactly those cases where there are no facts (or objects, or properties, or some other kind of entities) on which sentences concerning X could deal. Taylor explains that Quine, given his basic philosophical tenets, cannot accept either of these explication. This result is used in an argumentation occurring in a later part of Taylor’s article; cf. the last paragraph below.

In order to explain Quine’s technical notion of NFM, some preparatory explanations are provided in section 2 of the article. A “theory type” (p. 611) is a collection of all the theories devoted to some special scientific topic. Thus, for example, physics and chemistry, are theory types. In accordance with Quine’s general philosophy, all the theories of a type are assumed to be first-order. Natural science is conceived as a certain category of theory types. Chemistry and physics belong to this category; theories of translation, however, do not though they make up an indispensible part of science. A theory of translation for a given language contains a single predicate “means the same as” and terms denoting expressions of that language. The theory’s variables range over the expressions of that language (p. 611).

According to Quine, there is a fundamental difference between theories of translations and theories of natural science in that there is no NFM regarding the latter whereas there is NFM as regards the first. The second thesis—that concerning translation—is called “(T)” by Taylor (p. 612), the first one “(S)”. Any adequate explication of Quine’s conception of NFM has to render (S) and (T) true. In section 5 of his article, Taylor provides such an explication in two steps. First he defines a binary relation between theories of the same type (p. 618): there is NFM between two theories T_1 and T_2 of type T iff, for any possible configuration of the world at the level of elementary physics, either both T_1 and T_2 are compatible with that configuration or neither is. What is meant by
the reference to the possible physical configurations of the world becomes clearer by the following “principle of physical equivalence”. Let \(D \) be the set of physical particles and \(\{S_1, \ldots, S_n\} \) the set of their basic states and relations. Then the theories \(T_1 \) and \(T_2 \) of type \(T \) are physically equivalent iff they are compatible with exactly the same distributions of the items from \(\{S_1, \ldots, S_n\} \) over the elements of \(D \). Hence, NFM between theories amounts—according to Quine—precisely to their physical equivalence. Now, using the binary relation of NFM between theories, a higher-order predicate applying to types of theories is defined in a second step. There is \(\text{NFM}^* \) regarding a theory type \(T \) iff there are incompatible theories \(T_1 \) and \(T_2 \) of type \(T \) such that (i) \(T_1 \) is compatible with \(@ \), i.e., with the actual world’s distribution of the items from \(\{S_1, \ldots, S_n\} \) over the elements of \(D \), and (ii) there is NFM between \(T_1 \) and \(T_2 \). (One should be aware here that compatibility between two theories and compatibility of a theory with a configuration are two different relationships.) The two theses (T) and (S) setting apart translation from natural science have now to be understood in terms of \(\text{NFM}^* \): there is \(\text{NFM}^* \) regarding translation \((T^*) \); and there is not \(\text{NFM}^* \) regarding natural science \((S^*) \).

In the last two sections (secs. 6 and 7) of his articles, Taylor points out two difficulties of Quine’s conception of NFM. In sec. 6 Taylor shows that Quine’s arguments for the indeterminacy of translation are not sufficient for establishing \((T^*) \). What—according to Taylor’s analysis—Quine’s arguments concerning translation prove is the following assertion (C): there are incompatible theories—say \(T_1 \) and \(T_2 \)—of translation which both are compatible with \(@ \). \((T^*) \), however, is the assertion that there are incompatible theories of translation \(T_1 \) and \(T_2 \) such that (i) \(T_1 \) is compatible with \(@ \) and (ii) \(T_1 \) and \(T_2 \) are compatible with exactly the same distributions of the items from \(\{S_1, \ldots, S_n\} \) over the elements of \(D \). Obviously, \((T^*) \) implies (C) but is not implied by it.

In the last section, Taylor argues that the Quinean conception of NFM “is in significant tension” (p. 629) with the particular version of physicalism endorsed by Quine. Taylor’s argument proceeds by two steps. In the first of these steps, he shows that Quine’s \(\text{NFM}^* \) can be considered to be an explication of the informal “core concept of NFM” (cf. the first paragraph above) only if simultaneously some version of physicalism is accepted, too. The reason for this is that exclusively physical facts are recognized by the definition of \(\text{NFM}^* \) as possibly decisive for the case of two incompatible theories. Now, the specific version of physicalism which is adopted by Quine in his mature philosophy amounts to the thesis that there cannot be any difference between two items if there are no matters of fact in the world distinguishing them. Taylor (p. 632) provides the following more explicit formulation of this principle: there is NFM between theories compatible with the same distributions of physical states over elementary physical particles. But this actually amounts to the definition of the NFM-relation between theories. Taylor’s point is that the explicative sentence just given cannot function as both a definition and an assertion. Several possibilities to resolve the tension between physicalism and NFM—among them the option to fall back on a semantic or ontological explication of NFM—are finally considered by Taylor. All of them are shown by him to be not viable for Quine.

Reviewed by Klaus Robering