Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy; Fretté, Xavier; Christensen, Lars Porskjær

Published in:
Computer - Aided Chemical Engineering

DOI:
10.1016/B978-0-444-63428-3.50015-1
10.1016/B978-0-444-63428-3.50015-1

Publication date:
2016

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:
• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 12. Oct. 2019
Kinetics of Phycocyanobilin Cleavage from C-Phycocyanin by Methanolysis

Chandrakant R. Malwade*, Maria C. Roda-Serrat, Knud V. Christensen, Xavier Fretté, Lars P. Christensen

Department of Chemical Engineering, Biotechnology and Environmental Technology
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
crm@kbm.sdu.dk

INTRODUCTION

Phycocyanobilin (PCB) is a linear tetrapyrrole chromophore covalently attached to protein subunits of phycobiliproteins, C-Phycocyanin (C-PC) and Allophycocyanin (APC), present in the light harvesting complexes of the blue-green algae *Arthrospira platensis*. PCB absorbs light in the red region of the electromagnetic spectrum, thereby exhibiting a vivid blue color. Therefore, it has great significance to the food industry due to its potential as a natural blue food color. The chemical synthesis of PCB is very complex and economically not feasible. Hence, there is a demand for the development of process to obtain PCB from phycobiliproteins. PCB is attached to the protein subunits through a cysteine residue with a thioether linkage. In this work, the kinetics of the cleavage process of PCB from protein subunits by methanolysis is investigated.

KINETIC MODEL FOR CLEAVAGE OF PCB BY METHANOLYSIS

Cleavage of PCB can be described either as two first order reactions in parallel:

$P - ν_1(PCB(I)) \rightarrow P + ν_1PCB; \quad P - ν_2(PCB(II)) \rightarrow P + ν_2PCB$

Or two first order reactions in series:

$P - ν_1(PCB(I)) - ν_2(PCB(II)) \rightarrow P - ν_1PCB(II) + ν_1PCB; \quad P - ν_2(PCB(II)) \rightarrow P + ν_2PCB$

Where PCB(I) is easily accessible and PCB(II) is less accessible for cleavage, $ν_1$ and $ν_2$ are stoichiometric coefficients of PCB(I) and PCB(II), respectively. In a batch reactor the reactions in parallel will appear as a single first order reaction and can be represented by following set of equations:

$\frac{dC_1}{dt} = -k_1 \cdot C_1; \quad \frac{dC_2}{dt} = k_1 \cdot C_1 - k_2 \cdot C_2$

Analytical solutions for set of equations above is:

$C_1(t) = C_{10} \cdot e^{-k_1 \cdot t}; \quad C_2(t) = \frac{k_1 \cdot C_{10}}{k_1 - k_2} \left(e^{-k_2 \cdot t} - e^{-k_1 \cdot t} \right) + C_{20} \cdot e^{-k_2 \cdot t}$

Where C_{10} and C_{20} are initial concentration of PCB(I) and PCB(II), respectively

Based on stoichiometry of reaction, the concentration of PCB can be expressed as:

$C_{PCB}(t) = ν_1 \cdot C_1(t) \cdot \left(1 + \frac{ν_2}{ν_1} \cdot \frac{C_{20}}{C_{10}} \right) - ν_1 \cdot C_1(t) \cdot \left(1 + \frac{ν_2}{ν_1} \cdot \frac{C_{20}}{C_{10}} \right) \cdot \frac{k_1}{k_1 - k_2} \cdot e^{-k_2 \cdot t} + ν_1 \cdot C_1(t) \cdot \frac{C_{20}}{C_{10}} \cdot e^{-k_2 \cdot t}$

EXPERIMENTAL

- Linabue (Commercial extract of *Arthrospira platensis*) boiled in 400 mL methanol for 16 h at 65 °C
- Mixture samples are taken at regular interval for HPLC analysis
- Three different initial concentration of Linabue used

RESULTS

Table 1. Model data fitted to experimental data.

<table>
<thead>
<tr>
<th>Initial protein concentration (mg/mL)</th>
<th>$ν_1$</th>
<th>C_{10} (mg/mL)</th>
<th>$ν_2$</th>
<th>C_{20}</th>
<th>C_{10}</th>
<th>k_1 (h⁻¹)</th>
<th>k_2 (h⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.7×10⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>4.7×10⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6×10⁻³</td>
<td>33</td>
</tr>
<tr>
<td>25</td>
<td>12×10⁻³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>33</td>
</tr>
</tbody>
</table>

Cleavage of PCB as a function of time. Fully drawn lines are calculated using the model with the parameters from Table 1.

CONCLUSION

- Kinetic model describes the experimental data adequately
- The ratio between $ν_2$ and $ν_1$ is too large compared to the prior findings where a ratio 0.2 and 0.3 is more likely if all PCB is cleaved
- Although the model explains kinetic observations well, a two step model might be an over simplification

ACKNOWLEDGEMENT

This work is a part of the research within the Project Natural Blue Colorant for Food Applications financially supported by Danish Agency for Science Technology and Innovation to whom the authors are indebted