Natural blue food color from cyanobacteria Spirulina platensis

Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy; Fretté, Xavier; Christensen, Lars Porskjær

Publication date:
2015

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 31. Mar. 2020
MOTIVATION

Blue colour is an important part of the food color palette used in products such as ice cream, confectionaries, chewing gum and soft drinks. Available blue colors in the market are chemically synthesized of which EU have the following: Patent blue V, Indigotine, Brilliant blue FCF. Recently concerns have been raised about the safety of synthetic blue colors [1] and together with the growing demand among consumers for natural food colors this has increased the need for the development of natural blue colors.

INTRODUCTION

Cultivation of Arthrospira platensis

Additives removal from Linablue

- Linablue is washed with methanol to remove additives; methanol selectively dissolves D-trehalose and trisodium citrate.
- Procedure included stirring 50 g Linablue in 400 mL methanol for 30 min.
- Procedure is repeated 5 times; 20 g additive free Linablue is obtained.
- Methanol washing also aid in denaturation of phycocyanins as depicted below.

FUTURE PERSPECTIVES

- Physico-chemical properties of phycocyanobilin will be determined
- Further optimization of cleavage and purification process to obtain pure phycocyanobilin will be done.
- Stabilization and intensification of phycocyanobilin color will be attempted through its copigmentation with naturally occurring molecules.

REFERENCES