Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes

Kotowska, Dorota Ewa; El-Houri, Rime Bahij; Borkowski, Kamil; Petersen, Rasmus Koefoed; Fretté, Xavier; Wolber, Gerhard; Grevsen, Kai; Christensen, Kathrine Bisgaard; Christensen, Lars Porskjær; Kristiansen, Karsten

Published in:
Planta Medica

DOI:

Publication date:
2014

Document version
Other version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Supporting Information

Isomeric C\textsubscript{12}-Alkamides from the Roots of *Echinacea purpurea* Improve Basal and Insulin-Dependent Glucose Uptake in 3T3-L1 Adipocytes

Dorota Kotowska1,*, Rime B. El-Houri2,*, Kamil Borkowski1, Rasmus K. Petersen1, Xavier C. Fretté2, Gerhard Wolber3, Kai Grevesen4, Kathrine B. Christensen2, Lars P. Christensen2, Karsten Kristiansen1

* Dorota Kotowska and Rime B. El-Houri contributed equally to the work.

Affiliations

1Department of Biology, University of Copenhagen, Copenhagen, Denmark
2Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
3Computer-Aided Drug Design, Institute of Pharmacy, Medicinal and Pharmaceutical Chemistry, Freie Universität Berlin, Berlin, Germany
4Department of Food Science, Aarhus University, Aarslev, Denmark

Correspondence

Prof. Dr. Lars P. Christensen

Department of Chemical Engineering, Biotechnology and Environmental Technology
University of Southern Denmark
Campusvej 55
5230 Odense M
Denmark
Phone: +45 6550 7361; Fax: +45 6550 7354
lpc@kbm.sdu.dk
Fig. 1S Adipocyte differentiation of DI protocol-treated 3T3-L1 preadipocytes with DMSO, 100 μg/mL DCM root extract of *Echinacea purpurea*, 100 μg/mL fraction A, 100 μg/mL fraction D, 30 μM compounds 1/2, and 1 μM Rosi, respectively.
Fig. 2S Effect of compounds 3 and 4 at 30 μM concentration on insulin-dependent glucose uptake. DMSO (vehicle) was set to 1 and the results normalized to this, while Rosi (1 μM) was the positive control. All values are expressed as mean ± SD of three independent experiments in triplicates. *p < 0.001 indicates significance relative to DMSO in each treatment.
Fig. 3S HR-ESI-MS spectrum of compounds 1/2 with a quasi-molecular precursor ion at m/z 262.2176 [M + H]$^+$. The peak at m/z 545 corresponds to the adduct [2M + Na]$^+$.
Fig. 4S MS/MS spectrum of the quasi-molecular precursor ion (m/z 262 [M + H]$^+$) of compounds 1/2.
Fig. 5S 1H NMR spectrum of compounds 1/2.
Fig. 6 1H NMR spectrum of compounds 1/2 expanded in the region of ≈ 0.4–1.5 ppm.
Fig. 7S 1H NMR spectrum of compounds 1/2 expanded in the region ≈ 1.4–3.0 ppm.
Fig. 8S 1H NMR spectrum of compounds 1/2 expanded in the region ≈ 2.6–3.8 ppm.
Fig. 9S 1H NMR spectrum of compounds 1/2 expanded in the region ≈ 5.15–6.40 ppm.
Fig. 10S 1H NMR spectrum of compounds 1/2 expanded in the region \approx 6.94–7.34 ppm.
Fig. 11S 1H–1H COSY spectrum of compounds 1/2.