Human peroxisome proliferator-activated receptor (PPAR) γ agonists identified in selected plant extracts by bioassay-guided fractionation

Christensen, Kathrine Bisgaard; Petersen, Rasmus Koefoed; Kristiansen, Karsten; Christensen, Lars Porskjaer

Publication date: 2009

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 06. Mar. 2020
Human peroxisome proliferator-activated receptor (PPAR) γ agonists identified in selected plant extracts by bioassay-guided fractionation

Kathrine B. Christensen a,b, *, Rasmus K. Petersen c, Karsten Kristiansen d, and Lars P. Christensen b

*Department of Food Science, University of Aarhus, DK-8532 Aalslev. a Institute of Chemical Engineering, Biotechnology & Environmental Technology, University of Southern Denmark, DK-8230 Odense M. b BioLigands ApS, International Science Park Odense, DK-5330 Odense M. c Department of Biology, University of Copenhagen, DK-2200 Copenhagen

E-mail: kbch@kmb.sdu.dk

Introduction

Abdominal obesity is associated with a set of risk factors known as the metabolic syndrome. Type 2 diabetes (T2D) is one of these and is caused by a combination of insulin resistance and β-cell failure. Lifestyle modifications are rarely sufficient for the treatment of T2D, thus thiazolidinedione (TZD) drugs are often prescribed. TZDs are agonists of PPARγ, a key regulator of adipogenesis. Activation of PPARγ causes re-distribution of fat in the body, which leads to increased insulin sensitivity. Severe side-effects are associated with the use of TZDs e.g. weight gain and edemas. These side-effects occur because TZDs are full PPARγ agonists. However, it has been suggested that partial PPARγ agonists do not have severe side-effects.

Plants have been used in the traditional treatment of diabetes but the mechanism of action of the bioactive compounds is rarely known. In this study, we focused on the identification of natural products from medicinal plants able to activate PPARγ. In a screening for partial PPARγ agonists we identified several plant species (60% hit rate) able to activate PPARγ and increase insulin-stimulated glucose uptake in adipocytes without having an adipogenic potential. Many of these were also activators of PPARα and δ [1].

Purple coneflower (Echinacea purpurea)

The n-hexane extract of the flowers of purple coneflower was one of the most promising extracts with respect to activation of PPARγ. Bioassay-guided fractionation led to the isolation and identification of α-linolenic acid, linoleic acid, palmitoleic acid, dodeca-2E,4Z,10Z-tetraenoic acid isobutylamide, dodeca-2E,4E,8Z,10E-Z-tetraenoic acid isobutylamide, dodeca-2E,4E-dienoic acid isobutylamide, and the new hexadeca-2E,9Z,12Z,14E-tetraenoic acid isobutylamide (1).

A luciferase-based PPARγ transactivation assay using mouse embryonic fibroblasts was used for initial assessment of bioactivity. All three fatty acids are well-known PPARγ agonists and were also found to be active in our test-system. The alkamides also activated PPARγ, of which compound 1 was the most effective of these (Fig. 1) [2].

Compound 1 had no adipogenic potential and was able to positively affect insulin-stimulated glucose uptake in a manner similar to that of Rosiglitazone, which was used as positive control (Fig. 2) [2].

Elderflowers (Sambucus nigra)

Naringenin activated PPARγ in a dose-dependent manner (Fig. 3). Naringenin structurally resembles phytoestrogens (e.g., genistein), which are PPARγ agonists. Major elderflower metabolites such as quercetin-3-O-rutinoside, quercetin-3-O-glucoside, kaempferol-3-O-rhamnoside, and 5-O-caffeoylquinic acid were not able to activate PPARγ.

Buckwheat (Fagopyrum tataricum)

Buckwheat seeds have been reported to have anti-diabetic effects. In our screening, aerial parts, and not the seeds, were able to activate PPARγ and increase insulin-stimulated glucose uptake with no adipogenic potential. Buckwheat contains flavonoids and phenolic acids with quercetin-3-O-rutinoside as the major component [3]. Bioassay-guided fractionation led to the conclusion that α-linolenic and linoleic acid are primarily responsible for the PPAR effect of buckwheat.

Conclusions

- High hit-rate among plants for identification of PPAR modulators.
- PPAR modulators from plants are in general fatty acids together with specific metabolites such as:
 - Alkamides (preferably ≥ C16)
 - Flavonoid glycosides
- In general, flavonoid glycosides and phenolic acids do not activate PPARs.
- Potential synergistic effects exist between some of the identified PPAR modulators as overall bioactivity could not be explained completely by individual activities.

This work was funded by the EU Interreg IIIA project “Plants for Diabetes” and was a cooperation between University of Southern Denmark, University of Aarhus, Christian-Albrechts-Universität zu Kiel, and Development Centre Aalslev.