Seroprevalence of Anaplasma phagocytophilum in Danish Sheep

Andersen, Nanna Skaarup; Hansen, Signe Grave; Moestrup Jensen, Per; Thamsborg, Stig Milan; Skarphédinson, Sigurdur

Publication date:
2015

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 14. Jun. 2020
Seroprevalence of *Anaplasma phagocytophilum* in Danish Sheep

Andersen NS¹,², Hansen SG³, Jensen PM³, Thamsborg SM³, Skarphédinsson S²

1. Research Unit of Clinical Microbiology, Institute of Clinical Research, Faculty of Health Science, University of Southern Denmark, J. B. Wrinchvej 21, 2. Sal, DK-6000 Odense C.
2. CCEVI - Clinical Center of Emerging and Vectorborne Infections, Odense University Hospital, Denmark.
3. Veterinary Parasitology, Department of Veterinary Disease Biology, University of Copenhagen
4. Department of Plant- and Environmental Sciences, University of Copenhagen.

Objective

The objective of this study was to determine the seroprevalence of *Anaplasma phagocytophilum* within the Danish sheep population and to evaluate possible risk factors.

Introduction

Anaplasma phagocytophilum can cause tick-borne fever (TBF) in ruminants. *A. phagocytophilum* reduces the profitability of the livestock industry due to direct disease costs related to mortality, arthritis, and abortion, and indirect losses caused by immunosuppression, loss in milk-yield and infertility in rams. In Norway, Denmark’s northern neighbour, financial losses were estimated to be more than 3 million Euro annually due to indirect losses from TBF infections in sheep (1). *A. phagocytophilum* is known to be widely distributed in Danish *Ixodes ricinus* ticks (2). Studies have demonstrated *A. phagocytophilum* in different mammal species such as humans, roe deer, horses, cats and dogs (3–6). TBF is not a condition given much attention in Denmark and only one study has shown the occurrence of the bacterium in sheep therefore its geographical distribution is presently unknown (7).

Method

Blood was sampled from 406 clinically healthy older sheep at 25 sheep farms (Figure 1). Age, sex, breed and grazing habitat were noted. The samples were all tested for the presence of *A. phagocytophilum* antibodies using a modified commercial indirect immunofluorescence assay test – IFA (Focus Diagnostics, California, USA), replacing the conjugate with diluted (1:10) FITC-Labelled Antibody To Sheep IgG (H+L) produced in Rabbit (Seracare, KPL Antibodies and Reagents, Gaithersburg, USA) (Figure 2). Potential risk factors were evaluated for their statistical association with *A. phagocytophilum* prevalence in sheep by logistic regression using R.

Results

A total of 205 blood samples were screened positive for IgG antibodies against *A. phagocytophilum*, giving an overall seroprevalence of 50.5% (205/406) in sheep across all regions throughout the country, Table 1. The risk factors habitat and age had significant association with *A. phagocytophilum* prevalence as more infections were seen in sheep grazing nature reserves (mixed vegetation) and in sheep 4 years or older, Table 2. This corresponds well with other studies. The habitat is essential for the survival of ticks and older sheep are more likely to have been exposed to ticks.

Conclusions

This is the first study that demonstrates that antibodies against *A. phagocytophilum* is common in Danish sheep. The unawareness of TBF in the sheep industry may lead to indirect losses due to, immunosuppression, arthritis, loss in milk-yield, abortion and infertility in rams, or to direct losses in term of mortality.

Many Danish sheep are used on nature reserves to keep the vegetation down. However, in order to keep vegetation down to a point where it is a hindrance for tick survival, one would need enough sheep to accomplish this. If not the sheep can serve as a driver of the tick population and hence tick-borne pathogens such as *A. phagocytophilum*. This could have implications on the health of both humans and animals in Denmark. The extent of this is still unknown.

Figure 1: The map shows the number of sheep farms sampled within each region of Denmark

Table 1: Shows the number of sheep (n), the number of *A. phagocytophilum* seropositive sheep and the prevalence percentage of *A. phagocytophilum* within each age group.

<table>
<thead>
<tr>
<th>Age</th>
<th>No. of sheep (n)</th>
<th>No. of seropositive sheep (n)</th>
<th>Seroprevalence within an age group (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>95</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>2-3 year</td>
<td>150</td>
<td>76</td>
<td>51</td>
</tr>
<tr>
<td>2-4 years</td>
<td>161</td>
<td>86</td>
<td>53</td>
</tr>
<tr>
<td>All age groups</td>
<td>406</td>
<td>205</td>
<td>51</td>
</tr>
</tbody>
</table>

Figure 2: Sheep serum positive for *A. phagocytophilum* IgG-anti-bodies on an IFA slide. Apple-green fluorescence of *Anaplasma inclusion bodies/morulae are located focally in the cytoplasm of the granulocytes (arrow).

Table 2: The association between *A. phagocytophilum* prevalence (positive/negative by IFA) in the Danish sheep population and the risk factors habitat and age which has significant bearing on individual animal level.

<table>
<thead>
<tr>
<th>Risk factors Level</th>
<th>P-value</th>
<th>Odds ratio</th>
<th>95%-confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature reserves, predominantly dry (heather or moorlands)</td>
<td>0.011</td>
<td>3.23 – 283.47</td>
<td></td>
</tr>
<tr>
<td>Nature reserves, predominantly wet (marsh, riparian, meadows etc.)</td>
<td>0.035</td>
<td>5.47 – 103.67</td>
<td></td>
</tr>
<tr>
<td>Grasslands – permanent or within crop rotation</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>1.14</td>
<td>0.34 – 3.84</td>
<td></td>
</tr>
<tr>
<td>2-3 years</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 4 years</td>
<td>2.64</td>
<td>1.20 – 5.79</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:

SUPPORT:
The work was founded by grants from Odense University Hospital, Denmark.