Respiratory, sensory and general health symptoms in populations exposed to air pollution from biodegradable wastes

Blanes-Vidal, Victoria; Bælum, Jesper; Schwartz, Joel; S. Nadimi, Esmaeil; Løfstrøm, Per; Christensen, Lars Porskjaer

Publication date:
2014

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 11. Dec. 2019
Respiratory, Sensory and General Health Symptoms among Populations Exposed to Air Pollution from Biodegradable Wastes

Victoria Blanes-Vidal1, Jesper Bælum2, Joel Schwartz3, Esmaeil S. Nadimi4, Per Løfstrøm5, Lars P. Christensen1

Correspondence to: V. Blanes-Vidal, Associate Prof., PhD, Department of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark E-mail: vbv@kbm.sdu.dk

Background

• A large number of potentially hazardous pollutants are emitted during handling, storage, treatment and disposal of agricultural, animal and municipal biodegradable wastes.

• However, few investigations have examined the adverse effects that chronic exposures to low-to-moderate air pollution from biodegradable wastes, may have on the health of local residents.

• Besides, most studies have relied on distances to waste sites to assign exposure status, and have not investigated whether these potential exposure-health associations were direct or indirect (stress-mediated).

Methods:

• Individual-specific exposures to a proxy indicator of biodegradable waste pollution (ammonia, NH₃) in non-urban residences (6 regions of 12x12 km, n=454) during 2005-2010 were calculated by the Danish Eulerian long range transport model (DEHM) and the local-scale transport deposition model (OML-DEP).

• Logistic regression and mediating analyses were used to examine associations between exposures and questionnaire-based cross-sectional data on odor annoyance and symptoms, after adjusting by person-specific covariates.

Results

• Individual NH₃ exposures were associated with odor annoyance, increased frequency of “eyes itching, dryness or irritation” and “cough” (ORadj =3.72; 95%CI: 2.41–5.75; ORadj = 1.69; 95%CI: 1.09-2.61 and ORadj = 1.75; 95%CI: 1.12-2.74, respectively, for each unit increase in Loge(NH₃ exposure)). Significant associations were also found between individual NH₃ exposures and “chest wheezing or whistling” and “runny nose”.

• Associations between exposures and some health symptoms (“nose itching, dryness or irritation” and “runny nose”, nausea, headache, dizziness, difficulty concentrating and unnatural fatigue) were indirect (annoyance-mediated).

• Partial mediation (involving both direct and indirect effects) was found for “eyes itching, dryness or irritation” and “cough”.

Conclusions

• Environmental exposures play an important role in the genesis of respiratory, sensory and general health symptoms among residents exposed to low-to-moderate air pollution from biodegradable wastes.

• People exposed air pollution from these wastes experienced an increased frequency of respiratory and sensory irritation symptoms, and those increases showed a dose-response.

• In some cases, the health effects of air pollution seem to be indirect, relayed through stress-related mechanisms. However, we found evidence of direct effects for some of the symptoms as well.

References and more information:


1Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark
2Institute of Public Health, Research Unit of General Practice, University of Southern Denmark
3Harvard Center for Risk Analysis, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
4Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark
5Department of Environmental Science, Aarhus University, Denmark