One million ton of hydrogen is the key piece in the Danish renewable energy puzzle

Grandal, Rune Duban; Vad Mathiesen, Brian; Connolly, David; Wenzel, Henrik

Publication date:
2013

Document version
Final published version

Citation for published version (APA):
One million ton of hydrogen is the key piece in the Danish renewable energy puzzle

Rune D. Grandal*
Institute of Chemical Engineering, Biotechnology and Environmental Technology,
Faculty of Engineering, University of Southern Denmark, Odense, Denmark
e−mail: rdg@kbm.sdu.dk

Brian V. Mathiesen, David Connolly
Department of Development and Planning, Aalborg University, Copenhagen, Denmark
e−mail: bvm@plan.aau.dk, david@plan.aau.dk

Henrik Wenzel
Institute of Chemical Engineering, Biotechnology and Environmental Technology,
Faculty of Engineering, University of Southern Denmark, Odense, Denmark
e−mail: Henrik.wenzel@kbm.sdu.dk

1. Abstract
Designing a 100 % renewable energy system (RES) for Denmark, the availability of a sustainable biomass resource potential is found to be a limiting factor. The biomass demand derives from specific needs in the system, i.e. 1) storables fuel for energy for balancing fluctuating power production, 2) carbon feedstock for materials and chemicals and 3) energy dense fuels for the more demanding branches of the transportation sector such as aviation, ship freight and long distance road transportation.

The challenge of balancing electricity over different timeslots comprise a short term balancing of supply and demand in every second, but also a long term balancing between days and even seasons. The needed scale of wind power production, and balancing, will largely be determined by the availability of residual biomass.

Keywords: Renewable energy system, biomass consumption, hydrogenated fuels, surplus electricity, deficit electricity, hydro power

2. Introduction
With the long term political goal of the Danish government to become completely independent of fossil fuels in 2050, the Danish energy sector is presented with a series of obstacles. Amongst the most challenging are the limited availability of residual biomass resources and the integration of unregulated electricity production from wind, photo voltaic and wave power [1]. When constructing a 100 % RES, the design of the infrastructure supply of energy is defined by the available renewable energy resources. In the case of Denmark, this is predominantly wind power and to a lesser extends solar energy and biomass [2]. This constellation presents the designers of the RES with the challenges of efficiently integrating a large share of intermittent energy resources into the energy system, especially electricity supply [3,4], while at the same time producing sufficient quantities of energy dense and storable fuels for the transportation sector [5].

Since extensive consumption of biomass and land use changes associated with large-scale biofuel production, is resulting in significant environmental and climate issues [6], it is

* Corresponding author
essential to remain focused on how to design a 100 % RES, without overexploiting biomass resources. Hence it is evident that reducing the demand for biomass based energy, will reduce the stress placed on arable land and significantly reduce the environmental issues related to the 100 % RES.

Considering the option of integrating fluctuating renewable energy in place of biomass, the objective of this study is to analyse the ability of alternative balancing technologies to effectively integrate wind, wave and solar power. Two alternative balancing technologies, able to deliver balancing services for the Danish electricity grid, is analysed in this study. The first is storage in Norwegian hydropower, while the second is electrochemical storage, i.e. storing wind power through electrolysis and further reaction of hydrogen to hydrocarbons with carbon feedstock from biomass. This involves biomass gasification and hydrogenation of the syngas or hydrogenation of recycled CO₂.

By taking into consideration the optimal allocation of constrained biomass resources, the relevant roles of the different balancing technologies is identified in the context of a 100 % RES. Based on this analysis 3 alternative scenarios are suggested utilizing the different technologies, with the purpose of reducing the biomass consumption even lower than what is consumed in the CEESA 2050 recommendable scenario [7]. The economic feasibility of the 100 % RES scenarios will be tested against a reference scenario which allows the use of fossil fuels.

3. Methodology

3.1 Energy system analysis model

A detailed energy system analysis is carried out using the dynamic modelling tool EnergyPLAN¹ [8]. The model allows for different regulation strategies to reduce critical excess electricity production (CEEP), prioritising combined heat and power (CHP) and how much the system is able to trade with neighbouring energy systems.

As part of this study it will be analysed how relevant elements can be utilized to increase flexibility and thereby ensuring the best integration of the fluctuating renewable electricity supply.

3.2 Energy system analysis methodology

It is a central part of the study, that each of the alternative balancing technologies are placed in a plausible context of a 100 % RES, from where they can be both analysed and compared on an objective and equal basis, despite having different characteristics. It is considered essential that each technology is given the same starting point and context from where the technology can interact with the surrounding energy system.

Therefore, it is decided to use the CEESA 2050 recommendable scenario [7] as a platform for each of the alternative scenarios. This scenario is based on a very elaborate and interdisciplinary research project focused on the integration of a 100 % RES in Denmark. As the CEESA recommendable scenario forms the basis of all the alternative scenarios, many of the same assumptions and prerequisites used in the modelling of the CEESA scenarios are also used in this study.

During this study a total of 20 alternative energy pathways were designed and modelled to explore different applications of biomass and balancing technologies. Common to all systems, including all pathways and the CEESA recommendable scenario, is that they deliver the same functional output in terms of electricity, heat and transport fuels. This is both in terms of quantity and temporal distribution. The annual energy demand is found in Table 1 below:

<table>
<thead>
<tr>
<th></th>
<th>Conventional electricity</th>
<th>District heating and process heat</th>
<th>Transport (fuel)</th>
<th>Transport (electricity)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88.9 PJ/year</td>
<td>247.7 PJ/year</td>
<td>115.7 PJ/year</td>
<td>29.6 PJ/year</td>
</tr>
</tbody>
</table>

Each pathway is evaluated on especially two specific parameters. The first is the gross biomass consumption while the second is the CEEP. Since the production of wind, wave and solar power is kept constant in all pathways, the biomass consumption will largely constitute the marginal energy supply and is closely linked to the efficiency of the total energy system. The CEEP reveals how flexible the energy system is and how good the system is at integrating the intermittent electricity production. Flexibility is extremely important, partly because unused excess electricity can overload the electric grid [10], and partly because a flexible energy system is far better at utilizing fluctuating renewable energy and thereby reducing biomass consumption.

To regulate the grid a wide range of technologies, all able to increase the flexibility of the energy system, are utilized by all scenarios and pathways. These technologies and their ability to integrate wind, wave and solar power, is described in [11]. This includes heat pumps for individual heat and district heating purposes, electric vehicles, flexible CHP production using heat storages, electrolyser and flexible end user demand.

Once the flexible technologies are incapable of accommodating further fluctuating renewable electricity, EnergyPLAN activates CEEP regulation strategies. In all systems, including the CEESA 2050 recommendable scenario [1,9], CEEP reduction is regulated as follows:

- Reduce decentral CHP and replace it with boiler if appropriate
- Reduce central CHP and replace it with boiler if appropriate
- Replace boiler with electric heating in decentral district heating with maximum capacity of 600 MW
- Replace boiler with electric heating in central district heating with maximum capacity of 600 MW

Additionally most systems also increase hydrogenation of captured CO₂ if additional capacity is available. It is only on the rare occasion that the production of fuels from this technology needs to be set to a fixed level that this regulation is left out.

All pathways are modelled as closed systems using a technical regulation criteria optimization [11]. Without closing the system it is not possible to document the full extent of a given effect brought about by any changes done to the pathways, if neighbouring systems interact with the test system. As the energy trading conditions, both with regards to prices and capacities, in 2050 are subject to major uncertainties it is important to demonstrate that the system is able to operate without being dependent on trade. Based on the modelled pathways, a selection of scenarios is created to demonstrate and quantify the difference between the different balancing technologies. In respect of this boundary storage in Norwegian hydropower is
simulated as a pumped hydro system. By doing so it is ensured that the model imports the same amount of electricity as it exports and the initial assumptions regarding a closed system is maintained.

The CEESA 2050 recommendable scenario
The data template for the CEESA 2050 recommendable scenario [1,9] used in this study operates as a reference for the purpose of the energy system analysis, in the sense that the performances of the pathways and alternative scenarios are compared to the CEESA 2050 recommendable scenario.

3.3 Flexibility analysis
A flexibility analysis is carried out to compare each alternative scenario’s ability to integrate intermittent renewables. This is done by simulating each scenario with increasing penetration of fluctuating renewable electricity. The alternative scenarios are all modelled with different annual intermittent electricity production ranging from 0 PJ/y to 272 PJ/y.

3.4 Reference energy system
The reference energy system is the “business as usual” scenario. This is how the energy system is expected to look if no active political actions are taken to integrate a RES. This reference system is based on the Danish Energy Agency’s forecasts from April 2009 [12] and is identical to the one used in the CEESA project [7]. The annual energy consumption in the reference system is found in Table 2 below.

<table>
<thead>
<tr>
<th>Table 2: Energy consumption in the 2050 reference system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional electricity</td>
</tr>
<tr>
<td>168.8 PJ/year</td>
</tr>
</tbody>
</table>

Note that the consumption levels given in Table 2 are far higher than those given in Table 1. This is because the energy conservations suggested in the CEESA study [1,7] is not realized in the reference system.

4. Biomass, biomass conversion and balancing technology in the 100 % RES
Biomass is a renewable resource. Yet as with all renewable resources the supply of biomass is finite [3,13-16]. As biomass is effectively storable energy with relatively high energy density, it is very valuable in a 100 % RES, where it to some extent can substitute fossil fuels directly [2,14]. When limiting the energy supply to renewable sources, biomass fuelled power plants is a technical feasible solution, to ensure that there is a sufficient reserve capacity available when the production of intermittent renewable electricity is insufficient to meet the demand.

Unlike residual biomasses such as straw, manure and the organic fraction of MSW which are all a co-product of other processes, energy crops can respond to an increase in demand. However, the use of energy crops have been shown to have a significant impact on the both the emission of greenhouse gases [6]. It is primarily the consequences of direct and indirect land use changes, which gives cause for concern. As a result, the constraint on biomass implies that it is important to prioritize the use of biomass, using it only where technical or economic considerations prevent the use of other renewables. The CEESA study finds that the biomass potential is 240 PJ/y. Nonetheless [17] finds that environmental benefits can be attained, by reducing Danish biomass production from 240 PJ/y to 200 PJ/y. Therefore the target for this study is a biomass consumption of 200 PJ/y.
4.1 Balancing technologies

Storage in Norwegian hydropower is assumed to let the Norwegian hydropower plants operate as reserve capacity on an international market, thereby enabling the Danish energy sector to export wind power when electricity is in excess and import renewable hydropower when electricity is in deficit. A similar system design is described by [18]. By doing so, pumped hydro is kept at a minimum, while conversion efficiencies are as high as possible. Electrochemical storage operates by producing hydrogen from the electrolysis of water. All pathways assume an electricity-to-hydrogen efficiency of 73 % in the electrolyser [3]. The hydrogen is then reacted with carbon monoxide or carbon dioxide to produce a synthetic energy carrier. The carbon can come from various sources and several different variations of this technology are considered. The first is anaerobic digestion producing a mixture of methane and carbon dioxide, which can be hydrogenated to produce synthetic natural gas (SNG) [19,20]. This is done by allowing the following reaction to take place [19]:

\[\text{CO}_2 + 4 \text{H}_2 \rightarrow \text{CH}_4 + 2 \text{H}_2\text{O} \]

(1)

The energy balances used to model the methanation of biogas is shown in Diagram 1 below.

Alternatively it is possible to produce syngas through thermal gasification of solid biomass, containing a mixture of primarily carbon monoxide, carbon dioxide, various organic compounds and water [20-23]. The syngas is then subsequently hydrogenated into methanol using the following reactions [22]:

\[\text{CO} + 2 \text{H}_2 \rightarrow \text{CH}_3\text{OH} \]

(2)

\[\text{CO}_2 + 3 \text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \]

(3)

Finally it is also possible to capture carbon dioxide either from biomass conversion plants [24,25] or ambient air [26,27]. The captured carbon dioxide can then be converted into methanol using (3). The overall energy balances used to model hydrogenation of syngas and captured carbon are depicted in Diagram 2 below.
4.2 Biogas allocation

The unique characteristics and flexible nature of biogas make it worth investigating where in the 100 % RES, that biogas utilized most efficiently. The CEESA 2050 recommendable scenario suggests utilizing the biogas for heat and power production [7]. Alternatively the biogas can be used to produce high quality heat in the industry or displace methanol in the transport sector. Both alternatives are investigated as part of this study. Based on [28] it is assumed that methane is able to displace methanol 1:1 in the transport sector on a calorific basis.

5. Modelling input data

Key input data used in the modelling of the pathways is presented below.

Table 3: Modelling input data for district heating grids and power plants including cost of these plants [1,9]. This dataset is common to all pathways. *The capacity of the power plants depends on the pathway, please see chapter 5.2 for details.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Demand</th>
<th>Plant capacity</th>
<th>Efficiencies</th>
<th>Investment</th>
<th>Life time</th>
<th>Variable</th>
<th>Fixed</th>
<th>% of inv.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>P/Jy/MW-e/MW-th</td>
<td>Elect. %</td>
<td>therm. %</td>
<td>COP</td>
<td>MDKK/MW</td>
<td>years</td>
<td>O&M DKK/MWh</td>
</tr>
<tr>
<td>District heating gr 1</td>
<td>Boiler</td>
<td>10.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>District heating gr 2</td>
<td>Boiler</td>
<td>39.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94.6</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>CHP</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td>46.3</td>
<td>6.6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Heat pump</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>21.6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Electric boiler</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>District heating gr 3</td>
<td>87.6</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Boiler</td>
<td>-</td>
<td>7574</td>
<td></td>
<td>94.6</td>
<td>1</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHP</td>
<td>-</td>
<td>1269</td>
<td>59.7</td>
<td>30.3</td>
<td>1269</td>
<td>9.5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Heat pump</td>
<td>-</td>
<td>7574</td>
<td></td>
<td>30.3</td>
<td>1269</td>
<td>21.6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Electric boiler</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Power plant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
</tbody>
</table>

Any electricity production, including CHP production, is assumed to utilize fuel cell technology [7]. Therefore, CHP and peak load power (PP) plants are all fuelled by syngas from biomass gasification, while biomass boilers are fuelled by solid biomass. By constructing the gasification as integrated gasification combined cycle it is possible to create a very load flexible combined fuel and power plant [29].

Table 4: Modelling input data for thermal solar and energy storage including cost of these technologies [1,9]. This dataset is common to all pathways. *The capacity of the hydrogen storage tanks depends on the pathway, please see chapter 5.3 for details.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Output</th>
<th>Storage capacity</th>
<th>Investment</th>
<th>Life time</th>
<th>Variable O&M</th>
<th>Fixed O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>P/Jy/GWh</td>
<td>MDKK/GWh</td>
<td>MDKK/MW-e</td>
<td>MDKK/(P/Jy)</td>
<td>years</td>
</tr>
<tr>
<td>Electrolyser</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>-</td>
<td>*</td>
<td>124</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Gas grid</td>
<td>-</td>
<td>3500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>District heating gr 2</td>
<td>-</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>District heating gr 3</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Thermal solar gr 1</td>
<td>4.79</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>890</td>
<td>25</td>
</tr>
<tr>
<td>Thermal solar gr 2</td>
<td>7.49</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>890</td>
<td>25</td>
</tr>
<tr>
<td>Thermal solar gr 3</td>
<td>3.6</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>890</td>
<td>25</td>
</tr>
</tbody>
</table>
Table 5: Modelling input data for offshore wind power, onshore wind power, photovoltaic power and wave power including cost of these plants [1,9]. This dataset is common to all pathways.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Capacity</th>
<th>Correction factor</th>
<th>Investment</th>
<th>Life time</th>
<th>Fixed O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>MW-e</td>
<td>Dimension less</td>
<td>MDKK/MW-e</td>
<td>years</td>
<td>% of inv.</td>
</tr>
<tr>
<td>Onshore wind power</td>
<td>4454</td>
<td>0.512</td>
<td>8.64</td>
<td>20</td>
<td>2.7</td>
</tr>
<tr>
<td>Offshore wind power</td>
<td>10490</td>
<td>0.8</td>
<td>14.9</td>
<td>30</td>
<td>2.9</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>5000</td>
<td>0.636</td>
<td>6.7</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>Wave power</td>
<td>300</td>
<td>0.93</td>
<td>19</td>
<td>30</td>
<td>0.72</td>
</tr>
</tbody>
</table>

In Table 6, the cost of biomass gasification and synthetic fuel production is displayed. The capacities of these plants depend on the specific pathway.

Table 6: Cost of biomass gasification and synthetic fuel production [1,9]. This dataset is common to all pathways.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Investment</th>
<th>Life time</th>
<th>Fixed O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>MDKK/MW</td>
<td>years</td>
<td>% of inv.</td>
</tr>
<tr>
<td>Gasification plant</td>
<td>3.63</td>
<td>20</td>
<td>6.2</td>
</tr>
<tr>
<td>CO₂ hydrogenation</td>
<td>3.51</td>
<td>20</td>
<td>2.46</td>
</tr>
<tr>
<td>Methanol synthesis</td>
<td>3.63</td>
<td>20</td>
<td>3.96</td>
</tr>
</tbody>
</table>

In Table 7 below is the input data for the anaerobic digestion shown. The biomass input and biogas production depends on the specific pathway. The energy content of the wet biomass fraction is calculated as the actual gas yield rather than the calorific value of the diluted organic particles.

Table 7: Modelling input data for anaerobic digestion including costs of these plants. This dataset is common to all pathways. The conversion efficiency from dry biomass to biogas is based on extruded straw.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Biomass feed to biogas conversion efficiency</th>
<th>Energy consumption</th>
<th>Investment</th>
<th>Life time</th>
<th>Fixed O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Wet biomass</td>
<td>Separated biowaste</td>
<td>Other dry fractions</td>
<td>% of gas prod.</td>
<td>% of gas prod.</td>
</tr>
<tr>
<td>Anaerobic digestion</td>
<td>100</td>
<td>41</td>
<td>51</td>
<td>2.5</td>
<td>14</td>
</tr>
<tr>
<td>Reference</td>
<td>Defined</td>
<td>[30]</td>
<td>[6]*</td>
<td>[31]</td>
<td>[31]</td>
</tr>
</tbody>
</table>

5.1 Cost of Norwegian hydropower reserve capacity
The price for storing intermittent electricity in Norwegian hydropower is believed to be determined by the electricity market in Northern Europe. [18] have investigated the expected value and market price of reserve capacity in Northern Europe. The cost of Norwegian hydropower reserve is calculated based on [18] and shown in Table 9. It is for the purpose of this study assumed that the value of the exported wind power is negligible.

5.2 Peak load power plant capacity
In the CEESA 2050 recommendable scenario there is an installed power plant capacity of 10,333 MW-e, which is approximately twice the needed capacity. In all of the alternative pathways the power plant capacity is corrected accordingly.

5.3 Hydrogen storage
Hydrogen is stored prior to each synthesis. In the case of hydrogenation of captures carbon, storage capacity is equivalent to the hydrogen production from 20 hours of full load production. This is kept constant in all pathways. In the case of hydrogenation of syngas and methanation of biogas the hydrogen storage capacity in each of the pathways is optimized.

Table 8: Market price and availability compensation for Norwegian hydropower reserve capacity [18].

<table>
<thead>
<tr>
<th>Market price of reserve capacity (DKK/MW-h)</th>
<th>Availability compensation (million DKK/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upward regulation</td>
<td>Downward regulation</td>
</tr>
<tr>
<td>2306</td>
<td>317</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>
through an iterative process, starting at a storage capacity equivalent to the hydrogen production from 250 hours of full load production.

6. The alternative scenarios

Based on the modelling of the 20 alternative pathways, there is created three scenarios in total. A very simplified model of the central energy flows in each of the alternative scenarios is depicted in the figures to the left. In the CEESA 2050 recommendable scenario, half of the transport demand is covered by hydrogenated syngas and the other half is covered by hydrogenated captured carbon [1,9]. In the CO₂ Hydrogenation scenario biogas is upgraded and used as a fuel in the transport sector rather than to produce heat and power. Here it displaces methanol from captured and hydrogenated CO₂. The Hydromethanation scenario increases the displacement of methanol from CO₂ hydrogenation in the transport sector by methanating the carbon dioxide in the biogas. The Hydro Storage scenario introduces hydro storage to reduce the methanol used for heat and power production. With the exception of hydrogenation of captured carbon, none of the other technologies have a large enough potential, to balance the entire electricity supply on its own. Therefore, all three scenarios use a combination of the different technologies.

Of all of the pathways modelled in this study, only those depicted on the left managed to reduce the biomass consumption compared to the CEESA 2050 recommendable scenario.

Utilizing biogas in the industry was found to consume more
biomass then in the CEESA scenario, while utilizing methanated biogas for heat and power production, thereby creating an energy storage in the gas grid, likewise proved less energy efficient.

7. Results and discussion

The biomass consumption and electrolyser capacity in each of the alternative scenarios and the CEESA 2050 recommendable scenario is found in Table 9 below. The electrolyser capacity and, when applicable, hydro storage capacity is adjusted so that the critical excess electricity production in all systems is 0.9 PJ annually.

Table 9: Biomass demand, H2 demand and electrolyser and hydro storage capacity in each of the energy systems.

<table>
<thead>
<tr>
<th>Energy system</th>
<th>System characteristics</th>
<th>Biomass demand</th>
<th>Total capacity of electrolyser, H2 storage and reserve hydropower</th>
<th>H2 demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEESA scenario [1,7,9]</td>
<td>The original CEESA 2050 recommendable energy system</td>
<td>239.6 PJ/y</td>
<td>ELT: 9,809 MW-e H2 storage: 477 GWh Hydro: 0 MW-e</td>
<td>97.1 PJ/y</td>
</tr>
<tr>
<td>CO2 Hydrogenation</td>
<td>Utilizing syngas hydrogenation and CO2 hydrogenation to offset imbalances in the electricity supply</td>
<td>223.1 PJ/y</td>
<td>ELT: 10,125 MW-e H2 storage: 483 GWh Hydro: 0 MW-e</td>
<td>82.9 PJ/y</td>
</tr>
<tr>
<td>Hydromethanation</td>
<td>Utilizing hydro-methanation, syngas hydrogenation and CO2 hydrogenation to offset imbalances in the electricity supply</td>
<td>222.9 PJ/y</td>
<td>ELT: 10,803 MW-e H2 storage: 650 GWh Hydro: 0 MW-e</td>
<td>84 PJ/y</td>
</tr>
<tr>
<td>Hydro storage</td>
<td>Utilizing Norwegian hydropower, syngas hydrogenation and carbon capture hydrogenation to offset imbalances in the electricity supply</td>
<td>217.7 PJ/y</td>
<td>ELT: 9,928 MW-e H2 storage: 478 GWh Hydro: 1,600 MW-e</td>
<td>79.2 PJ/y</td>
</tr>
</tbody>
</table>

From Table 9 it can be seen that, compared to the CEESA 2050 recommendable scenario, the CO2 Hydrogenation and Hydromethanation scenarios display biomass fuel savings in the range of 17 PJ/y, while the Hydro Storage scenario displays savings in the range of 22 PJ/y. The savings displayed in all three alternative scenarios are primarily linked to the application of SNG as a fuel in the transport sector. By utilizing SNG to cover transport demands, the demand for hydrogen is reduced in all alternative scenarios. However, this prioritization is unable to reduce the electrolyser or hydrogen storage capacity. Consequently the operating time of the CO2 hydrogenation plants are reduced accordingly. In doing so, the excess capacity at these plants is increased, leading to a higher flexibility and better utilization of peaks from intermittent renewable electricity. On the contrary, the Hydromethanation scenario does in fact display an increase in the electrolyser and hydrogen storage, due to additional capacity demands at the biogas plants. The combination of increased flexibility and reduced hydrogen demand, results in a reduced electricity production and a reduced fuel demand at the CHP and PP plants, thereby resulting in net savings in both biomass and primary energy consumption.

In the Hydro Storage scenario further energy savings are achieved by reducing both the demand and the production of methanol for peak load power plants. The integration of hydropower storage is not able to influence on the CHP production. As a result, the demand for PP determines the potential for integrating hydropower storage. This is illustrated in graph 1, where the annual consumption of biomass in the Hydro Storage scenario is plotted as a function of reserve hydropower capacity. It is evident that the
benefit of increasing hydro storage capacity beyond 1200 MW is negligible. Ultimately the introduction of hydro storage has only a minor impact on the overall energy supply.

While reductions in biomass consumption are achieved, the consumption of biomass based energy in all alternative scenarios is still higher than the 200 PJ/y goal. To compensate, it is possible to increase the production of intermittent electricity. The potential of increased intermittent electricity production is demonstrated by the flexibility analysis. The result is displayed in graph 2. From graph 2 it can be seen that the difference between the CO₂ Hydrogenation and Hydro-methanation scenarios is negligible throughout the entire analysis. The benefit of introducing hydropower storage is greatest in the range of 113 PJ/y to 227 PJ/y of intermittent electricity production. This phenomenon is explained partly by the inability of hydro storage to displace CHP production and partly by the fact, that with increasing annual intermittent electricity production the quantity of excess electricity increases, while the quantity of electricity deficit decreases. As a result the potential for direct balancing from periods with an excess in electricity production, to periods with a deficit in electricity production is dramatically reduced. This is illustrated in graph 3 and 4 below.

Graph 2. Flexibility analysis: Annual biomass consumption as a function of annual intermittent electricity production

Graph 3. Electricity demand (blue) and intermittent electricity production (red) at 115 PJ/y of intermittent electricity production
In the first situation (graph 3) the ratio between intermittent electricity production and traditional electricity demand is roughly 1:1, whereas the ratio between intermittent electricity production and traditional electricity demand in the second situation (graph 4) is 1:2.9.

The modelling of the different alternative scenarios shows that there are some differences in the costs of the different systems. The costs of the Hydromethanation scenario and Hydro Storage Scenario are very similar, albeit the expenses are distributed differently. The cost of the CO₂ Hydrogenation is slightly lower. The increased fuel savings achieved by the integration of hydro storage is offset by the increased investments in transmission lines and reserve hydro storage capacity. In all three scenarios the savings in biomass fuel requires additional investments in excess electrochemical conversion capacity. This is especially the case in the Hydromethanation scenario, where the many decentralised hydromethanation plants results in an increase in aggregated electrolyser and hydrogen storage capacity. All three alternative scenarios are roughly as costly as...
the reference system. It is for the purpose of this study assumed that the cost of emitting CO$_2$ is 650 DKK/tonne, which is based on [32]. In graph 5 the costs and distribution of the costs are depicted. The only externality included in graph 5 is the costs associated with emitting CO$_2$. While the economic values of all eco-system services have been shown to be significant [33], the externalities caused by climate changes are by far the greatest [34]. While small differences in the cost of different systems are found, these are not statistically significant. Therefore it cannot be concluded that a RES is more or less cost-effective than a fossil energy system.

8. Sensitivity analysis

As part of the study a variety of previously assumed parameters was changed and the effect was observed. Parameters such as energy efficiency of the biogas vehicle, cost of fuel, cost of hydropower storage, cost of CO$_2$ emissions, discount rate, marginal energy supply and annual wind power production. Overall the 100 % RES displays less sensitivity towards the tested changes than the reference system. The choice of utilizing biogas in the transport sector is also beneficial even if the energy conversion efficiency of SNG is reduced to 70 % of the expected. Nonetheless is the eligibility of hydrogenation dependent on high energy efficiency of the SNG vehicles and vessels. The use of Norwegian hydro storage is at times found to have a countering effect on the changes introduced in the sensitivity analysis. Ultimately Norwegian hydro storage is found to be expensive and not a single analysis has shown that Norwegian hydro storage can be cost-effective.

In general the sensitivity analyses demonstrate that, unless radical changes to the conditions are introduced, all of the alternative energy systems are economically competitive with the reference. It is especially the uncertainties regarding the fuel costs and costs of CO$_2$ emissions which result in significant insecurities regarding the total cost of the reference system. The test of marginal energy production reveals that there is nothing suggesting that, producing marginal energy from unregulated renewable electricity rather than biomass will have a significant impact on marginal costs. Whether the production of marginal energy should come from biomass or unregulated renewable electricity should largely be decided by the significance of any externalities.

9. Conclusion

In this study three alternative energy systems have been described, quantified and modelled, all of which are 100 % renewable and take into consideration the optimal use of the constrained biomass resources. These three alternative energy systems are all based on the CEESA 2050 recommendable scenario and the performance of the alternative energy systems are compared against the CEESA scenario. The three systems utilize different combinations of balancing technologies to offset the difference in supply and demand of renewable intermittent electricity. This is done to test how the alternative balancing technologies are best applied and what difference the right choice of balancing technology makes. All three energy systems make use of a combination of electrochemical balancing technologies, while the third scenario also incorporates storage in Norwegian hydropower. It is found that in the case of a 100 % renewable Danish energy system the limitation on the potential for biomass based energy is a dimensioning factor, which necessitates a high penetration of intermittent renewable electricity production. Under such circumstances the applicability of hydro storage becomes negligible, while electrochemical conversion proves essential. Therefore, if the goal is to reduce biomass consumption in the 100 % RES to 200 PJ/y, biomass based fuels are more effectively displaced by offshore wind power production and hydrogenation of captured carbon to balance the electric grid. It is also found that if the penetration of intermittent
electricity production is at more moderate levels, the use of hydropower reserves can reduce the fuel consumption. Therefore, it is not on the basis of this study possible to exclude hydropower reserve as a viable technology used during the transition towards a 100 % RES.

Additionally it is found that the correct application of specific biomass resources, especially biogas, can make a significant difference regardless of balancing technology. The demand for hydrogenated fuels should be kept at a minimum because they are expensive and energy inefficient to produce. This implies that the synthetic biofuels should be reserved for where the demand is the greatest, namely the transport sector. Due to the high quality of SNG and the abovementioned constraints, the application of biogas in the transport sector is a viable and sensible choice. The sensitivity analysis reveals that the utilization of biogas in the transport sector is still favourable, even if the conversion efficiency of the biogas in the transport sector is reduced to 70 % of the expected. However, the use of hydromethanation is only eligible if the product gas is used as a transport fuel and if the expected conversion efficiency of SNG in the transport sector is realized.

It has not been possible to determine whether the 100 % RES are a cost-effective alternative to conventional energy systems using fossil fuels.

10. References
2. Danish commission on climate change policy, September 2010, Green energy – the road towards a Danish energy system without fossil fuels, Summary of considerations, findings and recommendations of the Danish commission on climate change policy
13. Lund, H., 2009, Renewable energy systems, the choice and modelling of 100 % renewable solutions, Chapter 6, 100 Percent Renewable Energy Systems, ISBN: 978-0-12-375028-0

