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We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build
by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three
equations expressing the structural scattering in terms of three equations expressing the sub-unit
scattering. The structural scattering expressions allow composite structures to be used as sub-units
within the formalism itself. This allows the scattering expressions for complex hierarchical struc-
tures to be derived with great ease. The formalism is generic in the sense that the scattering due
to structural connectivity is completely decoupled from internal structure of the sub-units. This al-
lows sub-units to be replaced by more complex structures. We illustrate the physical interpretation
of the formalism diagrammatically. By applying a self-consistency requirement, we derive the pair
distributions of an ideal ßexible polymer sub-unit. We illustrate the formalism by deriving generic
scattering expressions for branched structures such as stars, pom-poms, bottle-brushes, and den-
drimers build out of asymmetric two-functional sub-units.© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3682778]

I. INTRODUCTION

Scattering techniques, such as light scattering, small-
angle neutron or x-ray scattering (LS, SANS and SAXS,
respectively) are ideally suited for probing the structure of
suspensions of macromolecules, colloidal particles, and self-
assembled structures, see, e.g., Refs.1Ð3. To extract as much
structural information as possible, the data obtained from a
scattering experiment need to be analyzed via extensive mod-
eling, since scattering techniques do not provide a real space
picture or representation of the structure. A prerequisite for
the data modeling is the availability of a large number of ex-
pressions for the form and structure factors corresponding to
various geometric models for the structures. Fitting such ex-
pressions to the measured scattering data allows the structural
parameters to be extracted in an reliable and accurate man-
ner. Fortunately, scattering expressions have been derived for
a large number of model structures, see, e.g., Ref.4. SigniÞ-
cant efforts are often involved when deducing new scattering
expressions for the analysis of complex structures. Hence, it
is of great importance to have a simple formalism for how to
combine existing model structures to generate new scattering
expressions for new and more complex structures.

In the case of regular polymer structures, quite a few
expressions have been derived for example linear chains,5

block copolymers,6,7 stars,8Ð10 dendrimers,11Ð13 and bottle-
brush polymers.14,15 These expressions have been derived as-
suming that a speciÞc structure has been build out of linear
polymer sub-units. The polymer sub-units are assumed to be

a)Author to whom correspondence should be addressed. Electronic mail:
science@zqex.dk.

non-interacting and described by Gaussian chain statistics.
With these assumptions, the scattering from a structure can be
deduced from the contour length distribution separating pairs
of scatterers within a structure. The challenge is then how to
derive the contour length distribution for a given structure.

The scattering from more complex heterogeneous struc-
tures such as block-copolymer micelles16,17 can also be de-
rived. Here one has to take into account that the scattering
length density and structures of the core and corona chains,
respectively, are different. The micellar scattering has contri-
butions from pairs of scatterers in the core, pairs of scatterers
in the corona and core, and pairs of scatterers on the same and
different chains in the corona. The scattering is derived by cal-
culating all the pair-distances between the scatterers, taking
their connectivity and structure into account, and neglecting
interactions between the core and the corona chains. The mi-
celle models have been generalized to include a radial rod-like
connector between the corona chains and the core surface to
account for chain stretching close to the core18 and have also
been generalized to describe various core geometries.19

The situation becomes signiÞcantly more complex when
taking the intra-molecular interactions such as excluded
volume or Coulombic interactions into account. These can be
studied analytically by conformational-space renormalization
group theory, see, e.g., Refs.20Ð24. An alternative is to per-
form computer simulations of molecular models. Computer
simulations have, for instance, been applied to study the ef-
fects of excluded volume interactions in ßexible polymers,25

semi-ßexible polymers,26,27 bottle-brush polymers,28Ð30

micelles,16,31,32 and star-burst polymers.33Ð36 Common for
renormalization group theory and computer simulations
are that they can only be applied to speciÞc structures,
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and there are no general way to generalize the scattering form
factors to predict the scattering from related structures.

In the dilute solution case, suspended structures will on
average be far apart and their mutual interactions can be dis-
regarded. Then the scattering is given by the form factor of
the single structures. At higher concentrations, the mutual in-
teraction between structures gives rise to spatial correlations,
that can be observed as the emergence of a structure fac-
tor peak in the scattering spectrum. Various approaches such
as the random-phase approximation37 or sophisticated liquid-
state theories such as the PRISM formalism38,39 can predict
concentration effects on the scattering. However, both of these
approaches require the form factor as an input.

We present a formalism for predicting the scattering from
linear and branched structures composed of mixtures of het-
erogeneous sub-units with arbitrary functionality. The formal-
ism is exact for sub-units that are mutually non-interacting,
for links that are completely ßexible and applies to structures
that do not contain loops. No assumptions are made regard-
ing the internal structure or interactions within the sub-units.
The central idea regarding a structure as composed by non-
interacting sub-units or blocks describing has been utilized
previously by Benoit and Hadziioannou40 and Read and co-
workers.41,42

Here we derive the formalism for sub-units with arbi-
trary functionality, and derive the terms required to use whole
structures as sub-units within the formalism itself. We illus-
trate the formalism with a diagrammatic interpretation, that
establishes a direct connection between a general branched
structure and the scattering expressions characterizing that
structure. In particular, we derive the scattering that results
when two known structures are joined by a common point.
We also illustrate the formalism by deriving the scattering
expressions for anABCstructures build out of arbitrary sub-
units, and for anABstructure, chains, alternating chains, stars,
chains of stars, pompoms, and dendrimers build out of asym-
metric two-functional units.

In the present paper, we derive the general formalism and
illustrate it using complex structures composed of a single
sub-unit type, while in an accompanying paper, we will re-
view expressions for a variety of sub-units and derive scatter-
ing expressions for simple structures focusing on that the dif-
ferent ways sub-units can be joined together. Taken together,
the two papers allow the scattering from a large variety of het-
erogeneous branched structures to be derived with great ease.

When modeling an experimental small-angle scattering
spectrum, one typically starts with a geometric model from
which a form factor can be derived. This process can be quite
laborious and has to be repeated until the model describes the
experimental data. Our vision is to build model structures by
joining together well deÞned sub-units together until we ob-
tain a good Þt to the experimental scattering data. The present
formalism is a Þrst step in this direction as it ÒautomatesÓ the
process of deducing the form factor of a structure. Further-
more, within the present formalism, it is trivial to change the
connectivity of the structure, add new sub-units or replace ex-
isting sub-units by sub-units with a different structure.

The paper is structured as follows: In Sec.II , the formal-
ism is presented, and the diagrammatic interpretation of the

physics is illustrated with a generalABCstructure in Sec.III .
We introduce the special case of asymmetric two-functional
sub-units in Sec.IV. Polymers comprise the most important
sub-units, and in Sec.V, we derive the scattering expressions
of a polymeric sub-unit. To illustrate the formalism in the case
of two-functional sub-units, we derive the scattering expres-
sions for chains (Sec.VI), stars, chains of stars, and pom-
poms (Sec.VIII ), and dendrimers (Sec.IX). Finally, we con-
clude the paper in Sec.X.

II. THEORY

The present theory pertains to the small-angle scattering
from arbitrary sub-units and how to efÞciently calculate the
scattering spectra of complex hierarchical structures, that can
be build by joining such sub-units at common points denoted
vertices. Assume that theIth sub-unit is composed of point-
like scatterers, where thejth scatterer in the sub-unit is located
at a positionr Ij and has excess scattering lengthbIj . The scat-
tering length describes the interaction between a scatterer and
the incident radiation, which could be light, x-rays, or neu-
trons depending on the nature of the scattering experiment.
Let RI� denotes the position of the� th reference point asso-
ciated with theIth sub-unit. A reference point is a potential
point for connecting the sub-unit to other sub-units. A sin-
gle sub-unit can have an arbitrary number of such reference
points associated with it. While the scattering sites are real
physical entities, the reference points are just practical han-
dles that we imagine are Þxed somewhere on the scattering
sub-unit. If the sub-unit is a polymer, then a natural choice
would for instance be to have the two ends as reference points.
Once two or more sub-units are connected at the same refer-
ence point, we refer to it as a vertex in the resulting structure,
e.g., if sub-unitsI andJ are joined at reference point� , then
RI� = RJ� denotes the same location in space and vertex in
the structure. Here and in the following, capital letters refer
to sub-units, lower case letters refer to scatterers inside a sub-
unit, and Greek letters refer to vertices and reference points.

Small-angle scattering experiments measure pair-
correlation functions. For a given sub-unitI, we can deÞne
three types of pair-correlation functions: Between all pairs of
scattering sites, between all scattering sites and a speciÞed
reference point� , and between two speciÞed reference points
� and� , respectively. These are most conveniently stated in
the form of the Fourier transforms,

FI (q) = (� I )Š2

�
�

j,k

bIj bIk ei q·(r Ij Šr Ik )

�

I

, (1)

AI � (q) = (� I )Š1

�
�

j

bIj ei q·(r Ij ŠRI � )

�

I

, (2)

and

� I �� (q) = � ei q·(RI � ŠRI� )� I . (3)

The parameterq is the modulus of the scattering vec-
tor and it is deÞned by the angle between the incident and
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scattered beam and the wave length of the radiation. In
the following, we will denoteFI the form factor,AI� the
form factor amplitude relative to the reference point� , � I��

the phase factor between reference points� and � , and � I

=
�

jbIj the excess scattering length of theIth sub-unit. The
�· · ·� I averages are over internal conformations and orienta-
tions of theIth sub-unit. Due to the orientational average, the
Fourier transformed pair-correlation functions only depend on
the magnitude of the momentum transferq. Here and in the
rest of the paper, the form factor, form factor amplitudes, and
phase factors are normalized to unity in the limitq � 0.

The physical signiÞcance of the three scattering terms are
as follows. The form factor determines the scattering intensity
one obtains from a dilute solution of a single type of sub-units.
Here and in the following, we neglect the spatial correlations
that occur at high concentrations. The scattering intensity at
a certain momentum transferq is determined from the all the
interfering waves generated by the scattering sites in the sub-
unit. In a given conformation of theIth sub-unit, two sites
j andk contribute interfering waves with a phase shiftiq ·
(r Ij Š r Ik) and an amplitude given by scattering strengthbIj bIk

which is determined by the excess scattering lengths of the
two sites compared to the scattering length density of the so-
lution. The resulting intensity is averaged over all conforma-
tions and orientations of the sub-unit to produceFI(q).

The form factor amplitude is the total amplitude of the
waves scattered from the scattering sites in the sub-unit
with the phase shiftiq · (r Ij Š RI� ) measured relative to
a speciÞc reference point and a scattering strengthbIj . The
resulting amplitude is averaged over all conformations and
orientations to produceAI� (q). The phase factor measures
the average phase difference between two reference points
averaged over sub-unit conformations and orientations. In
the special case where the distance is Þxed, then the
phase factor is given by� I�� (q) = sin (q|R� Š R� |)/
(q|R� Š R� |). Neither the form factor amplitude nor the phase
factor can be measured directly for single sub-units in dilu-
tion, but their contributions to complex structures can be in-
ferred using contrast variation techniques.

The form factor, form factor amplitude, and phase factor
can be regarded as propagators of correlations analogous to
Feynman diagrams from quantum Þeld theory or Mayer clus-
ter diagrams from liquid state theory, see, e.g., Refs.43 and
44. In Fig. 1, we diagrammatically represent the sub-unit as
an ellipse, where the scattering sites are associated with the
inside the ellipse, and reference points are associated with the
circumference of the ellipse. The form factor is shown as a
line inside the sub-unit, because it represents the sub-units

FIG. 1. Diagrams and symbols for the form factor, form factor amplitude
relative to the reference point� , and phase factor between reference points�
and� . The� I prefactor is the total excess scattering length of theIth sub-unit.

site-to-site pair-correlation function which propagates posi-
tion information between unspeciÞed pairs of scattering sites
inside the sub-unit. The form factor amplitude is shown as a
line between a reference point and the sub-unit interior, be-
cause it represents the site-to-reference point pair-correlation
function which propagates position information between scat-
tering sites in the sub-unit and the speciÞed reference point.
Finally, the phase factor is shown as a straight line between
to reference points, because it represents the reference point-
to-reference point pair-correlation function which propagates
position information between two reference points.

We can generate complex structures by joining sub-units
at reference points to form vertices in the structure. Since
a single sub-unit can have an arbitrary number of reference
points associated with it, and we can join an arbitrary number
of sub-units at a vertex, rather complex structures can be gen-
erated. A diagrammatic example of such a structure is shown
in Fig. 2, which shows a number of different sub-units (cap-
ital letters) connected by vertices (Greek letters). The struc-
ture has both one, two, and three functional sub-units. Paths
that connect speciÞed vertices and reference points through
such structures play a key role in the formalism we present
below. On the Þgure is shown three examples of such paths
connecting vertices. The structure also contains internal ver-
tices joining sub-units and external ÒfreeÓ reference points.
Further sub-units can be linked to the ÒfreeÓ reference points
and to the internal vertices of the structure. Note that the
same Greek vertex label is used in all the sub-units reference
points linked to a vertex, such that we get branched struc-
tures where each vertex has a unique label. For a concrete
example, polymer sub-units can be joined into a large variety
of block-copolymer and branched structures by end-linking
them. Alternatively, the sub-unit could be a block copolymer,
a f-functional polymer star or agth generation dendrimer, and

FIG. 2. Diagrammatic representation the connectivity and vertices (� , � , � ,
	 , µ , 
 , � ) and reference points (� ,  , � , � ) of a star like structure composed
of many sub-units. Shown on the Þgure are the pathP(� , � ) connecting sub-
unit G andP (solid), the pathP(� , 
 ) connectingP andK (dotted), and the
pathP(� , 
 ) connectingG andK (dashed).
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the more complex sub-units could be linked tip-to-tip to form
chains.

The scattering from such a composite structureS is de-
Þned analogously to the form factor of a single sub-unit as

FS(q) �

�
�

I

� I

� Š2 �
�

I,J

�

i,j

bI i bJj ei q·(r I i ŠrJj )

�

S

, (4)

where the Þrst sum is over sub-units. If we assume that joints
are completely ßexible such that sub-units joined by a com-
mon vertex can rotate freely with respect to each other, that
the resulting branched structure does not contain any loops,
and that all sub-units are mutually non-interacting, then we
arrive at a scattering expression for the whole structure ex-
pressed exclusively in terms of the sub-unit scattering contri-
butions (Eqs.(1)Ð(3)) as

= � Š2
S

�

	
	
	
	
	



�

I

� 2
I FI (q) +

�

I �= J
� � I near� � J

� I � J AI � (q)AJ � (q)
�

(K,�,� )
� P(�,� )

� K� � (q)

�






�

. (5)

Details of the derivation of this expression are given in
the Appendix. The total scattering length of the structure is
� S =

�
I � I . The structural form factor represents the site-

to-site pair-correlation function of the structure build out of
sub-units. It consists of two terms where the Þrst is a sum
over all contributions from all pairs of scatterers inside the
same sub-unit, and the second term is double sum over all the
interference contributions from pairs of scatterers residing in
different sub-units. How should the sum in the second term
be evaluated? For each distinct pair of sub-unitsI andJ in the
double sum, we identify the vertex� on sub-unitI nearest to
J and vertex� on sub-unitJ nearest toI. Here ÒnearÓ means
in terms of the shortest path originating at a vertex onI and
terminating at a vertex onJ. We denote the path connecting�
and� through the structureP(� , � ). For the product, we have
to identify all sub-unitsK on the path and also identify the ver-
tices� and� across which the path traverses the sub-unit. This
construction is always unique and well deÞned for structures
that does not contain loops. While the expression for the struc-
tural form factor appears quite complex, this is mostly due
to the notation we have had to introduce to describe general
branched structures. In mathematical terms, structures such
as the one shown in Fig.2 belong to the class of hypergraphs
since not only can multiple sub-units share the same vertex,
but a single sub-unit can also have multiple reference points.

The form factor expression (Eq.(5)) has a quite simple
physical interpretation. The structural form factor is the pair-
correlation function between all sites in the structure. This
is obtained by propagating position information between all
scattering sites in the structure. When both scattering sites be-
long to the same sub-unit, this is given by the sub-unit form
factors and is described by the Þrst term. The distance in-
formation between scattering sites are on different sub-units
is obtained by propagating position information along paths
through the structure (using Eq.(A3) in the Appendix). To
propagate site-to-site position information between scatter-
ers in sub-unitI and scatterers in sub-unitJ, we Þrst have

to propagate the position information between the scattering
sites in sub-unitI to the vertex� nearestJ. This is done by
the form factor amplitude� IAI� . The position information is
then propagated along the path of intervening sub-units to-
wards the vertex� on sub-unitJ, which is nearestI. Each time
a sub-unit is traversed it contributes a phase factor� K� � to
account for the conformationally averaged distance between
the two vertices. Finally, the position information is propa-
gated between the vertex� and the scattering sites inside the
J sub-unit. This is done by the Þnal form factor amplitude
� JAJ� . Only the amplitudes have a scattering length prefac-
tor, since they represent the amplitudes of scattered waves
from all the scatterers inside the sub-units relative to the�
and � vertices while the product of phase factors represent
excess phase contributed by the path between the vertices.
The product of all these propagators describes the scatter-
ing length weighted interference contribution from theIth
andJth sub-units. The same process can be described in real
space, where the product of propagators becomes a convolu-
tion of the site-to-vertex, vertex-to-vertex, and vertex-to-site
sub-unit pair-correlation functions that the propagators repre-
sent. This convolution produces the excess scattering length
weighted site-to-site pair-correlation function for sub-unitsI
andJ. Since the pair-distances betweenJandI also contribute,
all interference terms are counted twice in the structural form
factor.

In Fig. 2, we show multiple connected sub-units to
illustrate how to calculate some of the interference contri-
butions in more detail, and how to Þnd the closest vertices
and paths through a branched structure. For neighbors such
as theG and H sub-units, the vertex� on G is nearestH,
just as it is the vertex onH nearestG. Hence� = � = � ,
and the path of sub-units between themP(� , � ) = P(� , � )
= {} is the empty set. The product over the empty set is
unity by deÞnition. TheG and H sub-unit pair contributes
a scattering term� G� HAG� AH� . For next nearest neighbors
such asM andP, the vertex� onM is nearestP, while � onP
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is nearestM. The path between the two vertices traverses the
N sub-unit across the� and� vertices:P(� , � ) = {( N, � , � )}.
The sub-unit pairM andP contributes an interference term
� M� PAM� � N� � AP� . For second nearest neighbors such asN
andO, the path runs between� andµ , and the path isP(� ,
µ ) = {( M, � , 	 ), (L, 	 , µ )}. Hence the sub-unit pairN andO
contributes a term� N� OAN� � M� 	 � L	µ AOµ . Three long paths
are shown in the Þgure. The sub-unitsG andP contribute a
term� G� PAG� � H�� � L�	 � M	 � � N� � AP� , the sub-unitsP and
K contribute a term� K� PAK
 � O
µ � Lµ	 � M	 � � N� � AP� ,
and the sub-units G and K contribute a term
� G� KAG� � H�� � L�µ � Oµ
 AK
 . The reference points� ,
� , � , and � can be used to add further sub-units to the
structure, but the form factor is independent of these since
no path between vertices will ever start at, terminate at, or
traverse an exterior reference point.

Note that the assumptions of ßexible joints, mutually
non-interacting sub-units, and branched structures without
loops allow us to exactly derive the form factor of the whole
structure without making any assumptions about the speciÞc
structure inside the sub-units. In this sense, the scattering from
factor is general as it allows us to write down scattering ex-
pressions for a connected structure withouta priori knowl-
edge of the sub-units that the structure is build of. If any
of these assumptions are not strictly fulÞlled, then the struc-
tural scattering expression above can be regarded as the ze-
roth order term in an perturbation expansion of these effects.
Whether this is a good or bad approximation depends on the
detailed structures in the sub-units and their interactions. A
special case of this expression was derived and used for two
functional polymer structures in Refs.4, 40, and41.

Using Eq. (5), we can calculate the form factor for a
whole structure in terms of the fundamental sub-units it is
build of. However, when modeling the scattering from com-
plex structures, it is advantageous to be able selectively mod-
ify parts of the structure while retaining the rest, or to add
more sub-units to an existing structure. To model the re-
sulting change in the scattering spectrum, it is advantageous
also to derive the form factor amplitudes and phase factors
of the whole structure. The form factor amplitude of the
whole structure relative to the reference point or vertex� is
deÞned as

AS� (q) �

�
�

I

� I

� Š1 �
�

I

�

k

bIk ei q·(r Ik ŠRS� )

�

S

, (6)

again with the same assumptions as for the form factor of the
structure, we can rewrite and express the form factor ampli-
tude of the whole structure in terms of the sub-unit scattering
contributions as

= � Š1
S

�

	
	
	
	
	



�

I
� � I near�

� I AI � (q)
�

(K,�,� )
� P(�,� )

� K� � (q)

�






�

. (7)

Again, we refer to the Appendix for details. Here the sum
denotes that on each sub-unitI, we have to identify the ver-
tex on the sub-unit� that is nearest� in terms of structural

connectivity. For each vertex a structure has, there will be a
corresponding form factor amplitude. We can also deÞne and
derive the phase factor between any two vertices on the whole
structure as

� S�� (q) � � ei q·(RS� ŠRS� )� S =
�

(K,�,� )
� P(�,� )

� K� � (q). (8)

The structural form factor amplitude and phase factor
also have simple physical interpretations despite their com-
plex appearance. The structural form factor amplitude prop-
agates position information between the vertex or reference
point � and all scattering sites in the structure. For a particular
sub-unitI and vertex� nearest� , we Þrst have to propagate
position information between� and the end� vertex on the
path pathP(� , � ). Each sub-unit the path traverses contributes
a phase factor� K�	 . Then position information is propagated
between the� vertex and all the sites inside theIth sub-unit,
which is represented by the form factor amplitudeAI� . The
product of all the propagators produces the form factor am-
plitude which represent the total amplitude of scattered waves
from scattering sites in the structure measuring the phase rel-
ative to the� reference point or vertex. The same process can
be described in real space, where the product of propagators
becomes a convolution of the vertex/reference point-to-vertex
and vertex-to-site sub-unit pair-correlation functions that the
propagators represent. This convolution produces the excess
scattering length weighted site-to-vertex/reference point pair-
correlation function for the whole structure. The interpreta-
tion of the structural phase factor is that it propagates distance
information between the vertex/reference point� and the ver-
tex/reference point� . This is the product of all the phase fac-
tors� K�	 for each sub-unit that has to be traversed on the path
P(� , � ) through the structure. The phase factor represents the
phase difference between two reference points or vertices in
the structure averaged over the conformation and orientations
of all sub-units in the structure.

Having deÞned and derived the form factor amplitudes
and phase factors of a general structure, we have completed
the formalism in the sense that we can now regard any struc-
ture described by the formalism as a sub-unit in the formalism
itself. This enables us to compose and combine several struc-
tures to build new structures. For instance, if a new structure
Ris formed by joining two known structuresSandT at a com-
mon vertex� , then the form factor, form factor amplitude of
the resulting structure can be derived from Eqs.(5)and(7).
They are given by

FR = � Š2
R

�
� 2

SFS + � 2
T FT + 2� S� T AS� AT �

�
, (9)

AR� = � Š1
R (� SAS� + � T � S�� AT � ) if � � S, (10)

where a similar expression applies for the form factor ampli-
tude when� � T with SandT interchanged. Here the excess
scattering length of the whole structure is� R = � S + � T. The
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phase factors of the resulting structureRare given by

� R�	 =

�
�����

�����

� T�� � S�	 if � � T , 	 � S

� S�� � T �	 if � � S, 	 � T

� S�	 if � � S, 	 � S

� T�	 if � � T , 	 � T

. (11)

These expressions also apply in the special case where
one or both of the structures are single sub-unit, hence they
allow us to grow the scattering expressions for a structure
by progressively growing the structure one sub-unit or sub-
structure at the time. Another operation is to delete a sub-unit
K from a given structure, the simplest way is to collapse all
vertices to a single non-scattering point: this is done by the
substitutionFK = 0, AK · = 0, � K = 0 and� K · · = 1 where
· denotes any vertex of theKth sub-unit.

What have we learned by this exercise? We have ex-
pressed the three scattering expressions for a whole structure
(Eqs.(5), (7), and(8)) in terms of three scattering expressions
for the sub-units (Eqs.(1)Ð(3)) that the structure is composed
of. The structural scattering expressions are generic in the
sense that they has been formulated without making any as-
sumptions of the internal structure of the sub-units. The price
we pay for this is that the formalism is only exact for mutually
non-interacting sub-units that are joined by completely ßexi-
ble joints. The formalism makes it easy to derive the form fac-
tors of hierarchies of progressively more complex structures.
We have, for instance, shown how to generate a new structure
by two sub-units together and to delete sub-units. Repeating
these operations allows us to join multiple structures together
and remove parts of the structures again. We can also replace
sub-units by sub-units with another structure, or even identify
sub-unit motifs and replace them by other motifs when they
have the same external vertices. The price we pay to be able to
generate structures from structures is that none of these struc-
tures can contain loops. To summarize, the present formalism
allows us to construct scattering expressions for a large class
of structures, and we have formulated it in a way that allows
us to easily write a computer program or use computer aided
algebra programs to construct scattering expressions and eval-
uating them for any given structure.

The diagrammatic interpretation of the formalism estab-
lishes a direct mapping between the sub-units and the struc-
tural connectivity on the one hand and on the other hand the
algebraic structure of the structural scattering expressions. If
we generate a new structure by any of the structural transfor-
mations above, the diagrammatic interpretation allows us to
directly write down the corresponding algebraic transforma-
tion of the scattering expressions. Having proved the valid-
ity of diagrammatic interpretation by deriving the structural
scattering expressions, we can in essence forget these com-
plicated equations and remember only their simple diagram-
matic interpretation, as it allows to write down the general
structural scattering expressions and apply them to any struc-
ture described by the formalism.

FIG. 3. A structureScomposed of three sub-unitsA, B, andC that are joined
at two vertices� and � and has two reference points� and 	 . (left) The
whole structure can equally well be regarded as a single four functional sub-
unit with an internalABCstructure. (right)

III. GENERIC ABC STRUCTURE

In Fig.3, we shown the simpleABCstructure where three
sub-units have been joined by two vertices to form a linear
chain. This could for instance describe a tri-block copolymer
if the three sub-units are polymers, but it could also describe
two colloidal particles bridged by an adsorbed polymer, or a
protein with two dangling tails. Since we have both Eq.(5),
(7), and(8), we can derive all the scattering terms describing
the structure, and hence regard the whole structure as a single
sub-unitScharacterized by four vertices/reference points. In
Fig. 4, we show all the terms that contribute to the form fac-
tor, in Fig.5, we show all the terms that contribute to the form
factor amplitude relative to� , and in Fig.6, we show two
of the phase factors characterizing theABC structure. Sim-
ilarly, we could specify the form factor amplitudes relative
to all other reference points or vertices and phase factors be-
tween all reference points or vertices. The diagrammatic rep-
resentation illustrates how all possible pair-distances between
the sub-units are accounted for by similar terms in the scat-
tering expressions for the structure. In a similar way, we can
directly write down the generic scattering expressions for any
branched structure of sub-units that we can imagine.

IV. TWO FUNCTIONAL SUB-UNITS

In the following, we will focus on how the general for-
malism can be applied to derive the scattering expressions
for structures build of sub-units and structures with only two

FIG. 4. Form factor of the structure shown in Fig.3 along all the contributing
terms and their diagrammatic representations.
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FIG. 5. Form factor amplitude of the structure shown in Fig.3 relative to the
� vertex along with all the contributions and their diagrammatic representa-
tion.

reference points. We refer to these as the ÒleftÓ and ÒrightÓ
ends. This is illustrated in Fig.7. The sub-unit could for in-
stance be polymers or rigid rods. These are symmetric in the
sense that the scattering from a structure is unaffected if we
ßip the ends of a polymer or rod sub-unit (assuming a constant
scattering length density along the sub-unit). The sub-units
could also be more complex asymmetric structures such asAB
block copolymers, where the scattering from a structure will
change if we ßip aAB block-copolymer turning it into aBA
block-copolymer (e.g.,ABCandBACstructures will produce
different scattering spectra). We can also regard any complex
branched structure as being effectively two functional, if we
choose two special vertices or reference points in the structure
and regard these as the ÒleftÓ and ÒrightÓ ends of the structure.
For instance for a star, we can pick the tips of two arms as the
reference points.

For two functional sub-units, theJth sub-unit is com-
pletely characterized byFJ, AJR, AJL, and� J, which denote
the form factor, form factor amplitude relative to the left/right
ends and phase factor between the left and right ends of the
sub-unit, respectively. In the following, instead of using Greek
indices for reference points/vertices, we will instead use ÒleftÓ
and ÒrightÓ ends denoted by subscriptsL andR as illustrated
in Fig. 7. The scattering from anAB structure where the right
end ofA is joined with the left end ofB is a special case of
Eqs.(9)Ð(11). The scattering from anABstructure is given by

FAB (q) = (� A + � B)Š2 �
� 2

AFA + � 2
BFB + 2� A� BAARABL

�
,

(12)

FIG. 6. Phase factors the structure shown in Fig.3 between the� and 	
vertices and between the� and� vertices.

FIG. 7. A linear sub-unitJ shown as a line connecting the left and right ends
(denotedL andR). Also shown is anAB structure where the right end ofA is
linked to the left end ofB.

AAB,L (q) = (� A + � B)Š1 [� AAAL + � B � AABL ] , (13)

AAB,R (q) = (� A + � B)Š1 [� BABR + � A� BAAR] , (14)

� AB (q) = � A� B . (15)

Here we choose the free end of theA sub-unit as the ÒleftÓ
end, while the free end of theB sub-unit is the ÒrightÓ end. We
can also easily simplify the scattering expressions from the
ABCstructure to produce an effective two functional structure
analogously to theABstructure.

V. POLYMER SPECIAL CASE

In the present paper, we focus on scattering expressions
of complex structures. However, we will (re)derive the func-
tions representing a ßexible polymer. Polymers deserve spe-
cial attention, since they are the most important building
block of a large variety of synthetic branched molecular struc-
tures. A di-block copolymerAB6,7 consists of two polymer
moleculesA andB linked end-to-end. The polymers are sym-
metric, hence the left and right form factor amplitudes for the
sub-units are identical, and we can discard theL andR sub-
scripts in Eqs.(12)Ð(15).

Single polymer withn monomers can equally well be re-
garded as a di-block copolymer of two identical blocks ofn/2
monomers each (� A = � B). The form factor, form factor am-
plitude, and phase factor are dimensionless numbers. Hence
they depend not only onq, which has units of reciprocal
length, but also a characteristic length scale of the polymer.
Choosing the radius of gyrationR2

g = b2n/ 6 whereb is the
step length andn the number of steps, we can deÞne a dimen-
sionless parameterx = q2R2

g. Then-monomer longABpoly-
mer is characterized by the three functionsFAB = Fpolymer(x),
AAB = Apolymer(x), and� AB = � polymer(x) while the twon/2-
monomer longA and B polymers are characterized byFA

= FB = Fpolymer(x/2), AA = AB = Apolymer(x/2), and� A = � B

= � polymer(x/2). Requiring the scattering from theAB poly-
mer is identical to that of theA andB end-linked polymers of
half the number of monomers in Eqs.(12)Ð(15) produce the



104105-8 C. Svaneborg and J. Skov Pedersen J. Chem. Phys. 136, 104105 (2012)

following functional equations:

Fpolymer(x) =
1
2

�
Fpolymer

� x
2

�
+ A2

polymer

� x
2

��
, (16)

Apolymer(x) =
1
2

Apolymer

� x
2

� �
1 + � polymer

� x
2

��
,

(17)
and

� polymer(x) = � 2
polymer

� x
2

�
. (18)

The latter equation has the obvious solution� polymer(x)
= exp (Š � x). Here � is a scaling factor that we set to
unite without loss of generality, since it corresponds to
a trivial rescaling ofx. Using the ansatzApolymer(x) = 1
+

� �
n= 1 � nxn and Taylor expanding both sides of Eq.(17)

and applying the same approach to the form factor, we obtain
the polymer solutions,

� polymer(x) = exp(Šx), Apolymer(x) =
1 Š exp(Šx)

x
,

(19)
and

Fpolymer(x) =
2[exp(Šx) Š 1 + x]

x2
. (20)

These results were previously obtained by Hammouda12

and Debye5 by performing the conformational and ori-
entational averages of Eqs.(1)Ð(3) explicitly for the
Gaussian pair-distance distributions characterizing a random
walk. Here these solutions emerge as a self-consistency check
of the present formalism, when requiring self-similarity of an
object with fractal dimension two while undergoing a par-
ticular scaling transformation. Note that we could not have
obtained the form factor expression unless we had all three
structural scattering expressions.

A polymer sub-unit is completely characterized by the
triplet of form factor, form factor amplitudes, and phase fac-
tors. The scattering expression for an ßexible ABC block-
copolymer is obtained by settingFA(q) = Fpolymer(RgAq),
AA(q) = Apolymer(RgAq), and� A(q) = � polymer(RgAq) and simi-
lar for the B and C blocks in the generic ABC structure, where
RgA, RgB, andRgC denote the radii of gyration of the three
blocks in Figs.4 and5. This is a concrete example of how
the present formalism allows us to write down generic struc-
tural scattering expressions and choose which triplets should
be used to characterize the internal structure of the sub-units.
Note that these scattering expressions are speciÞc to poly-
mers, all other scattering expressions in this paper are generic
in the sense that they remain valid regardless of which sub-
unit structures are chosen.

VI. CHAIN STRUCTURES

Figure8 shows how a linear chain can be build byN re-
peated sub-units joined left end to right end. We regard the
chain as an effective two functional structure deÞned by the
left and right free ends. In the case of a chain, the scattering

FIG. 8. Building a chain ofN left-end to right-end linked sub-units. Sub-
stituting the chain sub-unit with any sub-structure produces a chain of such
structures, here is shown the result of substituting anABstructure to produce
a chain of alternating sub-units.

expressions (Eqs.(5)Ð(8)) become

Fchain(q) =
F
N

+
2ARAL

N 2
((N Š 1) + (N Š 2)�

+ (N Š 3)� 2 + · · · + 2� NŠ3 + � NŠ2),

(21)

=
F
N

+ 2
� N Š N� + N Š 1

N 2(� Š 1)2
ARAL . (22)

The terms of the form 2CnAL� nAR encode the fraction of
neighbors pairsn sub-units distant from each other. The form
factor amplitude of a chain relative to the left end is given by

Achain,L (q) =
AL

N
(1 + � + � 2 + · · · + � NŠ1)

=
AL

N
� N Š 1
� Š 1

. (23)

Here the prefactors of theBnAL� n encode the fraction of
units that are a certain distance from the vertex� . An identical
expression exists for the right end (denotedR) with L replaced
by R. Finally, the phase factor between the two ends becomes

� chain(q) = � N . (24)

VII. SUBSTITUTION

Except for the polymer, all the expressions presented
above are generic in the sense that they have been derived
without making any assumptions about the internal structure
of the sub-units themselves. If we, for instance, insert the
polymer scattering expressions into these generic expressions,
the result becomes the speciÞc scattering expressions for di-
and tri-block copolymers and end-linked chains of polymers.
Since we also have derived not only the form factor, but also
the form factor amplitudes and phase factors for these generic
structures, we have completed the formalism, such that we
can also use a whole structure as a sub-unit to build more com-
plex generic structures. For example, aABAB· · ·AB structure
is a chain ofN repeatedAB structures as shown in Fig.8. We
can generate the corresponding generic structural scattering
expressions by combining theN-repeated chain expressions
(Eqs. (22)Ð(24)) with those of anAB structure (Eqs.(12)Ð
(15)). This is done by the substitutionF � FAB, AR � AAB, R,
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AL � AAB, L, and� � � AB in Eq. (22). The result for the
genericAB N-repeated chain form factor is trivially obtained
as

Fchain,AB (q) =

�
� 2

AFA + � 2
BFB + 2� A� BAARABL

�

�
N (� A + � B)2 �

+ 2
� N

A � N
B Š N� A� B + N Š 1

N 2 (� A� B Š 1) (� A + � B)2

× [� AAAL + � B � AABL ]

× [� BABR + � A� BAAR] , (25)

and in a similar way, we can easily obtain the left and right
form factor amplitudes and the phase factor for this structure.
If we had substitutedFA � Fchain A, AAR � Achain A, R, AAL

� Achain A, L, � A � � chain A and similar for sub-unitB in
Eq. (12), then the result would have been the generic form
factor for anAA· · ·AABB· · ·BB structure. Inserting the poly-
mer expressions (Eqs.(19)Ð(20)) in these generic expressions
would specialize them to produce the corresponding block-
copolymer scattering expressions. We could, for instance, also
choose other sub-units, e.g., rods and insert the correspond-
ing scattering expressions for a rod sub-unit to specialize the
generic scattering expression above for a chain of alternating
polymers and rods. Since we can also easily calculate the form
factor amplitudes and phase factor for these structures, these
expressions can also serve as sub-units to build more complex
structures out of alternating chains of sub-units.

VIII. STAR STRUCTURES

The simplest branched structure is that of a star. The scat-
tering from a polymeric star was derived by Benoit.8Ð10 The
generic scattering expression for a star structure off identi-
cal sub-unit arms attached by their left end to a central point
follows from(5) as

Fstar(q) =
1
f

�
F + (f Š 1)A2

L

�
. (26)

The star hasfF contributions from the form factor of each
arm, while there aref (f Š 1)A2

L interference contributions
between the arms, since the Þrst scatterer can be on any of the
f arms, while the second scatterer can be one of the remaining
f Š 1 arms. We normalize with the total number of contribu-
tions which isf 2. Each interference term contributesA2

L since
the two arms are joined by their left end. Since all arms are
joined by the common center of the star there are no phase
factors.

To make the star an effectively two-functional sub-unit,
we can pick two vertices as the ÒleftÓ and ÒrightÓ ends to ex-
press the star form factor amplitude and phase factors. There
are two natural options: The free end of an arm (denoted
ÒeÓ) or the center of the star (denoted ÒcÓ), which leads to
three possible structures center-to-center (ÒccÓ), center-to-end
(ÒceÓ), or end-to-end (ÒeeÓ). Their form factor amplitudes and

FIG. 9. Comparison between the chain structures produced when substitut-
ing the sub-unit for a center-to-center, center-to-end, and end-to-end star.

phase factors are given by

Astar,e(q) =
1
f

�
AR + (f Š1)�A L

�
, and Astar,c(q) = AL ,

(27)

� star,cc(q) = 1, � star,ce(q) = �, and � star,ee(q) = � 2.
(28)

Figure9 shows the effect of the three substitutions:

F � Fstar AL � Astar,c AR � Astar,c � � � star,cc,

F � Fstar AL � Astar,c AR � Astar,e � � � star,ce,

and

F � Fstar AL � Astar,e AR � Astar,e � � � star,ee,

in a chain ofN = 2 repeating sub-units. The result is respec-
tively a center-to-center, center-to-end, and end-to-end linked
stars. The center-to-center linking produces aNf functional
star, while the center-to-end linking produces a bottle brush
with a f Š 1 functional end andf + 1 functional branching
points inside the bottle brush and a single arm joining each
branch point. End-to-end linking produces a bottle brush with
f functional branch points and where the branch points are
separated by two arms lengths. These structures are geometri-
cally restricted in the sense that the star centers are separated
by zero, one, or two arms lengths. We can obtain more control
over the bottle-brush structure by having a ßexible spacer sub-
unit between the stars. Using theABAB· · ·ABstructure withA
being a center-to-centerf-functional star, andB a spacer sub-
unit produces the form factor of a bottle brush, this is obtained
by the following substitutions in Eq.(25):

FA � Fstar AAL � Astar,c AAR � Astar,c � A � � star,cc,

and

FB � Fs ABL � As,L ABR � As,R � B � � s.
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Here Fs, As, L, As, R, and � s characterize the spacer,
which could, e.g., be given by the polymer expressions
(Eqs.(19)and(20)). Since these expressions are obtained by
trivial substitutions, we shall not state them here for sake of
brevity. The scattering from a bottle brush with random po-
sitions of the polymeric side-chains was derived by Casassa
and Berry.14,15 The generic scattering expressions for a mik-
toarm star structure with two types of arms can be produced
from theAB structure, where each sub-unit is substituted for
stars that are linked center-to-center. Similarly, we can obtain
the generic scattering expressions for a pom-pom structure by
specializing theABCstructure (Fig.4) to represent two iden-
tical center-to-center stars (A andC) separated by a spacer (B)
sub-unit,

Fpompom(q) = (2� star + � s)Š2 �
2� 2

starFstar + � 2
s Fs

+ 2� star� sAstar,c(AsL+ AsR)+ 2� 2
starA

2
star,c� s

�
,

(29)

inserting the expressions for the stars Eqs.(26)Ð(28), and
using the polymer expressions (Eqs.(19)and(20)) for all sub-
units produce the scattering expressions for a pom-pom poly-
mer. If we want the scattering expression for a pom-pom
where the arms are made of block-copolymers, we use the
ABAB· · ·AB structure Eq.(25) and the corresponding form
factor amplitudes and phase factor for the arms in the star ex-
pressions, and afterwards insert the polymer expressions for
the A and B block copolymers. We could also use a rigid
rod for the spacer, or for all sub-units to produce the scat-
tering expressions for pom-poms build with rods. We shall
not state the scattering expressions for any of these speciÞc
structures as these any many others can be obtained by trivial
algebraic substitutions of the generic scattering expressions
already given above.

IX. DENDRIMER STRUCTURES

One dendrimer structure is of particular interest, namely
the Cayley tree. The Cayley tree has a regular structure,
where all the branching points has the same functionality. A
Cayley tree structure can be generated by repeated applica-
tion of a transformation rule: Starting from an initiatingf-
functional star, each arm in the initiator star (or leaf in the
dendrimer) is replaced by af functional star, where one arm is
a ÒdeadÓ branch connecting to the rest of the dendrimer and
the remainingf Š 1 ÒliveÓ leaves can grow further. This is
illustrated in Fig.10.

The scattering functions for a Cayley tree can be gener-
ated by performing the algebraic equivalent of the structural
transformation on the initiator: Starting from the scattering
expressions for the initiator, and replacing the terms charac-
terizing each arm (or leaf) for the scattering expressions of a
f functional star, where each leaf is converted into a ÒdeadÓ
branch connected tof Š 1 leaf expressions can be substituted
further to generate the next generation. By starting with an
initiator star where all arms are linked to the center by their
left end, and replacing each leaf by a star where the right end
of the dead branch is joined to the left end of the live leaves
we can generate a dendrimer where the left end of all sub-

FIG. 10. Generating theg + 1th generation Cayley tree by substituting each
leaf (green) in thegth generation Cayley tree (or an initiatorg = 1) by a
star with one dead branch (blue) andf Š 1 live leaves (green). Notice how
the sub-unit ends are attached in the initiator and the transformation rule. On
initiator, the second and third generation dendrimers we also show the two
vertices we have chosen for ÒleftÓ and ÒrightÓ ends to make the dendrimer an
effective two functional sub-unit.

units connects to the center, and the right end connects to the
periphery of the dendrimer.

The initiator (I) is characterized by the following scatter-
ing expressions:

FI (q) = f Š1� 2
1

�
F1 + (f Š 1)A2

1L

�
, A IL (q) = � 1A1L ,

(30)

AIR (q) = f Š1� 1(A1R + (f Š 1)� 1A1L ), � I (q) = � 1,

(31)

wheref is the functionality of the initiator andF1, A1L, A1R,
and� 1 characterize the sub-units of the Þrst generation. The
arms in the star are joined by their left ends. For sake of
algebraic simplicity, we do not try to keep the expressions
normalized. The unnormalized scattering expressions for the
2nd generation dendrimer can be generated by performing the
substitutions below withg = 1 in the initiator expression, and
in general theg + 1th generation dendrimer scattering ex-
pression can be generated by applying the substitutions below
with gth generation of the scattering expressions:

Fg � � Š2
g

�
� 2

gFg + (f Š 1)� 2
g+ 1Fg+ 1 + 2(f Š 1)

× � g� g+ 1Ag,RAg+ 1,L + 2(f Š 1)(f Š 2)� 2
g+ 1A2

g+ 1,L

�
,

(32)

Ag,L � � Š1
g

�
� gAg,L + (f Š 1)� g+ 1� gAg+ 1,L

�
, (33)

Ag,R � � Š1
g (� g� g+ 1Ag,R + � g+ 1[Ag+ 1,R

+ (f Š 2)� g+ 1Ag+ 1,L ]), (34)

� g � � g+ 1� g. (35)

These rules are the algebraic equivalents of the structural
transformation where each ÒliveÓg-generation leaf is con-
verted into a deadg-generation branch (g terms on the right
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FIG. 11. Unnormalized form factor of a second generation Cayley tree with
f = 3 for various choices of contrasts.

hand side of the substitution), andf Š 1 live g + 1-generation
leaves (theg + 1 terms). The new leaves are characterized by
Fg+ 1, Ag+ 1, L, Ag+ 1, R, � g+ 1 which allows different sub-units
to be used in the various generations of branches and leafs
in the dendrimer. After iterated substitutions starting from the
initiator scattering expressions, we obtain the generic scatter-
ing expressions for any generation Cayley tree. Inserting the
polymer expressions (Eqs.(19)and(20)) into the expressions
will specialize them to a polymeric dendrimer.11Ð13 Alterna-
tively, theABorABAB· · ·ABstructure (Eqs.(12)Ð(15)or (25))
could be inserted to specialize the dendrimer scattering ex-
pression to provide the scattering expression of a dendrimers
build out of diblock copolymers or copolymers with alternat-
ing blocks.

As for the stars, we have also chosen two vertices or ref-
erence points to turn the dendrimer into an effective two func-
tional structure as shown in Fig.10. The ÒleftÓ end is the cen-
ter of the dendrimer, while the ÒrightÓ end is the tip of a leaf.
This allows us to use the dendrimer as a sub-unit, and insert-
ing the generic dendrimer expressions into the chain will pro-
duce the generic scattering expression for a center-to-end or
end-to-end linked chain of dendrimers.

The effects of varying the contrast for a 3, 3 Cayley tree
build out of identical polymer sub-units is shown in Fig.11.
When the solvent matches the outer arms (� 2 = 0) only the
scattering from the 3 arms of the central star is shown, while
only the scattering from the 6 outer arms are shown when the
solvent matches the inner star (� 1 = 0). At largex this causes
a factor 2 upwards shift, while at small values ofx there are
also interference contributions mediated by the central star.
Comparing� 1 = � 2 = 1 and� 1 = 1 = Š � 2, we observe the
same scattering at large values ofx where the form factors of
the sub-units dominate, but in the latter case the scattering at
x < 1 is reduced by almost an order of magnitude, since the
interference contributions now reduce the scattering.

X. CONCLUSIONS

A formalism for calculating the scattering branched
structures composed of arbitrary sub-units of any functional-
ity has been derived and presented. The formalism allows the

scattering from a large class of complex heterogeneous struc-
tures to be derived with great ease. The formalism is exact in
the case where all sub-units are mutually non-interacting, all
sub-unit joins are completely ßexible, and the branched struc-
ture does not contain any loops. We have also presented a
diagrammatic illustration of the physical interpretation of the
formalism that allows us to draw a structure and write down
the corresponding scattering expressions directly. The general
formalism was simpliÞed to the case of two-functional asym-
metric sub-units, and illustrated by deriving generic scattering
expressions for AB, ABC, chain structures, alternating chain
structures as well as branched structures such as stars, pom-
poms, bottle-brushes, and dendrimers build out of unspeciÞed
sub-units.

A self-consistency requirement was used to derive the
scattering expressions characterizing a polymeric sub-unit;
however, none of the structural scattering expressions derived
in the paper makes the assumption that the structures are
build out of polymers. In fact, the scattering expressions are
generic, in the sense that they remain valid regardless of the
internal structure the sub-units in the structure. In this sense,
the formalism decomposes scattering contributions due to the
structural connectivity and due to the sub-unit internal struc-
ture.

The scattering contribution due to a sub-unit is com-
pletely described by a triplet of functions: phase factors, form
factor amplitudes, and a form factor. The present formalism
provides the triplet of scattering expressions for a whole struc-
ture build out of sub-units. The structural scattering expres-
sions are complete in the sense that they allow a composite
structure of multiple sub-units to be used as a single sub-unit
within the formalism, which practically means inserting the
three structural scattering expressions recursively into them-
selves. Complex hierarchical structures can be build by join-
ing simple sub-units or complex sub-structures together one
by one or by replacing all sub-units of a certain type by a
more complex sub-structure.

A Feynman-like diagrammatic interpretation of the for-
malism allows us to map structural transformations to alge-
braic transformations of the scattering expressions. In this
way, the present formalism allows us to build complex scat-
tering expressions by simple algebraic transformations by in-
serting generic equations representing different structures into
each other, or substituting speciÞc sub-unit triplets for the
three master equations of a sub-structure. We have illustrated
this by deriving the algebraic transformation rules that will
produce the form factor of dendrimer structures.

In an accompanying publication, we will review the sub-
unit triplets of rigid rods, ßexible and semi-ßexible polymers,
polymer loops, and excluded volume polymers. We will also
present triplets for thin disks and spheres, solid spheres, and
cylinders. We can regard these as inÞnity-functional sub-units
when joining other sub-units to a random point on their sur-
faces. Finally, we will use the formalism presented here to
predict the scattering from structures composed of mixtures of
these sub-units. We hope that the formalism in the present pa-
per will facilitate the analysis of experimental scattering data
by allowing the scattering functions to be derived with greater
ease for a large variety of complex structures.
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APPENDIX: DERIVATION OF THE FORMALISM

Assume that theIth sub-unit is composed of point-like
scatterers, where thejth scatterer in the sub-unit is located at
a positionr Ij and has excess scattering lengthbIj . Let RI� de-
notes the position of the� th reference point associated with
theIth sub-unit. A reference point is a potential point for con-
necting the sub-unit to other sub-units. A single sub-unit can
have an arbitrary number of such reference points associated
with it. Once two or more sub-units are connected at the same
reference point, we refer to it as a vertex in the resulting struc-
ture. Here and in the following, capital letters refer to sub-
units, lower case letters refer to scatterers inside a sub-unit,
and Greek letters refer to vertices and reference points.

The structural form factor is deÞned in analogy with the
sub-unit form factor (Eq.(1)) as

FS(q) �

�
�

I

� I

� Š2 �
�

I,J

�

i,j

bI i bJj ei q·(r I i ŠrJj )

�

S

. (A1)

We can split the double sum into all the diagonal terms
with I = J and off diagonal terms withI �= J and interchange
the order of the conformational averages and sums to produce

=

�
�

I

� I

� Š2
�

�
�

I

�
�

i,j

bI i bIj ei q·(r I i Šr Ij )

�

S

+
�

I �= J

�
�

i,j

bI i bJj ei q·(r I i ŠrJj )

�

S

�

� . (A2)

If we assume (1) that all sub-units are mutually non-
interacting such that, e.g., no excluded volume correlations
exist between neighboring sub-units, (2) that all sub-unit pairs
are joined by ßexible links, such that no orientational correla-
tions are be induced by the joints, and (3) that no loops exist in
the structure such that the loop closure constraints introduce
correlations between internal conformations, then the struc-
tural averages can be factorized into products of single sub-
unit averages. Hence, we can replace

�
I �···� S by

�
I �···� I in

the Þrst term, which by Eq.(1) becomes the sum of the sub-
unit form factors:

�
I � 2

I FI (q).
In the second term, we have weighted pair-distances be-

tween sites in theI and J sub-units. As shown in Fig.12,
we can always project the vectorr Ii -r Jj from theith scatter-
ing site on sub-unitJ to the jth scattering site on sub-unitI
onto a path traversing through the structure. In the structure in
Fig. 12, we Þrst make a step from thejth scattering site to

FIG. 12. Vector between a pair of scattering sitesr Ii and rJj expressed in
terms of steps traversing the intervening sub-unitsK andL and vertices� ,
� , and � between the sub-unitsI and J. Note that the reference points of
different sub-units are at identical locations in space because they are joined:
RI� = RK� , RK� = RL� , andRL� = RJ� .

the � reference point on sub-unitJ, a step through sub-unit
L from � to � , a step through sub-unitK from � to � , and
Þnally, a step from the� reference point to theith scattering
site. Since we have assumed the structure does not contain
loops the paths are always uniquely deÞned. In general, we
have to Þnd the reference point on sub-unitI which is nearest
to J (� in Fig.12), and the reference point on sub-unitJ which
nearest sub-unitI (� in Fig. 12). Let P(� , � ) denotes the path
of sub-units and vertices that has to be traversed between the
two ends (P(� , � ) = {( K, � , � ), (L, � , � )} in Fig. 12). With
these deÞnitions, the general result for the distance is identity,

r I i Š r Jj = (r I i Š RI� ) +
�

(K,�,� )
� P(�,� )

(RK� Š RK� )

+ (RJ � Š rJj ) with � � I near� � J.

(A3)

Inserting this identity into the second term of Eq.(A2),
and making use of the factorization of the conformational av-
erage into sub-unit averages yields,

�
�

i,j

bI i bJj ei q·(r I i ŠrJj )

�

S

=

�
�

i

bI i ei q·(r I i ŠRI � )

�

I

×

�
�

j

bJj ei q·(RJ � ŠrJj )
�

J

×
�

(K,�,� )

� P(�,� )

�
ei q·(RK� ŠRK� )

 

K,

(A4)

which by deÞnitions (Eqs.(2)and(3)) become

= � I AI � � J AJ �

�

(K,�,� )

� P(�,� )

� K� � with � � I near� � J.

(A5)
This is the sub-unit interference scattering contribution

which when inserted in Eq.(A2) becomes Eq.(5). To obtain
the form factor amplitude and phase factor of the whole struc-
ture (Eqs.(7)and(8)), exactly the same approach was applied
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using the following identities for the vector from a scattering
site to a vertex or reference point and between two vertices or
reference points,

r I i Š R� = (r I i Š RI� ) +
�

(K,�,� )

� P(�,� )

�
RK� Š RK�

�

with � � J near�, (A6)

and

R� Š R� =
�

(K,�,� )
� P(�,� )

(RK� Š RK� ). (A7)

1. Real-space distributions and moments

The form factor amplitude is the Fourier transform of the
excess scattering length density distribution around a refer-
ence point. Hence we can directly obtain the (excess scatter-
ing length weighted) radial density distribution of the struc-
ture by an inverse Fourier transform as45

�� S� (r ) =
! �

0
dq

q sinqr
2� 2r

AS� (q).

We can also relate the structural scattering equations to
mean-square distances of the structure. The radius of gyration
has the general deÞnition:R2

g = Š 3
2

d2F (q)
dq2 |q= 0. We can apply

a Guinier expansion46 to each sub-unit as follows:

FI (q) 	 1 Š

"
R2

Ig

#
q2

3
+ · · ·

AI � (q) 	 1 Š

"
R2

I �

#
q2

6
+ · · ·

� I 	� (q) 	 1 Š

"
R2

I�	

#
q2

6
+ · · · . (A8)

Here�R2
Ig � , �R2

I � � , and�R2
I�	 � denote the radius of gyra-

tion, mean-square distance between all scattering sites and the
vertex� , and the mean-square distance between the vertices�
and	 on theIth sub-unit, respectively. The radius of gyration
measures the mean-square distance between unique pairs of
sites, hence there is a factor of two to avoid double counting.
The general equation for the apparent radius of gyration can
be obtained by differentiating Eq.(5) in accordance with the
Guinier expansions above, or by factorizing pair-separations
into separations along the sub-units as done for the scattering
form factor. The result becomes

"
R2

Sg

#
=

�
�

I

� I

� Š2

�
������

������

�

I

� 2
I

"
R2

Ig

#
+

�

I �= J
� � I close� � J

� I � J

�

$
$
$
$
$
�

"
R2

I �

#
+

�

(K,�,� )�
P(�,� )

"
R2

K� �

#
+

"
R2

J �

#

�

%
%
%
%
%
�

&
�����'

�����(

. (A9)

This expression is analogous to the expression for the
form factor, sub-unit form factors are replaced by their radii
of gyration, while form factor amplitudes are replaced by site-
to-end mean-square distances, and phase factors are replaced
by end-to-end mean square distances. Similar expressions can
be deduced for�R2

S� � and�R2
S�	 � .
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