Test person operated 2-Alternative Forced Choice Audiometry compared to traditional audiometry

Schmidt, Jesper Hvass; Brandt, Christian; Christensen-Dalsgaard, Jakob; Andersen, Ture; Bælum, Jesper; Poulsen, Torben

Publication date:
2009

Document version:
Final published version

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Test person operated 2-Alternative Forced Choice Audiometry compared to traditional audiometry

Jesper Hvass Schmidt *, Christian Brandt #, Jakob Christensen-Dalsgaard #, Ture Andersen *, Jesper Bælum §, Torben Poulsen ▲

* Dept. of Audiology, § Dept. of Occupational Health and Environmental Medicine Odense University Hospital, University of Southern Denmark
Institute of Biology, Center for Sound Communication, University of Southern Denmark
▲ Department of Electrical Engineering, Technical University of Denmark

Introduction

Measurement of correct and reliable hearing thresholds is dependent on correct measurement techniques conducted by trained technicians and patient compliance. Hearing thresholds can be estimated with a system operated by the test persons themselves. This technique is based on the 2 Alternative Forced Choice (2AFC) paradigm known from the psychoacoustic research theory1. Psychoacoustic adaptive procedures are reliable but time consuming and they have not played a major role in clinical audiology. Thresholds are measured with the 2AFC paradigm and an adaptive method and compared to ordinary clinical hearing thresholds conducted by a trained technician.

Methods

Population: 30 male and female aged 20-69 years naive listeners recruited from ordinary patient examination at a department of audiology.

Material: For 2AFC audiometry Tucker-Davis Technologies RM-2 processors under control from a personal computer were used. The system was calibrated to use Sennheiser HDA-200 headphones2.

Traditional Audiometry was done with MADSEN audiometers including TDH-39 Telephonics headsets.

Procedure: Traditional audiometry was conducted following known standards (ISO 8253-1)3. The 2AFC audiometry procedure can be described with the following taxonomy4:

Paradigm: 2 Alternative Forced Choice with no feedback

Starting rule: At 40 dB HL or 60 dB HL if known or suspected hearing loss is present.

Progression rules: An adaptive procedure using modifications of the well known 2 down 1 up procedures and the maximum-likelihood techniques5 with a build in controls of false alarms (See figure1).

Stopping rule: After at least 6 correct consecutive responses corresponding to or close to the upper limit of the most probable psychometric function combined with at least 2 errors at the lower limit of the expected psychometric function (See figure 1). The number of trials is at least 30 trials.

Datum definition: Arbitrarily set to 95% correct responses.

Results

2AFC audiometry gives thresholds 1-2 dB lower compared to traditional audiometry. Standard deviations between the two test methods are below 4.5 dB for frequencies from (250-4000 Hz) and up to 6.7 dB for frequencies above 4000 Hz (figure 2 and table 1). Test-retest studies of 2AFC audiometry show standard deviation below 3 dB at most frequencies (table 2).

Table 1

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Difference (dBHL)</th>
<th>Std.dev</th>
<th>95% limits of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 Hz</td>
<td>-4.933</td>
<td>4.491</td>
<td>-13.735</td>
</tr>
<tr>
<td>500 Hz</td>
<td>-2.550</td>
<td>3.629</td>
<td>-9.662</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>-0.933</td>
<td>3.248</td>
<td>-7.298</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>-1.883</td>
<td>3.619</td>
<td>-8.976</td>
</tr>
<tr>
<td>3000 Hz</td>
<td>-0.545</td>
<td>4.251</td>
<td>-8.877</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>-1.058</td>
<td>4.076</td>
<td>-9.046</td>
</tr>
<tr>
<td>6000 Hz</td>
<td>-3.373</td>
<td>6.365</td>
<td>-15.848</td>
</tr>
<tr>
<td>8000 Hz</td>
<td>-0.585</td>
<td>6.686</td>
<td>-13.689</td>
</tr>
</tbody>
</table>

Standard deviations and 95% confidence intervals of differences between the two methods using the Bland Altman method5.

Table 2

<table>
<thead>
<tr>
<th>Frequency</th>
<th>no. ears</th>
<th>Mean Std.dev. (dBHL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 Hz</td>
<td>26</td>
<td>2.42</td>
</tr>
<tr>
<td>500 Hz</td>
<td>26</td>
<td>2.96</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>26</td>
<td>2.26</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>26</td>
<td>2.48</td>
</tr>
<tr>
<td>3000 Hz</td>
<td>10</td>
<td>1.41</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>26</td>
<td>1.88</td>
</tr>
<tr>
<td>6000 Hz</td>
<td>10</td>
<td>2.47</td>
</tr>
<tr>
<td>8000 Hz</td>
<td>26</td>
<td>3.02</td>
</tr>
</tbody>
</table>

Test-retest results with the 2AFC procedure.

Conclusion

2 AFC audiometry is a reliable alternative to traditional audiometry. Hearing thresholds are close to or slightly below hearing threshold obtained with traditional audiometry. Test-retest studies indicate an acceptable reproducibility.

References

jschmidt@health.sdu.dk