Considerations in Processing Accelerometry Data to Explore Physical Activity and Sedentary Time in Older Adults

Cleland, Claire L.; Ferguson, Sara; McCrorie, Paul; Schipperijn, Jasper; Ellis, Geraint; Hunter, Ruth F.

Published in:
Journal of Aging and Physical Activity

DOI:
10.1123/japa.2019-0244

Publication date:
2020

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Title: Considerations in processing accelerometry data to explore physical activity and sedentary time in older adults.

Author names and affiliations: Claire L. Cleland¹*, Sara Ferguson², Paul McCrorie³, Jasper Schipperijn⁴, Geraint Ellis², Ruth F. Hunter¹

¹UKCRC Centre of Excellence for Public Health (NI)/Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom.
²School of Natural and Built Environment, Queen’s University Belfast, David Keir Building, Belfast, United Kingdom.
³MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, United Kingdom.
⁴Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.

Author email addresses: c.cleland@qub.ac.uk, sara.ferguson@qub.ac.uk, paul.mccrorie@glasgow.ac.uk, jschipperijn@health.sdu.dk, g.ellis@qub.ac.uk, ruth.hunter@qub.ac.uk

*Corresponding author information:
Dr Claire Cleland, UKCRC Centre of Excellence for Public Health (Northern Ireland)/Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK, BT12 6BJ; E-mail: c.cleland@qub.ac.uk
Considerations in Processing Accelerometry Data to Explore Physical Activity and Sedentary Time in Older Adults.
ABSTRACT

Processing decisions for accelerometry data can have important implications for outcome measures, yet little evidence exists exploring these in older adults. The aim of the current study was to investigate the impact of three potentially important criteria on older adults, physical activity and sedentary time.

Participants (n=222: mean age 71.75 years (SD=6.58), 57% male) wore ActiGraph GT3X+ for (seven-days). Eight data processing combinations from three criteria were explored: low frequency extension (on/off), non-wear time (90/120-minutes) and intensity cut-points (moderate-to-vigorous physical activity (MVPA) ≥1041 counts/minute and >2000 counts/minute). Analyses included: Wilcoxon Sign-Rank, paired t-tests and Correlation coefficients (significance, \(p<0.05\)).

Results for low-frequency extension-on, 90 minutes’ non-wear time and >1041 counts/minute showed significantly higher light and MVPA and lower sedentary time. Cut-points had the greatest impact on physical activity and sedentary time.

Processing criteria can significantly impact physical activity and/or sedentary time, potentially leading to data inaccuracies, preventing cross-study comparisons, and influencing the accuracy of population surveillance.

Keywords: Light physical activity; moderate-to-vigorous physical activity; sedentary behaviour; methodology; accelerometer processing.
INTRODUCTION

Accelerometry as a device-based measure overcomes many of the challenges that self-reported measurement relies on, such as survey completion and accurate memory recall. This is particularly the case for older adults (≥60 years (UNFPA, 2012)) who may have difficulties with reading/vision, cognition and memory recall (Sallis et al., 2000; Troiano et al., 2008; Copeland & Esliger, 2009; Seymour et al., 2001; Hutto et al., 2013). In addition, accelerometry unlike self-report does not require individuals to differentiate their physical activity (PA) behaviours into differing intensities; for example, walking at a brisk pace (moderate PA) or jogging/running (vigorous PA). Differentiation can be challenging as their perception of intensity may differ with age (Sallis et al., 2000; Troiano et al., 2008; Copeland & Esliger, 2009; Seymour et al., 2001; Hutto et al., 2013). Consequently, accelerometry has been found to be a valid and reliable tool that can measure raw bodily acceleration across multiple planes. When collecting accelerometry data there are different types of processing options: event based, raw acceleration or count-based. For the purpose of this study we will be concentrating on the count-based approach due to its prevalence in the literature and likely applicability to those wishing to use accelerometry not only for research but also those outside of academia working in the fields of policy and practice. When processing data and implementing a count-based method modern accelerometers allow for four data collection stages: 1) collection and processing of raw acceleration data; 2) transformation of raw acceleration into a digital representation such as ‘counts’; 3) translation of counts into a physiological meaningful indicator, e.g. intensity; and 4) the presentation of data as minutes per hour/day/week for PA behaviours at various levels of intensity (Granat, 2012; Hutto et al., 2013; Migueles et al., 2017). The four aforementioned stages are possible with the use of proprietary software such as that developed by Actigraph (Actilife). However, it should be noted that whilst count based measures have been implemented within the current study
many research groups have moved away from this method and are processing their raw accelerometry data with the use of statistical packages such as GGIR (R-package) to transform the data collected into physical activity outputs.

Although accelerometers provide a feasible option for the measurement of PA and sedentary time (ST), it should be noted that they are not without issue and specific recommendations for use have yet to be made for older adults. Challenges can occur during two main phases: i) data collection; and ii) data processing (Ward et al., 2005; Toftager et al., 2013). As part of the i) data collection phase, researchers make decisions regarding device selection (cost, memory and battery life), placement, wear time (to ensure reliable estimates of PA), initiation settings (sampling rate, LED options, idle sleep mode) and appropriate software packages to manage this phase (Warren et al., 2010). Over the last decade however, vast improvements have been made with a larger range of devices available, better device specification and improved software packages (faster processing speed, quality and guided initiation processes) (Ward et al., 2005; Toftager et al., 2013). With positive changes occurring regarding the quality of accelerometry use, the focus has now shifted from data collection decisions to challenges regarding decisions during the ii) data processing stage (Evenson et al., 2012; Toftager et al., 2013).

During the ii) data processing stage it is vital that protocols are put in place to ensure that the accuracy of processed data reflects a participant’s reality. This stage is not only reliant on the device functioning and recording of the participant’s data, but it is also reliant on researcher decision making and the choices that are made prior to the processing of data (Crouter et al., 2006; Corbett et al., 2017). The first decision relates to the choice of either an epoch-based approach, or an event-based approach (Granat, 2012). In short, the epoch-based
approach consists of determining the activity intensity level for each short period of time (epoch) using cut-points established in trials making it possible to link accelerometer counts to energy expenditure. Laboratory trials involve a pre-determined activity e.g. walking, jogging, running were participants complete the experimental session by performing the activity in set conditions for set periods of time on a treadmill. Copeland & Esliger (2009) tasked older adults to walk (common activity of older adults) on a treadmill for three, six minute conditions at varying speeds (2.4, 3.2 and 4.8 km·h⁻¹). Oxygen consumption was determined at rest (seated) and during each of the walking conditions and accelerometers worn (Copeland & Esliger, 2009). Following the testing stage average counts per minute and oxygen consumption were calculated, enabling mean accelerometer and oxygen uptake to be determined for each walking speed (Copeland & Esliger, 2009).

In comparison the event-based approach is conceptually different as it first identifies periods of similar acceleration (event) using various pattern recognition algorithms and/or machine learning techniques (Granat, 2012). This event-based approach is reliant upon the orientation of the device as its sensitive axis and gravity, and the shift in angle of the device. After identifying events, each event is classified into broad categories based on bodily positions (e.g. standing, sitting, lying, walking, running or cycling). However, this is a relatively new approach and the epoch-based approach remains popular, and more common, largely because its typical outcome measures are minutes of PA at varying levels of intensity that can be easily linked to PA recommendations. Although, even with a method that has a long history of use, commonly accepted standards are lacking, and many choices need to be made in each study.
As previously mentioned, researchers are presented with a range of criteria to consider including: 1) low frequency extension (LFE) function; 2) non-wear time; and 3) intensity cut-points (Table 1) (Trost et al., 2005; Aguilar-Farias et al., 2014; Gorman et al., 2014; ActiGraph, 2016; Barnett et al., 2016; Aadland et al., 2018). The combination of these criteria in addition to three other criteria which have been previously established for older adults (epoch length, number of valid hours in a day and number of valid days in a week) have the potential for valuable data to be lost or miscalculated if unsuitable criterion decisions are made (Gorman et al., 2010; Evenson et al., 2012; Hutto et al., 2013). Such decisions are particularly relevant for specific population subgroups where legitimate reasons (e.g. body fat, gait issues, age, and sex) may influence the implications of the aforementioned criteria (Corbett et al., 2017; Migueles et al., 2017). As older adults are unlikely to be similar to adults due to a range of factors including health related issues (lower physiological function, muscle atrophy, reduced cardiorespiratory function etc.) and differing lifestyle behaviours (retirement, lack of a structured daily routine, sedentary hobbies etc.), this has the potential to influence their PA and/or ST (McPhee et al., 2016). For that reason, the decision to employ adult processing criteria is questionable and presents a strong argument for an age-specific tailored approach to data processing (Migueles et al., 2017). Furthermore, older adults can be heterogeneous in terms of age and/or health/functional status potentially requiring even more detailed supplementary guidance.

However, to date, previous reviews have only individually discussed specific cut-point thresholds for older adults (Evenson et al., 2012; Aguilar-Farias et al., 2014), epoch length (Gabriel et al., 2010; Ayabe et al., 2013), non-wear time (Choi et al., 2011; Hutto et al., 2013) and the appropriate number of valid days (Sasaki et al., 218); none have discussed, the impact of such data processing criteria decisions in combination (Hutto et al., 2013).
addition, research has shown that although the use of accelerometers within the fields of PA (and ST) and public health is increasing, the methodological processes are poorly reported and it should be noted that no best practice guidelines or consensus exists for any age group but even less so, for older adults regarding data processing (Migueles et al., 2017).

Furthermore, with the use of accelerometers increasing across fields (urban planning, urban design, public health, cancer) those implementing accelerometry protocols may not be fully informed on the implications of selecting specific criteria causing them to select and implement criteria which would not be considered appropriate for their research. Therefore, research of this nature is essential in order to consider and explore the field of data processing and to highlight the potential differences that can result dependent on the criteria selected.

The specific research question for the current study is “do changes to accelerometer criteria (low-frequency extension, non-wear time and cut-point thresholds) significantly impact the resultant levels of PA and ST (minutes per day) for older adults?” By answering this research question we can contribute to the field of older adult PA and ST research by potentially highlighting the need for a consensus regarding processing decisions. The reporting of such processes and methodologies is imperative in order to align efforts and to ensure the standardisation of studies particularly for demographic sub-groups of the population. As if this does not happen and researchers fail to collaborate and provide transparent information regarding their implemented processing criteria, there is the potential for data inaccuracy; reducing the ability for cross-study comparisons and this could potentially raise critical questions over population surveillance figures (Strath et al., 2012; Pedisic & Bauman, 2015; Migueles et al., 2017; Aadland et al., 2018).
Aims

The aim of the paper was to assess the impact of different accelerometer criteria (LFE, non-wear time and cut-point thresholds) on recorded levels of PA and ST in a sample of healthy free-living older adults. The research questions for the current study aimed to determine if: 1) By applying the LFE will that result in significantly higher minutes of PA per day and significantly lower minutes of ST lower per day; 2) When non-wear time is set at 120 minutes, will minutes of PA per day be significantly lower and minutes of ST be significantly higher per day; and 3) When cut-point thresholds are applied that were specifically tested within a sample of older adults will minutes of PA per day be significantly higher and ST be significantly lower per day. We would like to highlight that the aim of the paper is not an exhaustive comparison of all possible criteria but rather an illustrative demonstration the impact of three differing criteria on data processing.

METHODS

For the purposes of the current study ethical approval was sought from and approved by the ethics committees. In addition, informed written consent was obtained from each participant prior to their participation in the study.

Study design

The current study analysed cross-sectional accelerometer data from a group of older adults (≥60 years) in the United Kingdom (UK) who wore ActiGraph GT3X+ devices for a seven-day period. Participants wore the device for seven consecutive days (during waking hours and non-water based activities) and were asked to complete a wear time diary. Participants wore the accelerometer on an elasticated waist belt on their right hip (common
placement for this age group) (Migueles et al., 2017). Data were collected February-July 2017.

Sample recruitment

Healthy free-living older adults were recruited from Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) (aged 60 years plus); involving 8500 men and women aged ≥50 years (http://nicola.qub.ac.uk/). Participants were randomly selected from and a sub-sample were invited to participate in the current study. Briefly, 71.8% (675/940) were contactable; of those participants, 45.0% (304/675) were recruited, and 83.2% (253/304) of recruits completed the study (Figure 1). The wider study methods have been detailed elsewhere.

Accelerometer cleaning and processing

Raw accelerometer activity data were processed using ActiLife 6 software (ActiGraph Inc., Florida, US). Data processing criteria are summarized in Table 2.

Each of the processing criteria were inserted into the combination matrix producing a total of eight difference processing combinations (naming convention: combination-1…combination-8). The accelerometer data was exported to Microsoft Excel (.csv format) for each of the eight processing combinations detailed in Table 2. Within Microsoft Excel, mean minutes of ST/day, mean minutes of light physical activity (LPA)/day and mean minutes of moderate-to-vigorous physical activity (MVPA)/day were extracted. The data file was then transferred to SPSS Data Analysis Version 23 (SPSS Inc, Chicago, IL) for statistical analysis.
Statistical analysis

Following data cleaning and processing, descriptive analyses were performed on the demographic variables (gender, age, ethnicity, relationship status, education and employment situation) of the sample. As the data for MVPA significantly deviated from normal distribution (tested using Shapiro Wilk tests), data was presented as median and inter-quartile ranges (IQR). Normally distributed ST and LPA were presented as mean and standard deviations (SD) ($p > 0.05$).

For MVPA, Wilcoxon Sign-Rank tests were performed, and paired t-tests for ST and LPA to determine if the difference between minutes per day were significantly different when the LFE function was switched on, when the length of non-wear time was changed and when different cut-point thresholds were implemented.

Correlation coefficients were then performed to determine the strength of the relationship between the results for each other the eight combinations. To interpret the Spearman’s Rank correlations (MVPA per day) and Pearson’s Rank Correlations (LPA per day and ST per day), the following benchmarks were used as reported by Landis & Koch (1977): $0–0.20 =$ poor correlation, $0.21-0.40 =$ fair correlation, $0.41-$ $0.60 =$ moderate/acceptable correlation, $0.61-0.80 =$ substantial correlation, and $0.81-$ $1.0 =$ near perfect correlation (Landis & Koch, 1977). Finally, to determine if any patterns existed within the data a stacked bar chart was produced alongside the statistical analysis as aforementioned. Significance level was set at ($p < 0.05$).

Accelerometer processing criteria to be tested
In line with the aims of the current study it was decided by the research team that three processing criteria would be investigated and the rationale for three pre-determined criteria would be clearly outlined within the study methodology. Each of the variations tested have been detailed below.

1) Low frequency extension

Accelerometers have a tendency to filter out low frequency acceleration signals as part of the band pass filter stage. By doing so noise, jitter and non-human movement would normally be removed. However, there is now the option to switch on a LFE when processing raw ActiGraph accelerometry data that aims to capture PA at lower intensities e.g. LPA (stretching, light house work, fishing etc.) and/or small steps; enabling the whole activity spectrum to be recorded with greater sensitivity (ActiGraph, 2011; ActiGraph, 2016; Feito et al., 2017). This LFE may also allow for lower frequency movements such as shuffling gait in older adult which would previously have been removed.

For that reason, this function is thought to be applicable for older adults; however, many cut-point thresholds have been validated prior to the introduction of this software function and studies often fail to mention LFE employment (Evenson et al., 2012; Heesh et al., 2018). Feito et al., (2017) and Wanner et al., (2013) both concluded that in free-living conditions for adults, the LFE significantly overestimated daily step counts and Wanner et al., (2013) also found it significantly overestimated LPA. However, even though several studies have been performed to determine if the LFE should be implemented when processing raw accelerometry data, none have considered this function in addition to other criterion decisions specifically for an older adult population and in relation to their levels of PA and/or ST (Cain et al., 2013; Wanner et al., 2013; Feito et al., 2017). We hypothesised that when the low-
frequency extension is switched on minutes of PA per day would be significantly higher and
minutes of ST would be significantly lower per day in comparison to when the function is
switched off.

2) Non-wear time

Non-wear and ST are both represented by the absence of acceleration, and expressed as
zero counts by device-based PA measurement. By definition, ST relates to the time spent
“sitting during commuting, in the workplace and the domestic environment, and during
leisure time. Sedentary behaviours such as TV viewing, computer use, or sitting in an
automobile typically are in the energy-expenditure range of 1.0 to 1.5 METs (multiples of the
basal metabolic rate)” whereas non-wear time is when a device is not worn (Owen et al.,
2010; Hutto et al., 2013). When considering non-wear time (consecutive ‘zeros’) for older
adults in comparison to young/mid-life adults, it is important to consider the possibility that
older adults may have differing lifestyles and spend more time sedentary during the waking
day. This could be due to older adults accumulating more ST by partaking in relatively
sedentary hobbies (reading, listening to music, knitting etc.) or they may have physical health
impairments which limits their movement as opposed to non-compliance with the study
(Owen et al., 2010; Hutto et al., 2013). Therefore, older adults in comparison to young/mid-
life adults may require longer periods of non-wear to reduce the likelihood of
misclassification of non-wear versus ST. Consequently, recommendations have been called
for to improve the comparability and accuracy of data processing particularly for ST (Cain et
al., 2018). A recent review suggested that 60 or 90-minutes were commonly implemented for
older adults (Migueles et al., 2017) with Choi et al., (2011) reporting- for both adults and
youth - that a longer time period of 90-minutes was the optimum window in comparison to
60-minutes. Taking these recommendations into account and considering the work that was
already performed it was decided to build upon Choi et al., (2011) work for youth/adults and
to test 90-minutes versus a lengthier period of 120-minutes for older adults. The rationale for
this decision was thought to not only take into consideration the aforementioned sedentary
habitual routines and past times of older adults but also with the aim of furthering previous
work (Choi et al., 2011; Cain et al., 2018). We hypothesised that when non-wear time is set
at 120 minutes, minutes of PA per day will be significantly lower and minutes of ST will be
significantly higher per day in comparison to a non-wear time of 90 minutes.

3) Cut-points and threshold classification

Cut-points are those threshold values (in counts) that corresponded to a certain energy
expenditure that are determined during the cut-point calibration study and are used in order to
translate and convert the acceleration signal into something which is physiologically more
meaningful such as a measure of intensity, that reflects the force applied through the device
and in turn into a meaningful output that can easily be understood (minutes by intensity) and
compared to PA recommendations.

Previous research has highlighted the need for specific demographic sub-group cut-
points; having reported that adult cut-points may not be appropriate for older adults whose
PA behaviours may differ, and for whom, the ‘energy expenditure’ of partaking in a range of
activities would be higher than for young/mid-life adults (Ainsworth et al., 2000; Evenson et
al., 2012; Corbett et al., 2017; Migueles et al., 2017). If the choice of cut-points is unsuitable,
this has the potential to significantly impact results and make cross-comparison studies nearly
impossible (Freedson et al., 1998; Cain et al., 2013; Corbett et al., 2017). With a wealth of
cut-points available, many of which have not been validated in specific laboratory trials for
the sub-group in question researchers are at risk of employing processing algorithms that
have been incorrectly labelled for specific sub-population groups.

For the current analysis, comparisons were made across two distinct sets of cut-points
used in older adult research to highlight considerations for researchers: 1) those labelled for
older adults but trialed in a sample of adults (Davis & Fox, 2007); and 2) those labelled for
older adults and trialed in a sample of older adults (Copeland & Esliger, 2009). The first type
of cut-points is common in PA research as they are ones that have been ‘labelled’ for use in
older adult research but are based upon the commonly used Freedson cut-points developed
with a sample of adults (males = 24.8 +/- 4.2 years and females = 22.9 +/- 3.8 years)
(Freedson et al., 1998; Davis & Fox, 2007). Davis & Fox (2007), reduced their data to bands
of 200 counts/minute and established a moderate-PA threshold of ≥2000 counts; this being
the closest to the Freedson’s counts of 1952: the boundary between light (<3 metabolic
equivalent (METS)) and moderate (3-6 METS) (Freedson et al., 1998; Davis & Fox, 2007).
Conversely, the second set were developed with a sample of older adults (aged 69.7 +/- 3.5
years) in similar conditions to the Freedson laboratory testing; older adults simultaneously
wore an accelerometer and had their oxygen consumption measured using a breathing mask,
thus making it possible to link accelerometer count values to energy expenditure (Copeland
& Esliger, 2009). Consequently, the threshold for moderate-PA for older adults was set at
≥1041 counts/minute (Copeland & Esliger, 2009). We hypothesized that when cut-point
thresholds are specifically tested within a sample of older adult’s minutes of PA per day will
be significantly higher and ST will be significantly lower per day in comparison to those
labelled for older adults.

Pre-determined processing criteria
Three pre-determined criteria were implemented following guidance from previously published literature. 1) epoch length, both cut-points thresholds were validated at a 60-second epoch (Freedson et al., 1998; Davis & Fox, 2007; Copeland & Esliger, 2009). 2) and 3) ‘valid day/week’, a period of time required to wear the monitor in order to gauge typical behaviour and to determine habitual daily and/or weekly behavioural patterns (Kocherginsky et al., 2017). A minimum of five monitoring days (≥10 hours per day) was set following guidance from Sasaki et al., (2018).

RESULTS

Demographic characteristics

The majority of participants were: aged between 60-70 years old (50%, n=106); male (57%, n=129); white (100%, n=222); married/ living with a partner (68%, n=152); retired (83%, n=185); and had a Diploma/Certificate/Undergraduate, Postgraduate or higher degree (54%, n=119) (Table 3).

Physical activity intensity levels

Moderate-to-vigorous physical activity

Results showed that median minutes’ of MVPA ranged from 17.0-61.0 minutes’/per day between the eight combinations (Table 4). The lowest median level of MVPA was 17.0 minutes’/day (IQR 5.0-34.0), combination-7: Davis & Fox (2007), low-frequency extension switched off and 120 minutes’ non-wear time; and the highest recorded median level of MVPA per day was 61.0 minutes’/day (IQR 33.0-91.5), combination-2: Copeland & Esliger (2009), low frequency extension switched on and 90 minutes’ non-wear time (Table 4). Results also showed that the largest range of minutes’ of MVPA per day for one combination
was 291 minutes’ (2-293 minutes’/day; combination-4); and the smallest range was 131 minutes’ (0-131 minutes’/day; combination-5 and combination-7).

4 Light physical activity

Mean minutes’ of LPA ranged from 189.8-250.6 minutes’/day for the eight different combinations (Table 4). The lowest mean level of LPA was 189.8 minutes’/day (SD 73.8), combination-7 Davis & Fox (2007), low-frequency extension switched off and 120 minutes’ non-wear time; and the highest recorded mean level of LPA was 250.6 minutes’/day (SD 70.1), combination-2: Copeland & Esliger (2009), low frequency extension switched on and 90 minutes’ non-wear time (Table 4). Results also showed that the largest range of minutes’ of LPA per day for one combination was 436 minutes’ (22-458 minutes’/day; combination-6 and combination-8); and the smallest range was 348 minutes’ (55-403 minutes’/day; combination-1).

5 Sedentary time

Mean ST was found to range from 522.9-633.7 minutes/day for the eight different combinations (Table 4). The lowest mean level of ST was 522.9 (91.8), combination-2: Copeland & Esliger (2009), low frequency extension switched on and 90 minutes’ non-wear time; and the highest recorded mean level of ST per day was 633.7 minutes/day (SD 89.5), combination-7 Davis & Fox (2007), low-frequency extension switched off and 120 minutes’ non-wear time (Table 4). Results also showed that the largest range of minutes of ST per day for one combination was 575 minutes (224-799 minutes/day; combination-4); and the smallest range was 458 minutes (297-755 minutes’/day combination-1; 387-845 minutes’/day combination-5; and 335-793 minutes’/day combination-6).
Differing processing criteria

Low frequency extension

Wilcoxon Signed Ranks Tests (MVPA) and Paired T-Tests (LPA) showed that when the low frequency extension was switched on this resulted in significantly higher median minutes of MVPA and mean minutes of LPA per day in comparison to when the low frequency extension was switched off ($p = .000$) (Table 5). Median differences ranged from approximately 2-11 minutes for MVPA per day and mean differences 25-30 minutes of LPA per day (Table 4 and 5).

Conversely, Paired T-Tests showed that when the low frequency was switched on this resulted in significantly lower mean minutes of ST per day in comparison to when the low frequency extension function was switched off ($p = .000$) (Table 5). Mean differences ranged from approximately 25-32 minutes of ST per day (Tables 4 and 5).

Non-wear time

Wilcoxon Signed Ranks Tests (MVPA) and Paired T-Tests (LPA) showed that when 90 minutes was set for non-wear time significantly higher median minutes per day of MVPA and mean minutes per day of LPA were found in comparison to when 120 minutes was set for non-wear time (Tables 4 and 5). Median differences ranged from approximately 1-3 minutes per day for MVPA and mean differences ranged from approximately 4-6 minutes for LPA (Table 4).

Conversely, Paired T-Tests showed that when 90 minutes was set as non-wear time this resulted significantly lower mean minutes of ST per day in comparison to when 120
minutes was set for each of the four combination comparisons ($p = .000$) (Table 5). Mean differences ranged from approximately 17-22 minutes of ST per day (Table 4).

Cut-points threshold classifications

Wilcoxon Signed Ranks Tests (MVPA) and Paired T-Tests (LPA) showed that when Copeland & Esliger (2009) cut-point thresholds were used to determine levels of MVPA (median minutes) and LPA (mean minutes) per day results were significantly higher in comparison to results for the Davis & Fox (2007) cut-point thresholds (Table 5). Median differences ranged from 31-40 minutes of MVPA per day and mean differences ranged from approximately 26-30 minutes of LPA per day (Table 4). Conversely, Paired T-Tests showed that for mean minutes of SB per day results were significantly lower for Copeland & Esliger (2009) cut-point thresholds ($p = .000$) than comparison to David & Fox (2007) (Table 5). Mean differences ranged from approximately 61-65 minutes of SB per day (Table 4).

Correlation coefficients

When bivariate correlation coefficients were performed for each of the eight data processing combinations for MVPA per day results showed that each of the correlations were found to be ‘near perfect’ when compared ($r = .877-.999$; Table 6). The same was found for both LPA per day ($r=.822-.996$) and ST ($r=.891-.992$).

Patterns

When the data were reviewed, and minutes of MVPA, LPA and ST per day were presented visually in Figure 2, it is possible to see that cut-point thresholds have the greatest impact (combinations 1-4 versus combinations 5-8). When Copeland & Esliger (2009) cut-point thresholds (combinations 1-4) were implemented, Figure 2 shows a pattern of both
minutes of MVPA and LPA increasing while the proportion of minutes per day of ST decreases. When David & Fox (2007) cut-point thresholds are implemented the reverse pattern can be observed, minutes of MVPA and LPA per day decrease and the proportion of ST increases (Figure 2). Other emerging patterns were in relation to low frequency extension and non-wear time and total recorded minutes per day. When the low frequency extension was switched on more minutes were recorded per day in comparison when the extension was switched off; when 120 minutes of non-wear time was set more minutes were recorded per day; and when both the low-frequency extension was switched on and non-wear time was set to 120 minutes these combinations (4 and 8) resulted in the largest recorded minutes per day.

DISCUSSION

The current study compared the impact of different accelerometer criteria on recorded levels of PA intensity (and ST) in a sample of healthy free-living older adults. To our knowledge this is the first study that has taken multiple accelerometer criteria and applied it to the data collected from a sample of healthy free-living older adults to determine and highlight the impact on results. Research such as this is imperative, as to date, no specific recommendations have been made regarding accelerometry processing and older adults; and in this expanding and rapidly developing field it is important to highlight the potential differences dependent on the criteria selected.

Our research highlighted that significant differences were found for each PA intensity per day (MVPA, LPA and ST) regardless of the criteria that was changed (LFE, non-wear time and cut-points thresholds). However, as expected the largest differences in minutes per day for each intensity were found when the cut-point threshold classification was changed whilst the LFE and non-wear time were held constant.
Low frequency extension

The option to use a LFE is a recent development for accelerometry and device based PA measurement. LFE has the potential to capture PA at lower intensities such as LPA, steps and/or shuffling gait which may be performed by older adults; its use enables the whole activity spectrum to be recorded with greater sensitivity and its use has been suggested when implementing PA measurement particularly in a sample of older adults (ActiGraph, 2011; ActiGraph, 2016; Feito et al., 2017). However, as this function is relatively new, many cut-point thresholds have not been validated using LFE; prompting research groups to carry out work in this specific area (Cain et al., 2013; Wanner et al., 2013; Fieto et al., 2015; Fieto et al., 2017).

Results from the current study showed that when the LFE was switched on, higher levels of LPA and MVPA and lower levels of ST per day were recorded. These findings were in agreement with previous research (Cain et al., 2013; Wanner et al., 2013; Fieto et al., 2015; Fieto et al., 2017). Cain and colleagues (2013) also compared data from the GT3X with/out LFE with an older generation 7164 accelerometer and results showed that by using the LFE this made the recorded data (and consequently the results) more comparable with previous studies - in particular, studies that reported the development of cut-points thresholds (Cain et al., 2013).

Therefore, despite the fact that the results from the current study were in agreement with previous research, the findings make it difficult to make a specific recommendation regarding the use of the LFE for older adults. We have however, demonstrated the impact that the LFE can have on levels of PA at differing intensities per day for older adults and have supplemented previous research showing that not only do differences exist but results
indicate - and potentially favour - the use of the LFE for older adults particularly when results will be compared or linked with studies that implemented older accelerometers or when studies implement cut-point thresholds that were validated with older accelerometer models (Cain et al., 2013; Fieto et al., 2017). Going forward, more research is required in older adults to confirm these assumptions as the current study cannot state specific criteria recommendations as to date, no gold standard measure exists to compare differing results to. Further research is also required to validate PA with and without the use of LFE and when performing a range of physical activities and when sedentary.

Non-wear time

Considering the current findings alongside previously published research in similar population groups, longer periods of non-wear time would be preferred. Results from the current study showed that near perfect correlations were found for ST per day and differences in mean minutes were minimal (approximately 20 minutes) when 90 minutes was set in comparison to 120 minutes. This was similar to Hutto and colleagues (2013) who also demonstrated that there were differences between actual minutes recorded, but their findings support the use of longer periods of non-wear time for older adults. Migueles et al., (2017) also reported that a longer period of 90-minutes non-wear time was preferred over a shorter 60-minute period in order to identify actual wear time in older adults (Migueles et al., 2017). By implementing a protocol allowing for a period of 120-minutes of non-wear time the likelihood of misclassification and data inaccuracies is reduced (Hutto et al., 2013). The longer periods of time will also have the potential to take account of general ST and the pastimes of older adults that would be considered sedentary but are actually active for instance knitting, reading, painting etc. (Hutto et al., 2013; Choi et al., 2011).
Cut-points threshold classifications

This study highlights the differences when using differing cut-point thresholds for older adults: i) established in a sample of younger adults and labelled for older adults (Davis & Fox, 2007); and ii) established in a sample of older adults and labelled for older adults (Copeland & Esliger, 2009). We recognise that this finding was predictable however important to highlight. With the field of accelerometry ever expanding with multidisciplinary groups implementing accelerometry protocols the possibility of inappropriate criteria being implemented is likely. It is therefore important to acknowledge, that commonly used or labelled criteria may not always be the most appropriate and may cause significantly different results for both PA and ST; resulting in incomparable and inaccurate data which will not reflect a participant’s true reality.

Therefore, when selecting cut-points it would be recommended to trace the origin of the cut-point back to the original developmental study and to determine what sub-group it was tested in. For their cut-points Copeland & Esliger (2009) performed a laboratory-based assessment in a healthy sample of older adults (69.7 +/- 3.5 years) whereas Davis & Fox (2007) based their cut-points on the commonly implemented thresholds established by Freedson et al., (1998) who performed laboratory testing in a sample of young adults (males = 24.8 +/- 4.2 years and females = 22.9 +/- 3.8 years).

Copeland & Esliger (2009) showed a strong relationship (r= 0.878) with walking speed and accelerometer counts; and accelerometer counts and oxygen consumption (r= 0.60) and following the laboratory-based assessment, cut-point thresholds were specifically established for older adults and took account of the differences older adults experience regarding their changing levels of fitness with age (Ainsworth et al., 2000; Copeland &
Esliger, 2009). Reports stated that ≥1041 counts per minute would classify MVPA, which
corresponded to a mean \(V_0 \) of 13 ml·kg\(^{-1}\)·min\(^{-1}\) equivalent to 3.7 METs (Copeland & Esliger,
2009). This finding is in line with the Compendium of Physical Activities: when classifying
intensity of PA by METs, 3-6 would be considered as moderate-PA (Ainsworth et al., 2000).
Copeland & Eliger (2009, page 25) also reported that by using this cut-point for MVPA
“there is little chance that a light minute of activity will be inappropriately labeled as MVPA”
and the cut-point of ≥1041 counts per minute would actually be considered a “conservative
delineation of MVPA for older adults”. Consequently, the use of this cut-point in older adult
studies would be recommended.

Recommendations for future research

In line with previous studies that involved samples of older adults we chose to process
the accelerometry data in 60-second epochs and extract the acceleration signal from the
vertical axis. However, as both criterion have various options that can be selected by
researchers during the measurement and analysis period, both criterion need to be considered
within the field of device based PA measurement and further research is warranted.

The magnitude of accelerations measured by an accelerometer are recorded and
processed at specific time intervals (epochs - 15, 30 or 60-seconds) (Gabriel et al., 2010;
Ayabe et al., 2013). Sixty seconds is a standard value used in first generation accelerometers
and was selected as a default due to memory and battery capacity constraints rather than
choice (Gabriel et al., 2010). Previous research has highlighted the potential for data
inaccuracies when measuring at 60-seconds, whereas the use of shorter epochs may prevent
misclassification of activities and be chosen to reflect the understanding of how PA is
accumulated in a particular population group (Gabriel et al., 2010). Therefore, if we
accumulate/average out acceleration signals over a longer time frame (60-seconds), we have the potential to dilute the intensity of PA that would have been otherwise reflected in shorter epoch (10, 15 or 30 second epochs). Consequently, there is a requirement for research in line with these technological advancements not only to determine which epoch length is appropriate, but also which epoch should be used with specific sub-groups; for instance, older adults and/or those with disabilities (Migueles et al., 2017).

Axis are also of interest and should be further explored. Accelerometers have the capability of measuring acceleration on one, two, or three axes; with three axis becoming more common with technological advances. Within the current study only the vertical axis was used due to the methodologies implemented within the original study protocols (Davis & Fox, 2007; Copeland & Esliger, 2009). However, as technology has now advanced to enable not only measurements taken in a single axis but across three planes (triaxial) it is important that research further develops guidelines of axial use across all age groups and sub-groups of the population in order to ensure that the accuracy of PA measurement is improved and increased (Howe et al., 2009).

Within this complex field, more research is also required in order to determine the degree of heterogeneity within the sub-population of older adults, and to design and implement further calibration studies for older adults both laboratory based and in free-living settings. The majority of calibration tests have been performed in laboratory settings as discussed within the introduction and discussion although future research would benefit from understanding free-living PA (Granat, 2012). In addition, in order to expand this field of research more work is required to specifically review LPA in order to expand the full spectrum of activity intensities (ST, light, moderate and vigorous) for older adults. This is in line with current research in the
field of LPA and older adults that has shown LPA to be positively associated with well-being, physical health and life satisfaction (those over 60 years); and independent of other PA and ST, LPA to reduce the risk of depressive symptoms for older adults (Bae et al., 2018; Ku et al., 2018). Furthermore, as PA research is moving towards previously mentioned non-proprietary methods more research is required into the processing of raw accelerometry data. However, as software such as R and GGIR cannot be used by all researchers and practitioners as specific knowledge and expertise are required it is important that studies such as this, are performed in order to produce guidance on what is currently available and can be used by the majority of those using accelerometers (i.e. count based measures such as those used by Actigraph).

Strengths and Limitations

A strength of the current study was the implementation of the ActiGraph GT3X+ accelerometer in a large sample of older adults to collect PA and ST data for a period of seven consecutive days. Limitations include the fact PA and ST was only measured in healthy free-living older adults and efforts were not made to review our sample by differences in age or health/functional status as this is an additional complexity that needs to be considered within this age group.

CONCLUSIONS

As highlighted within the current study, the choice of, and the combination of accelerometry processing criteria has the potential to significantly impact the results of a study that aims to objectively measure PA and/or ST. If suitable criteria are not chosen for the targeted population group, this can lead to data inaccuracies and may prevent cross-study and/or cross-country comparisons. It is imperative that research groups present their methodologies in a transparent manner and collaborate with other researchers to ensure
standardisation of methods. More research is required in this area before definitive recommendations can be made, specifically studies in both laboratory and free-living settings to determine which criteria are the most accurate and true to an older adult’s reality. Until that time, it is important researchers do not implement accelerometry research in older adults with a “one size fits all” data processing approach and prior to the comparison of data across studies, methodological processes should be fully examined (Gorman et al., 2014; Strath et al., 2012).

Abbreviations
IQR: Inter-Quartile Range; LED: Light-Emitting diode; LFE: Low Frequency Extension; LPA: Light Physical Activity; METs: Metabolic Equivalent of Task; MVPA: Moderate-to-Vigorous-Physical-Activity; n: number; NICOLA: Northern Ireland Cohort for the Longitudinal Study of Ageing; PA: Physical Activity; SD: Standard Deviation; ST: Sedentary Time; UK: United Kingdom.

Conflicts of Interest
The authors declare that they have no competing or conflicting interests including financial interests.

Acknowledgements
The Economic and Social Research Council, the UKCRC Centre of Excellence for Public Health, Northern Ireland, the Centre for Ageing Research and Development in Ireland, the Office of the First Minister and Deputy First Minister, the Health and Social Care Research and Development Division of the Public Health Agency, the Wellcome Trust/Wolfson Foundation and Queen's University Belfast provide core financial support for NICOLA. The authors alone are responsible for the interpretation of the data and any views or opinions presented are solely those of the authors and do not necessarily represent those of the NICOLA Study team.
REFERENCES

Kwan M, Woo J, Kwok T. The standard oxygen consumption value equivalent to one metabolic equivalent (3.5 ml/min/kg) is not appropriate for elderly people. International Journal of Food Sciences and Nutrition. 2004;55:179–182.

Table 1. Criteria considerations during the data processing stage of an accelerometry study.

<table>
<thead>
<tr>
<th>Criteria decisions</th>
<th>Definition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch length</td>
<td>“Accelerometers function by integrating a filtered digitized acceleration signal over a user-specified time interval, commonly referred to as an epoch”.</td>
<td>Trost et al., 2005</td>
</tr>
<tr>
<td>Low frequency extension function</td>
<td>“The low frequency extension filter, which increased the device’s sensitivity to lower intensity activities; thereby, allowing for the measurement of a greater range of physical activity intensities”.</td>
<td>Actigraph, 2016</td>
</tr>
<tr>
<td>Non-wear time</td>
<td>“Non-wear time is the time during a measurement period where participants do not wear the accelerometer, and should be excluded from further analyses on the assumption that the remaining wear time is sufficiently representative for the whole measurement period”.</td>
<td>Aadland et al., 2018</td>
</tr>
<tr>
<td>Number of hours in a valid day/Number of days in a valid week</td>
<td>“To monitor activity for a sufficient number of days so that the resulting daily average reflects an individual’s usual or habitual level of physical activity”.</td>
<td>Trost et al., 2005</td>
</tr>
<tr>
<td>Intensity cut-points</td>
<td>“Accelerometer data can be quantified as counts-per-minute with established count cut points and ranges categorizing light, moderate or vigorous PA intensity…Derivation of cut points involves establishing relationships between energy expenditure and accelerometer counts”.</td>
<td>Barnett et al., 2016</td>
</tr>
</tbody>
</table>

Table 2. Criteria for accelerometer processing for older adults.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Epoch</th>
<th>Vector</th>
<th>Combination number</th>
<th>Low-frequency extension</th>
<th>Non-wear time</th>
<th>Sedentary behaviour</th>
<th>Light physical activity</th>
<th>Moderate-to-vigorous physical activity</th>
<th>Vigorous physical activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copeland & Esliger (2009)*</td>
<td>60 sec</td>
<td>Vertical axis</td>
<td>1</td>
<td>Off</td>
<td>90 minutes</td>
<td>≤99</td>
<td>100-1040</td>
<td>≤1040</td>
<td>NA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>On</td>
<td>90 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Off</td>
<td>120 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>On</td>
<td>120 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis & Fox (2007)*</td>
<td>60 sec</td>
<td>Vertical axis</td>
<td>5</td>
<td>Off</td>
<td>90 minutes</td>
<td>≤199</td>
<td>200-1999</td>
<td>2000-3999</td>
<td>≥4000</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>On</td>
<td>90 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Off</td>
<td>120 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>On</td>
<td>120 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of hours in a valid day: 10 hours; and number of valid days in a valid week: 5 days (including 1 weekend day).
Table 3. Demographic characteristics of the study sample.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
<th>Overall sample n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60-70</td>
<td>129 (57%)</td>
<td>106 (50%)</td>
</tr>
<tr>
<td>71-80</td>
<td>85 (40%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-90</td>
<td>18 (8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 plus</td>
<td>4 (2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>White</td>
<td>222 (100%)</td>
<td></td>
</tr>
<tr>
<td>Relationship status</td>
<td>Married or living with a partner</td>
<td>152 (68%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>20 (9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separated</td>
<td>4 (2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>14 (6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>34 (15%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Minutes per day of moderate-to-vigorous and light physical activity and sedentary time by processing variation.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Combination number</th>
<th>Low-frequency extension</th>
<th>Non-wear time</th>
<th>Moderate-to-vigorous physical activity median minutes per day (IQR)</th>
<th>Light physical activity mean minutes per day (SD)</th>
<th>Sedentary time mean minutes per day (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copeland & Esliger (2009)</td>
<td>1</td>
<td>Off</td>
<td>90 minutes</td>
<td>51.0 (27.0-79.0)</td>
<td>225.4 (66.0)</td>
<td>550.5 (88.4)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>On</td>
<td>90 minutes</td>
<td>61.0 (33.0-91.5)</td>
<td>250.6 (70.1)</td>
<td>522.9 (91.8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Off</td>
<td>120 minutes</td>
<td>48.0 (25.0-77.0)</td>
<td>219.4 (69.1)</td>
<td>572.6 (93.8)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>On</td>
<td>120 minutes</td>
<td>59.0 (31.3-91.0)</td>
<td>246.6 (72.0)</td>
<td>540.2 (97.5)</td>
</tr>
<tr>
<td>Davis & Fox (2007)</td>
<td>5</td>
<td>Off</td>
<td>90 minutes</td>
<td>19.0 (6.0-38.0)</td>
<td>195.9 (71.4)</td>
<td>612.6 (85.6)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>On</td>
<td>90 minutes</td>
<td>21.0 (7.0-40.0)</td>
<td>224.4 (77.6)</td>
<td>587.8 (89.7)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Off</td>
<td>120 minutes</td>
<td>17.0 (5.0-34.0)</td>
<td>189.8 (73.8)</td>
<td>633.7 (89.5)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>On</td>
<td>120 minutes</td>
<td>20.0 (6.0-38.0)</td>
<td>220.1 (78.7)</td>
<td>605.2 (93.8)</td>
</tr>
</tbody>
</table>
Table 5. Statistical analysis to compare variations in data processing.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Combination number</th>
<th>Low-frequency extension</th>
<th>Non-wear time</th>
<th>Moderate-to-vigorous physical activity minutes per day</th>
<th>Light physical activity minutes per day</th>
<th>Sedentary time minutes per day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z (% difference)</td>
<td>Mean difference (% difference)</td>
<td>Mean difference (% difference)</td>
</tr>
<tr>
<td>Copeland & Esliger (2009)</td>
<td>1 vs 2</td>
<td>Off vs On</td>
<td>90 minutes</td>
<td>12.779* (17.86)</td>
<td>28.128* (10.59)</td>
<td>29.162* (5.14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p < .005</td>
<td>p < .005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 vs 4</td>
<td>Off vs On</td>
<td>120 minutes</td>
<td>13.173* (20.56)</td>
<td>27.000* (11.67)</td>
<td>32.859* (5.82)</td>
</tr>
<tr>
<td>Davis & Fox (2007)</td>
<td>5 vs 6</td>
<td>Off vs On</td>
<td>90 minutes</td>
<td>12.053* (10.00)</td>
<td>32.045* (13.56)</td>
<td>26.351* (4.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p < .005</td>
<td>p < .05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 vs 8</td>
<td>Off vs On</td>
<td>120 minutes</td>
<td>13.360* (16.22)</td>
<td>31.137* (14.78)</td>
<td>28.889* (4.60)</td>
</tr>
<tr>
<td>Copeland & Esliger (2009)</td>
<td>1 vs 3</td>
<td>Off</td>
<td>90 vs 120 minutes</td>
<td>3.136** (6.06)</td>
<td>1.184** (2.70)</td>
<td>-19.103* (3.94)</td>
</tr>
<tr>
<td>Davis & Fox (2007)</td>
<td>2 vs 4</td>
<td>On</td>
<td>90 vs 120 minutes</td>
<td>2.983** (3.33)</td>
<td>1.100* (1.61)</td>
<td>-15.402* (3.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p < .005</td>
<td>p < .05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 vs 7</td>
<td>Off</td>
<td>90 vs 120 minutes</td>
<td>2.502*** (4.88)</td>
<td>1.520** (1.93)</td>
<td>-16.105* (2.92)</td>
</tr>
<tr>
<td>Copeland & Esliger (2009)</td>
<td>1 vs 5</td>
<td>Off</td>
<td>90 minutes</td>
<td>12.919* (91.43)</td>
<td>29.811* (14.00)</td>
<td>62.527* (10.68)</td>
</tr>
<tr>
<td>vs Davis & Fox (2007)</td>
<td>2 vs 6</td>
<td>On</td>
<td>90 minutes</td>
<td>13.073* (97.56)</td>
<td>26.175* (11.03)</td>
<td>64.913* (11.69)</td>
</tr>
<tr>
<td></td>
<td>3 vs 7</td>
<td>Off</td>
<td>120 minutes</td>
<td>13.291* (95.38)</td>
<td>29.549* (14.47)</td>
<td>61.132* (10.13)</td>
</tr>
<tr>
<td></td>
<td>4 vs 8</td>
<td>On</td>
<td>120 minutes</td>
<td>13.319* (98.73)</td>
<td>26.534* (11.36)</td>
<td>64.949* (11.35)</td>
</tr>
</tbody>
</table>

*p < 0.000; **p < 0.005; *p < 0.05

Table 6. Bivariate correlation coefficients for each of the eight data processing combinations for moderate-to-vigorous physical activity.

<table>
<thead>
<tr>
<th>Combination</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Correlation Coefficient</td>
<td>.994*</td>
<td>.998*</td>
<td>.992*</td>
<td>.911*</td>
<td>.923*</td>
<td>.909*</td>
<td>.927*</td>
<td></td>
</tr>
<tr>
<td>2 Correlation Coefficient</td>
<td></td>
<td>.994*</td>
<td>.999*</td>
<td>.877*</td>
<td>.896*</td>
<td>.879*</td>
<td>.901*</td>
<td></td>
</tr>
<tr>
<td>3 Correlation Coefficient</td>
<td></td>
<td></td>
<td>.995*</td>
<td>.911*</td>
<td>.926*</td>
<td>.915*</td>
<td>.932*</td>
<td></td>
</tr>
<tr>
<td>4 Correlation Coefficient</td>
<td></td>
<td></td>
<td></td>
<td>.877*</td>
<td>.896*</td>
<td>.882*</td>
<td>.904*</td>
<td></td>
</tr>
<tr>
<td>5 Correlation Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.992*</td>
<td>.999*</td>
<td>.997*</td>
<td></td>
</tr>
<tr>
<td>6 Correlation Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.923*</td>
<td>.896*</td>
<td>.926*</td>
<td></td>
</tr>
<tr>
<td>7 Correlation Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.909*</td>
<td>.879*</td>
<td>.915*</td>
<td></td>
</tr>
<tr>
<td>8 Correlation Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.927*</td>
<td>.901*</td>
<td>.932*</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.000
Figure 1. Flow Diagram of Participant Recruitment

Invited to participate in the current study (n = 940) 100%

Contactable (n = 675) 71.8%
Uncontactable (n = 265) 28.2%

Recruited to current study (n = 304) 45.0%

Refused participation (n = 371) 55.0%

Completed data collections process (n = 253) 83.2%
Dropped out of the data collection process (n = 51) 16.8%
Figure 2. Daily proportion of moderate-to-vigorous physical activity, light physical activity and sedentary time for each data processing combination.