Correlation between work impairment, scores of rhinitis severity and asthma using the MASK-air® App

Bédard, Annabelle; Antó, Josep M.; Fonseca, Joao A.; Arnavelhe, Sylvie; Bachert, Claus; Bedbrook, Anna; Bindslev-Jensen, Carsten; Bosnic-Anticevich, Sinthia; Cardona, Victoria; Cruz, Alvaro A.; Fokkens, Wytske J.; Garcia-Aymerich, Judith; Hellings, Peter W.; Ivancevich, Juan C.; Klimek, Ludger; Kuna, Piotr; Kvedariene, Violeta; Larenas-Linnemann, Désirée; Melén, Erik; Monti, Ricardo; Mösges, Ralf; Mullol, Joaquim; Papadopoulos, Nikos G.; Pham-Thi, Nhàn; Samolinski, Boleslaw; Tomazic, Peter V.; Toppila-Salmi, Sanna; Ventura, Maria Teresa; Yorgancioglu, Arzu; Bousquet, Jean; Pfaar, Oliver; The MASK study group

Published in:
Allergy: European Journal of Allergy and Clinical Immunology

DOI:
10.1111/all.14204

Publication date:
2020

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:
• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version
Correlation between work impairment, scores of rhinitis severity and asthma using the MASK-air® App

Original article

Short title: Scores in rhinitis and asthma using an mHealth app

Annabelle Bédard PhD (1,2,3), Josep M Antó MD (1-4), Joao A Fonseca MD (5), Sylvie Arnavelhe PhD (6), Claus Bachert MD (7), Anna Bedbrook BSc (8), Carsten Bindslev-Jensen MD (9), Sinthia Bosnic-Anticevich PhD (10), Victoria Cardona MD (11), Alvaro A Cruz MD (12), Wytske J Fokkens MD (13), Judith Garcia-Aymerich MD (1,2,3), Peter W Hellings MD (14), Juan C Ivancevich MD (15), Ludger Klimek (16), Piotr Kuna MD (17), Violeta Kvedariene

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ALL.14204

This article is protected by copyright. All rights reserved
29 MD (18), Désirée Larenas-Linnemann MD (19), Erik Melén MD (20), Ricardo Monti MD (21),
30 Ralf Mösges MD (22), Joaquim Mullol MD (23), Nikos G Papadopoulos MD (24), Nhãnh Pham-
31 Thi MD (25), Boleslaw Samolinski MD (26), Peter V Tomazic MD (27), Sanna Toppila-Salmi
32 MD (28), Maria Teresa Ventura MD (29), Arzu Yorgancioglu MD (30), Jean Bousquet MD (8,
33 31, 32), Oliver Pfaar MD (33), Xavier Basagaña PhD (1,2,3)*, and the MASK study group
34
35 1. ISGlobal, Barcelona, Spain.
36 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain.
37 3. CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
38 4. IMIM (Hospital del Mar Research Institute), Barcelona, Spain.
39 5. CINTESIS, Center for Research in Health Technology and Information Systems,
40 Faculidade de Medicina da Universidade do Porto; and Medida, Lda Porto, Portugal
41 6. KYomed INNOV, Montpellier, France.
42 7. Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent,
43 Belgium.
44 8. MACVIA-France, Montpellier, France.
45 9. Department of Dermatology and Allergy Centre, Odense University Hospital, Odense
46 Research Center for Anaphylaxis (ORCA), Odense, Denmark.
47 10. Woolcock Institute of Medical Research, University of Sydney and Woolcock
48 Emphysema Centre and Sydney Local Health District, Glebe, NSW, Australia.
49 11. Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron & ARADyAL
50 research network, Barcelona, Spain.
51 12. ProAR – Nucleo de Excelencia em Asma, Federal University of Bahia, Brasil and WHO
52 GARD Planning Group, Brazil.
53 13. Department of Otorhinolaryngology, Amsterdam University Medical Centres, AMC,
54 Amsterdam, the Netherlands, Euforea, Brussels, Belgium.
55 14. Dept of Otorhinolaryngology, Univ Hospitals Leuven, Belgium, and Academic Medical
56 Center, Univ of Amsterdam, The Netherlands and Euforea, Brussels, Belgium.
57 15. Servicio de Alergia e Immunologia, Clinica Santa Isabel, Buenos Aires, Argentina.
59 17. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital,
60 Medical University of Lodz, Poland.

This article is protected by copyright. All rights reserved
<table>
<thead>
<tr>
<th>Number</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Institute of Biomedical Sciences, Department of Pathology, Faculty of Medicine, Vilnius University, and Institute of Clinical Medicine, Clinic of Chest diseases and Allergology, Faculty of Medicine, Vilnius, Lithuania.</td>
</tr>
<tr>
<td>19.</td>
<td>Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico.</td>
</tr>
<tr>
<td>20.</td>
<td>Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.</td>
</tr>
<tr>
<td>21.</td>
<td>Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, Italy.</td>
</tr>
<tr>
<td>22.</td>
<td>Institute of Medical Statistics, and Computational Biology, Medical Faculty, University of Cologne, Germany and CRI-Clinical Research International-Ltd, Hamburg, Germany.</td>
</tr>
<tr>
<td>23.</td>
<td>Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic; Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, University of Barcelona, Spain.</td>
</tr>
<tr>
<td>24.</td>
<td>Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, UK.</td>
</tr>
<tr>
<td>25.</td>
<td>Allergy department, Pasteur Institute, Paris, France.</td>
</tr>
<tr>
<td>26.</td>
<td>Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.</td>
</tr>
<tr>
<td>27.</td>
<td>Department of General ORL, H&NS, Medical University of Graz, Austria.</td>
</tr>
<tr>
<td>28.</td>
<td>Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland.</td>
</tr>
<tr>
<td>29.</td>
<td>University of Bari Medical School, Unit of Geriatric Immunoallergology, Bari, Italy.</td>
</tr>
<tr>
<td>30.</td>
<td>Department of Pulmonary Diseases, Celal Bayar University, Faculty of Medicine, Manisa, Turkey.</td>
</tr>
<tr>
<td>31.</td>
<td>University Hospital, Montpellier, France.</td>
</tr>
<tr>
<td>32.</td>
<td>INSERM U 1168, VIMA : Ageing and chronic diseases Epidemiological and public health approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, UMR-S 1168, Montigny le Bretonneux, France, Euforea, Brussels, Belgium, and Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany.</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Abstract

Background: In allergic rhinitis, a relevant outcome providing information on the effectiveness of interventions is needed. In MASK-air (Mobile Airways Sentinel Network), a visual analogue scale (VAS) for work is used as a relevant outcome. This study aimed to assess the performance of the work VAS work by comparing VAS work with other VAS measurements and symptom-medication scores obtained concurrently.

Methods: All consecutive MASK-air users in 23 countries from June 1, 2016 to October 31, 2018 were included (14,189 users; 205,904 days). Geolocalized users self-assessed daily symptom control using the touchscreen functionality on their smart phone to click on VAS scores (ranging from 0 to 100) for overall symptoms (global), nose, eyes, asthma and work. Two symptom-medication scores were used: the modified EAACI CSMS score, and the MASK control score for rhinitis. To assess data quality, the intra-individual response variability (IRV) index was calculated.

Results: A strong correlation was observed between VAS work and other VAS. The highest levels for correlation with VAS work and variance explained in VAS work were found with VAS global, followed by VAS nose, eye and asthma. In comparison to VAS global, the mCSMS and MASK control score showed a lower correlation with VAS work. Results are unlikely to be explained by a low quality of data arising from repeated VAS measures.

Conclusions: VAS work correlates with other outcomes (VAS global, nose, eye and asthma) but less well with a symptom-medication score. VAS work should be considered as a potentially useful AR outcome in intervention studies.

Key words: asthma, rhinitis, MASK, Visual analogue scale, score
Abbreviations

AR: allergic rhinitis
ARIA: Allergic Rhinitis and its Impact on Asthma
CSMS: combined symptom and medication score
EAACI: European Academy of Allergy and Clinical Immunology
EQ-5D: EuroQuol
ICT: information and communications technology
IER: Insufficient effort responding
IRV: Intra-individual response variability
MASK: Mobile Airway Sentinel NetworK
SMS: Symptom-medication score
VAS: visual analogue scale

Introduction

In allergic rhinitis (AR) and asthma, a relevant outcome providing information on the cost-effectiveness of interventions is needed. EQ-5D, a validated measure of quality of life, has been used in AR (1-7) but it cannot be assessed daily.

MASK-air (Mobile Airways Sentinel NetworK) is an information and communication technology (ICT) system centred around the patient (online supplement) (8-13) and operational in 23 countries. It uses a treatment scroll list which includes all medications customized for each country as well as visual analogue scales (VASs) to assess global allergy, rhinitis, eye and asthma control. Over 30,000 users and 250,000 VAS days have been recorded. A pilot study found a highly significant correlation between VAS work and other VAS measurements (global, nose, eyes and asthma) (14).

Symptom-medication scores (SMSs) are also needed to investigate the effect of AR treatments, in particular allergen immunotherapy (AIT) (15). The European Academy of Allergy and Clinical Immunology (EAACI) has defined the combined symptom and medication score (CSMS) for AIT trials (16).

Surveys collect information but data quality is a concern: in particular, insufficient effort responding (IER), a phenomenon by which respondents try to complete the questionnaire with the shortest time without providing reliable information (17). This can result in respondents providing the same value for all questions, which will artificially increase the correlation between items (18). Several methods are used to assess data quality including the intra-individual response variability (IRV) index, a flexible way to detect IER (17).
This study aimed to compare VAS work with other VAS measurements and SMSs obtained concurrently. In order to investigate data quality, we also assessed the IRV index (17).

Methods

Users

All consecutive MASK-air users from June 1, 2016 to October 31, 2018 were included with no exclusion criteria, according to methods previously described (19-21). MASK-air® was used by people who found it on the internet, Apple store, Google Play or in any other way. Some users were clinic patients who were asked by their physicians to use the app. This was the case for the transfer of innovation project (22). However, due to anonymization of data, no specific information could be gathered, as previously described in detail (19, 23).

Setting

Users from 23 countries filled in the MASK-air Allergy Diary (Table 1).

Ethics

The Allergy Diary is CE1. CE marking indicates conformity with health, safety, and environmental protection standards for products made in the EU and meets the essential requirements of all relevant European Medical Device Directives (24). The data were anonymized. An independent Review Board approval was not required since the study is observational and users agreed to have their data analysed (terms of use).

MASK-air® and outcomes

Geolocalized users self-assessed daily symptom control using the touchscreen functionality on their smartphone to click on VAS scores (ranging from 0 to 100) for overall symptoms (global), nose, eyes, asthma and work - asked in this order - with several other screens in between (Figure 1 online). Users input their daily medications using a scroll list containing all country-specific OTC and prescribed medications for each country.

Two SMSs were used: the modified EAACI CSMS score (16), accounting for a new medication that did not exist when it was devised (Table 2), and the MASK control score for rhinitis proposed according to existing data (13) (Table 3). Medications considered in the study are detailed in online Table 1.

Statistical methods and analyses

This article is protected by copyright. All rights reserved
A non-Gaussian distribution was found for the data. Non-parametric tests and medians (and percentiles) were used. Some users reported VAS scores more than once a day and we used the highest level (13).

For each score, we calculated and compared: (i) the within-subject correlation with VAS work (calculated using fixed-effect models using the Stata xtreg command) and (ii) the variance explained in VAS work (which corresponds to the correlation measured in (i) squared). Only person-days with a reported VAS work were tested. Differences in correlations by gender, age (above versus below median age – i.e. 32 years-old) and season (pollen season – i.e. from March 15 to the end of June, versus the period outside pollen season – i.e. from August to December) were investigated. Regarding VAS asthma, since not all users are asthmatic, a lot of non-asthmatic users will fill in a VAS asthma of 0 (no missing information is allowed) when using the app. Therefore, differences in the correlation between VAS work and VAS asthma by asthma status were investigated.

The intra-individual response variability (IRV) index was calculated, based on answers to the five VAS scores, to detect IER (17). All person-days were tested. The IRV is the standard deviation of responses across a set of consecutive item responses for an individual. It is an indicator of insufficient effort responding.

The number of days of reporting per user was examined and a Mann–Whitney U test was used to make comparisons in countries where physicians were including patients using the transfer of innovation (Twinning) project (22) and in countries where this was not the case. This analysis was repeated after excluding countries with low numbers of users (e.g. Canada and Czech Republic).

Results

Users

The study included 14,189 users and 205,904 days (Table 1). Approximately 5% of users did not report their age or reported an age below 10. Users ranged in age from zero to 92 years (mean, SD: 32.1 ± 15.3 years). There were 55.3% women and 44.7% men. 98,303 days were tested for VAS work correlations. In this group, there were 53,241 (54.2%) days without treatment (Figure 1).

Main results

A strong correlation was observed between VAS work and other VAS (Table 4). The highest levels for correlation with VAS work and variance explained in VAS work were found with VAS global,
followed by VAS nose, eye and asthma. In comparison to VAS global, the mCSMS and MASK control score showed a lower correlation with VAS work and explained less variance in VAS work.

The within-subject correlation between VAS work and VAS global did not vary by age, gender or season. For the other outcomes, the within-subject correlation with VAS work did not vary substantially between males and females (i.e. difference of less than 5%) or between days recorded during and outside the pollen season (i.e. difference of less than 4%). When we stratified by median age (i.e. 32 years-old), the correlation varied the most between VAS work and VAS eyes (i.e. within-subject correlations of 0.60 for days recorded by older users and 0.52 for days recorded by younger users) and between VAS work and VAS asthma (i.e. within-subject correlations of 0.48 for days recorded by older users and 0.40 for days recorded by younger users).

The within-subject correlation between VAS work and VAS asthma was higher in days recorded by users who reported asthma when they started using the app, compared to days recorded by users who did not report asthma ($r=0.54$ vs 0.38).

Intra-individual response variability

Of the 205,904 person-days, there was no variability in 35,592 days (17.3%) (users respond with the same value to all five VAS). 35,373 (99.4%) of them corresponded to a value of zero (no symptoms) answered to all questions. Without counting person-days with all variables at zero, 48,086 person-days (23.4%) had an IRV ≤3.6 (Table 5). An IRV of 3.6 implies a difference of up to 10 points (on a 0-100 point scale) in at least one of the VAS measures.

As a post hoc analysis, we recalculated the correlations with VAS work and variances explained in VAS work, after excluding person-days with low intra-individual response variability (i.e. defined as IRV ≤3.6) and similar results were obtained (online Table 2).

Number of days of reporting

The number of days of reporting per user was significantly greater in countries where a transfer of innovation was carried out than in those that did not perform this project (p for Mann–Whitney U test =0.0001) (Table 1). When this analysis was repeated after excluding countries with low numbers of users (e.g. Canada and Czech Republic), the difference remained highly statistically significant (p for Mann–Whitney U test<0.0001).
Discussion

The strengths of the study are the sample size and the wide distribution of users in 23 countries and 17 languages. There is one strong message and two extra messages. First, there is a high correlation between VAS work and rhinitis control assessed by VAS global or nose. Second, the strong correlations we observed between VAS work and other VAS scores are unlikely to be explained by a low quality of data arising from repeated VAS measures. Third, in comparison to VAS global, the two SMSs showed a lower correlation with VAS work, and explained less variance in VAS work.

Our results are unlikely to be explained by a low quality of data arising from repeated VAS measures: (i) VAS work is the last VAS measure assessed, and it is measured after 5 screens without any VAS question, which makes it more difficult to reproduce the previous VAS (Figure 1 online); (ii) Correlations differ between outcomes; (iii) Over 99% of the person-days with no variation in the five VAS measures corresponded to a value of zero answered to all of them, which is plausible in days with no symptoms; (iv) A very low variability in VAS measures was assessed by taking a cutoff of IRV index below 3.6. Although other cutoff values could be used, this represents a realistic maximal difference of 10 points on a 0-100 point scale of some of the VAS measures. Only 23.4% of person-days had a low variability in the response to several questions and were suspected of engaging in IER. However, this is an upper bound, as low variability in responses is actually possible in reality (i.e. on days in which the patient has the same or similar degree of impairment for all questions); (v) The strong correlations found between the different scores and VAS work were not substantially reduced when person-days with low intra-individual response variability were excluded from the analyses, suggesting that they are not “artificially” driven by IER.

In order to determine the relative cost-effectiveness of new interventions, many countries propose to conduct a health economic evaluation either by adopting a health care perspective only or by adding a societal perspective aiming to include all relevant effects and costs (25). Productivity costs are frequently omitted from economic evaluations, despite their often strong impact on cost-effectiveness outcomes, partly because of the lack of standardization regarding the methodology of estimating productivity costs (26). Allergic rhinitis impairs quality-of-life (27) but never induces death. Thus the Decision Analytic Modelling (DAM) model may be difficult to apply (28). EQ5D is impaired in severe AR whereas work productivity is often impaired in moderate AR (29). Thus, VAS work may be a more sensitive surrogate end point to assess the economic evaluation of an intervention in AR. Moreover, a daily assessment of work productivity can be carried out with VAS. Using the novel feature of MASK, the integration of pollen season and air quality the same day as VAS work will provide a very sensitive outcome on health economics for clinical trials. In clinical practice, VAS global may be more relevant. To our knowledge, limitations of real-word data using an app are the...
same for all VAS measurements. VAS work validation was not done since this criterion was not included in the first version of the app.

In comparison to VAS global, the two SMSs showed a lower correlation with VAS work, and explained less variance in VAS work. This is probably because we used simple methods to assess SMSs and more sophisticated analyses are needed. In particular, it seems that adding the same coefficient to a symptom score or a VAS level may not be optimal. From the real-world evidence from MASK (13, 21), it appears that (i) medications may have a different efficacy depending on rhinitis control level: higher impact for a lower VAS level and lower impact for a higher VAS level and (ii) co-medication may be considered. New SMS are therefore needed.

One of the major problems with apps is the low adherence to their use. Achieving sufficient mHealth App engagement and user retention rates is a difficult task. In MASK, over 50% of the users use the app only once. Differences in the duration of reporting were found. It is clear that in countries where many patients have been enrolled by physicians during a transfer of innovation, the duration of reporting is longer than in countries where this protocol was not used. This information should be carefully considered to increase adherence to MASK use.

Generalisability

The data obtained were retrieved from 23 countries. Although there was no specific study in the different countries, the results appear generalizable.

Conclusion

This study suggests that VAS work can be used as a surrogate end-point for the assessment of health economics in rhinitis and that symptom medication scores tested with real-world data need to be improved.

Statement of author contribution :

A Bédard, JM Anto, JA Fonseca, X Basagana and J Bousquet conceived the study and drafted the manuscript. A Bédard and X Basagana conducted the statistical analyses. O Pfaar and J Bousquet designed the symptom-medications scores used in the analyses. All authors reviewed the study design and the manuscript and have approved the final version of the manuscript".

Conflicts of Interest :

This article is protected by copyright. All rights reserved
Dr. Bousquet reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, Uriach, other from KYomed-Innov, outside the submitted work.

Dr. Bosnic-Anticevich reports grants from TEVA, personal fees from TEVA, AstraZeneca, Boehringer Ingelheim, GSK, Sanofi, Mylan, outside the submitted work.

Dr. Cardona reports personal fees from ALK, Allergopharma, Allergy Therapeutics, Diater, LETI, Thermofisher, Stallergenes, outside the submitted work.

Dr. Fonseca being a partner in a company developing mobile technologies for monitoring airways diseases

Dr. Hellings reports grants and personal fees from Mylan, during the conduct of the study; personal fees from Sanofi, Allergopharma, Stallergenes, outside the submitted work.

Dr. Ivancevich reports personal fees from Faes Farma, Eurofarma Argentina, other from Sanofi, Laboratorios Casasco, personal fees from, outside the submitted work.

Dr. Kuna reports personal fees from Adamed, AstraZeneca, Boehringer Ingelheim, Hal, Chiesi, Novartis, Berlin Chemie Menarini, outside the submitted work.

Dr. Kvedariene reports personal fees from GSK, non-financial support from StallergenGreer, Mylan, AstraZeneca, Dimuna, Norameda, outside the submitted work.

Dr. Larenas Linnemann reports personal fees from Amstrong, Astrazeneca, Boehringer Ingelheim, Chiesi, DBV Technologies, Grunenthal, GSK, MEDA, Menarini, MSD, Novartis, Pfizer, Novartis, Sanofi, Siegfried, UCB. grants from Sanofi, Astrazeneca, Novartis, UCB, GSK, TEVA, Boehringer Ingelheim, Chiesi outside the submitted work.

Dr. MULLOL reports personal fees from SANOFI-Genzyme-Regeneron, ALK-Abelló A/S, Menarini Group, MSD, GlaxoSmithKline, Novartis, GENENTECH - Roche_Novartis, grants and personal fees from UCB Pharma, MYLAN-MEDA Pharma, URIACH Group, outside the submitted work.

Dr. Papadopoulos reports personal fees from Novartis, Nutricia, HAL, MENARINI/FAES FARMA, SANOFI, MYLAN/MEDA, BIOMAY, Astrazeneca, GSK, MSD, ASIT BIOTECH, Boehringer Ingelheim, grants from Gerolymatos International SA, Capricare, outside the submitted work.

This article is protected by copyright. All rights reserved
Dr. Bousquet reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, Uriach, other from KYomed-Innov, outside the submitted work.

Dr. Pfaar reports personal fees from MEDA Pharma/MYLAN, ASIT Biotech Tools S.A. Laboratorios LETI/LETI Pharma, Anergis S.A, Mobile Chamber Experts (a GA²LEN Partner), Indoor Biotechnologies, Astellas Pharma Global, grants and personal fees from ALK-Abelló, Allergopharma, Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, grants from Biomay, Nuvo, Circassia, from, Glaxo Smith Kline, outside the submitted work.

References

Table 1: Number of users recording Visual Analogue Scale score using MASK-air® by country

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Days</th>
<th>Number of Users</th>
<th>Number of days per user (median, p25-</th>
</tr>
</thead>
</table>

This article is protected by copyright. All rights reserved
<table>
<thead>
<tr>
<th>Country</th>
<th>Cases (n=)</th>
<th>Ref (n=)</th>
<th>Symptom Score</th>
<th>Innovation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1,522</td>
<td>136</td>
<td>2 [1-6.5]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>5,348</td>
<td>498</td>
<td>1 [1-4]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>2,080</td>
<td>180</td>
<td>2 [1-7.5]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>1,456</td>
<td>168</td>
<td>1 [1-6]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>8,299</td>
<td>1,336</td>
<td>1 [1-4]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>204</td>
<td>31</td>
<td>2 [1-4]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1,078</td>
<td>51</td>
<td>3 [1-17]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>993</td>
<td>103</td>
<td>2 [1-6]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>3,612</td>
<td>360</td>
<td>2 [1-5]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>6,794</td>
<td>911</td>
<td>1 [1-3]</td>
<td>No*</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>14,877</td>
<td>895</td>
<td>2 [1-13]</td>
<td>Yes (partly)</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>7,824</td>
<td>320</td>
<td>10 [2-28]</td>
<td>RCT</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>29,889</td>
<td>1,562</td>
<td>2 [1-11]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>20,881</td>
<td>572</td>
<td>9.5 [2-36]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>44,123</td>
<td>1,225</td>
<td>15 [4-45]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>7,509</td>
<td>944</td>
<td>2 [1-5]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>10,295</td>
<td>914</td>
<td>2 [1-6]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>11,310</td>
<td>1,506</td>
<td>2 [1-4]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>14,880</td>
<td>771</td>
<td>4 [1-17]</td>
<td>RCT</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>1,359</td>
<td>131</td>
<td>2 [1-7]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>3,955</td>
<td>815</td>
<td>1 [1-2]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>2,595</td>
<td>238</td>
<td>2 [1-5]</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>5,021</td>
<td>522</td>
<td>2 [1-8]</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Total | 205,904 | 14,189 |

Table 2: Definition of the modified EAACI CSMS

\[mCSMS = \frac{\text{Symptom Score} + \text{Medication Score}}{2} \]

where Symptom Score is the 0-100 global VAS score, and Medication Score is a 0-100 score depending on the medication taken. For the latter, we used the following proposed scoring system:
- no medication = 0 points;
- oral non-sedative H1 antihistamines (H1A) lone = \(100 \times \frac{1}{4} = 25\) points;
- intra-nasal corticosteroids (INCS) – except Azelastine-Fluticasone Propionate combination (MPAzeFlu) - with/without H1A = \(100 \times \frac{2}{4} = 50\) points;
- MPAzeFlu = \(100 \times \frac{3}{4} = 75\) points;
- oral corticosteroids with/without INCS, with/without H1A, with/without MPAzeFlu = 100 points.

Table 3: Definition of the MASK rhinitis control score

The MASK rhinitis control score was equal to 1 if:

1. VAS global \(\geq 50/100\)
 or
2. VAS global \(\geq 35\) with the use of INCS-containing medication
 or
3. VAS global \(\geq 20\) with the use of at least 3 medications

The MASK rhinitis control score was equal to 0 otherwise.
Table 4. Within-subject correlations between VAS work and other rhinitis scores

<table>
<thead>
<tr>
<th>Number of days</th>
<th>Continuous scores</th>
<th>Binary score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median, 25-75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(continuous outcomes) or</td>
<td>VAS global</td>
<td>VAS nose</td>
</tr>
<tr>
<td>% (binary outcome)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Within-subject correlation</td>
<td>98,303</td>
<td></td>
</tr>
<tr>
<td>with VAS work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance explained in VAS</td>
<td>98,303</td>
<td>0.53</td>
</tr>
<tr>
<td>work</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Intra-individual response variability (i.e. based on answers to the five VAS scores)

<table>
<thead>
<tr>
<th>IRV</th>
<th>Number of person-days</th>
<th>Example of VAS values in a representative patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>2,422</td>
<td>One of the VAS measures differs in 1 unit (i.e. on a 0-100 point scale) from the rest. E.g. providing the following values for the five VAS measures: (0,0,1,0,0)</td>
</tr>
<tr>
<td>0.5</td>
<td>2,622</td>
<td>One of the VAS measures differs in 1 unit from the rest (among person-days that have one missing value) E.g. providing the following values for the five VAS measures: (0,0,1,0,missing)</td>
</tr>
<tr>
<td>0.548</td>
<td>1,003</td>
<td>Two VAS measures differ in 1 unit from the rest. E.g. providing the following values for the five VAS measures: (8,7,8,8,7)</td>
</tr>
<tr>
<td>1</td>
<td>1,330</td>
<td>Variations of 3 units among the VAS measures E.g. providing the following values for the five VAS measures: (42,41,42,40,40)</td>
</tr>
<tr>
<td>1.5</td>
<td>1,431</td>
<td>One of the VAS measures differs in 3 units from the rest (among person-days that have one missing value) E.g. providing the following values for the five VAS measures: (22,22,19,22,missing)</td>
</tr>
<tr>
<td>2</td>
<td>690</td>
<td>Variations of 5 units among the VAS measures. E.g. providing the following values for the five VAS measures: (26,24,27,22,26)</td>
</tr>
<tr>
<td>3.6</td>
<td>44</td>
<td>Variations of up to 10 units among the VAS measures. E.g. providing the following values for the five VAS measures: (56,52,50,51,46)</td>
</tr>
</tbody>
</table>

Total ≤3.6 = 48,086 (23.4%)

*: not counting person-days with all 0 values

Figure 1. Flow chart of the study population

MASK Study group

46. Argentine Association of Respiratory Medicine, Buenos Aires, Argentina.
47. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland.
48. Pediatric Department, University of Verona Hospital, Verona, Italy.
49. UOC Pneumologia, Istituto di Medicina Interna, F. Polichelico Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy, and National Heart and Lung Institute, Royal Brompton Hospital & Imperial College London, UK.
50. Institute of Translational Pharmacology, Italian National Research Council, Rome, Italy.
51. Woolcock Institute of Medical Research, University of Sydney and Woolcock Emphysema Centre and Sydney Local Health District, Glebe, NSW, Australia.
52. Allergist, La Rochelle, France.
53. Associate professor of Clinical Medecine, Laval’s University, Quebec city, Canada.
54. Quebec Heart and Lung Institute, Laval University, Québec City, Quebec, Canada.
55. Centre Hospitalier Valenciennes, France.
56. Head of Department of Clinical Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania.
57. Institute of Lung Health, Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicestershire, UK; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
58. Department of Health Research Methods, Evidence and Impact, Division of Immunology and Allergy, McMaster University, Hamilton, ON, Canada.
59. Chief of the University Pneumology Unit- AOI Molinette, Hospital City of Health and Science of Torino, Italy.
60. Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany.
61. Pharmacist, Municipality Pharmacy, Sarno, Italy.
63. Instituto de Pediatría, Hospital Zambrano Hellion Tec de Monterrey, Monterrey, Mexico.
64. Imperial College and Royal Brompton Hospital, London, UK.
65. Centro Medico Doctor L. Trinidad, Caracas, Venezuela.
66. Regional Director of Assofarm Campania and Vice President of the Board of Directors of Cofaser, Salerno, Italy.
67. Service de pneumologie, CHU et université d’Auvergne, Clermont-Ferrand, France.
68. Department of Pulmonology, Division of Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France.
69. Imperial College London - National Heart and Lung Institute, London, UK.
70. Federal University of Minas Gerais, Medical School, Department of Pediatrics, Belo Horizonte, Brazil.
71. Assistant Director General, Montpellier, Région Occitanie, France.
72. Mayor of Sarno and President of Salerno Province, Director, Anesthesiology Service, Sarno "Martiri del Villa Malta" Hospital, Italy.
73. Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron & ARADyAL Spanish Research Network, Barcelona, Spain.
74. Department of Paediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway.
76. Regional Ministry of Health of Andalusia, Seville, Spain.
77. Allergy and Asthma Associates of Southern California, Mission Viejo, CA, USA.
78. ASA - Advanced Solutions Accelerator, Clapiers, France.
79. Division of Allergy/Immunology, University of South Florida, Tampa, USA.
81. SOS Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy.
82. Allergy and Immunology Laboratory, Metropolitan University Hospital, Branquilla, Colombia.
83. Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands.
84. Capital Institute of Pediatrics, Chaoyang district, Beijing, China.
85. School of Medicine, University CEU San Pablo, Madrid, Spain.
86. David Tvlidiashvili Medical University - AIETI Highest Medical School, David Tatishvili Medical Center Tbilisi, Georgia.
87. Pulmonary Research Institute FMBA, Moscow, Russia and GARD Executive Committee, Moscow, Russia.
88. National Heart & Lung Institute, Imperial College, London, UK.
89. Specialist social worker, Sorrento, Italy.
90. Argentine Federation of Otorhinolaryngology Societies, Buenos Aires, Argentina.
91. Eskisehir Osmangazi University, Medical Faculty, ENT Department, Eskisehir, Turkey.
92. Medicine Department, IRCCS-Azienda Ospedaliera Universitaria San Martino, Genoa, Italy.
139. Global Allergy and Asthma Platform GAAPP, Vienna, Austria.
140. Division of Allergy, Department of Pediatric Medicine - The Bambino Gesù Children's Research Hospital Holy see, Rome, Italy.
141. Department of Otorhinolaryngology, Academic Medical Centers, Amsterdam, the Netherlands, and EUFOREA Brussels, Belgium.
142. CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal.
143. Allergist, Reims, France.
144. Hospital General Regional 1 "Dr Carlos Mc Gregor Sanchez Navarro" IMSS, Mexico City, Mexico.
145. Regional hospital of ISSSTE, Puebla, Mexico.
146. National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia.
147. Allergologo, Guadalajara, Mexico.
148. Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico.
149. Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
150. Allergology unit, UHATEM "NIPirogov", Sofia, Bulgaria.
151. Medical University, Faculty of Public Health, Sofia, Bulgaria.
152. Allergy and Immunology Division, Clinica Ricardo Palma, Lima, Peru.
153. Department of Internal Medicine, section of Allergology, Erasmus MC, Rotterdam, The Netherlands.
154. Allergy & Asthma Unit, Hospital San Bernardo Salta, Argentina.
155. Allergy Clinic, Hospital Regional del ISSSTE ‘Lic. López Mateos’, Mexico City, Mexico.
156. Head and Professor, Centro Regional de Excelencia CONACYT y WAO en Alergia, Asma e Immunologia, Hospital Universitario, Universidad Autonoma de Nuevo Leon, Monterrey NL, Mexico.
157. Center of Allergy and Immunology, Georgian Association of Allergology and Clinical Immunology, Tbilisi, Georgia.
158. Latvian Association of Allergists, Center of Tuberculosis and Lung Diseases, Riga, Latvia.
159. Federal District Base Hospital Institute, Brasília, Brazil.
160. Institute of Health Policy and Management IBMG, Erasmus University, Rotterdam, The Netherlands.
161. University Hospital Olomouc – National eHealth Centre, Czech Republic.
162. Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile.
163. Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
165. Autonomous University of Baja California, Ensenada, Baja California, Mexico.
166. Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
167. Hospital General Regional 1 “Dr. Carlos MacGregor Sanchez Navarro” IMSS, Mexico City, Mexico.
168. Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR_S999, Le Kremlin Bicêtre, France.
169. Dipartimento di Medicina, Chirurgia e Odontoiatria, università di Salerno, Italy.
170. Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET) Naples, Italy.
171. Servicio de Alergia e Immunología, Clínica Santa Isabel, Buenos Aires, Argentina.
172. President, Libra Foundation, Buenos Aires, Argentina.
173. Medical University of Gdańsk, Department of Allergology, Gdańsk, Poland.
174. Airway Disease Infection Section, National Heart and Lung Institute, Imperial College; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
175. Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
176. Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-do, South Korea.
177. Department of Clinical Immunology, Wroclaw Medical University, Poland.
178. Ukrainina Medical Stomatological Academy, Poltava, Ukraine.
179. Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey.
180. Hacettepe University, School of Medicine, Department of Chest Diseases, Immunology and Allergy Division, Ankara, Turkey.
181. Allergy Centre, Tampere University Hospital, Tampere, Finland.
182. First Department of Family Medicine, Medical University of Lodz, Poland.
183. Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, and Institute of Health Resort Medicine and Health Promotion, Bavarian Health and Food Safety Authority, Bad Kissingen, Germany.
184. Department of Medicine, McMaster University, Health Sciences Centre 3V47, West, Hamilton, Ontario, Canada.

This article is protected by copyright. All rights reserved
185. National Research Center, Institute of Immunology, Federal Medicobiological Agency, Laboratory of Molecular immunology, Moscow, Russian Federation.

186. GARD Chairman, Geneva, Switzerland.

187. Allergy & Asthma Center Westend, Berlin, Germany.

188. Center for Rhinology and Allergology, Wiesbaden, Germany.

189. Department of Immunology and Allergy, Healthy Ageing Research Center, Medical University of Lodz, Lodz, Poland.

190. Children’s Hospital and University of Helsinki, Helsinki, Finland.

191. Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm and Sachs’s Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.

192. Institute of Biomedical Sciences, Department of Pathology, Faculty of Medicine, Vilnius University and Institute of Clinical medicine, Clinic of Chest diseases and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.

193. Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.

194. Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico.

195. Presidente CMMC, Milano, Italy.

196. Head of the Allergy Department of Pedro de Elizalde Children’s Hospital, Buenos Aires, Argentina.

198. Federal University of Bahia, Brazil.

199. Sifmed, Milano, Italy.

200. State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

201. Departments of Internal Medicine and Pediatrics (Divisions of Allergy and Immunology), University of Tennessee College of Medicine, Germantown, TN, USA.

202. Scottish Centre for Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, UK.

203. Oslo University Hospital, Department of Paediatrics, Oslo, and University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway.

204. Department of Pulmonary Medicine, CHU Sart-Tilman, and GIGA Bi research group, Liege, Belgium.

205. Faculty of Health Sciences and CICS – UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.

206. Department of Philosophical, Methodological and Instrumental Disciplines, CUCS, University of Guadalajara, Guadalajara, Mexico.

207. Department of Pulmonary Medicine, Rashid Hospital, Dubai, UAE.

208. Biomax Informatics AG, Munich, Germany.

209. Director General for Health and Social Care, Scottish Government, Edinburgh, UK.

210. Department of Respiratory Medicine, University of Bratislava, Bratislava, Slovakia.

211. Coimbra Institute for Clinical and Biomedical Research (ICBiR), Faculty of Medicine, University of Coimbra, Portugal; Ageing in Coimbra: EIP-AHA Reference Site, Coimbra, Portugal.

212. Medical center Ikar Ltd Sofia, Bulgaria.

213. Department of Medicine (RESI), Bon Secours Hospital, Glasnevin, Dublin, Ireland.

215. Division of Clinical Immunology and Allergy, Laboratory of Behavioral Immunology Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA.

216. Tobacco Control Research Centre;Iranian Anti Tobacco Association, Tehran, Iran.

217. Argentine Association of Allergy and Clinical Immunology, Buenos Aires, Argentina.

218. Hospital de Especialidades,Centro Medico Nacional Siglo XXI, Mexico City, Mexico.

219. University of Southeast Bahia, Brazil.

220. Allergic Centre-Charité at the Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany.

221. Maputo Central Hospital, Department of Paediatrics, Maputo, Mozambique.

222. Allergologo, Veracruz, Mexico.

223. Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

224. Allergy and Asthma Medical Group and Research Center, San Diego, California, USA.

225. CIRFF, Federico II University, Naples, Italy.

226. Department of Physiology, CHRU, University Montpellier, Vice President for Research, PhyMedExp, INSERM U1046, CNRS UMR 9214, France.
Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.

Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK, and Allergy Department, 2nd Pediatric Clinic, Athens General Children’s Hospital "P&A Kyriakou," University of Athens, Athens, Greece.

Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.

Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.

Allergies and Respiratory Diseases, Ospedale Policlinico San Martino - University of Genoa, Italy.

Farmaclias Holon, Lisbon, Portugal.

Department of Pediatrics, Nippon Medical School, Tokyo, Japan.

University of Southern Denmark, Kolding, Denmark.

Université Grenoble Alpes, Laboratoire HP2, Grenoble, INSERM, U1042 and CHU de Grenoble, France.

Allergy Unit, CIU-Porto Hospital and Institute; Center for Research in Health Technologies and information systems CINTESI, Universidade do Porto, Portugal.

Sociologist, municipality area n33, Sorrento, Italy.

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philippus-Universität Marburg, Germany.

Division of Respiratory and Allergic Diseases, Hospital 'A Cardarelli', University of Naples Federico II, Naples, Italy.

Centre for empowering people and communities, Dublin, UK.

Société de Pneumologie de Langue Française, Espace francophone de Pneumologie, Paris, France.

Département de pédiatrie, CHU de Grenoble, Grenoble, France.

Medical School, University of Cyprus, Nicosia, Cyprus.

Children’s Hospital Srebrnjak, Zagreb, School of Medicine, University J.J. Strossmayer, Osijek, Croatia.

Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Vienna, Austria.

University Hospital 'Sv. Ivan Rilski', Sofia, Bulgaria.

Allergy Diagnostic and Clinical Research Unit, University of Cape Town Lung Institute, Cape Town, South Africa.

Vice-Presidente of IML, Milano, Italy.

Observational and Pragmatic Research Institute, Singapore, Singapore.

Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece.

European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA), Brussels, Belgium.

Allergologo, cancun quintana roo, Mexico.

LungenClinc Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research (DZL).

Grosshansdorf, Germany Department of Medicine, Christian Albrechts University, Airway Research Center North, Member of the German Center for Lung Research (DZL), Kiel, Germany.

Department of Nephrology and Endocrinology, Karolinska University Hospital, Stockholm, Sweden.

Farmàcia São Paio, Vila Nova de Gaia, Porto, Portugal.

St Vincent’s Hospital and University of Sydney, Sydney, New South Wales, Australia.

Allergologo, Mexico City, Mexico.

Servicio de Pneumologia-Hosp das Clinicas UFPE-EBSEBH, Recife, Brazil.

Universidade Federal de São Paulo, São Paulo, Brazil.

Centre of Pneumology, Coimbra University Hospital, Portugal.

Polibienestar Research Institute, University of Valencia, Valencia, Spain.

Pediatric Allergy and Clinical Immunology, Hospital Angeles Pedregal, Mexico City, Mexico.

Getafe University Hospital Department of Geriatrics, Madrid, Spain.

Assistance Asthme et Allergie, Paris, France.

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Primary Care Respiratory Research Unit Instituto de Investigación Sanitaria de Palma IdisPa, Palma de Mallorca, Spain.

Allergy Unit, Presidio Columbus, Rome, Catholic University of Sacred Heart, Rome and IRCCS Oasi Maria SS, Tráina, Italy.

Hospital General, Mexico City, Mexico.

Regione Piemonte, Torino, Italy.

Medical University of Graz, Department of Internal Medicine, Graz, Austria.

Serviço de Imunoaeroalogia Hospital da Luz, Lisboa, Portugal.

Hospital de Clínicas, University of Parana, Brazil.
This article is protected by copyright. All rights reserved
211,003 VAS recorded between January 1, 2016 and December 31, 2018

- 5,099 duplicates or multiplicates

205,904 single VAS days recorded between 2016 and 2018 (14,189 users)

- 107,601 days without VAS work

98,303 single VAS days recorded between 2016 and 2018 with VAS work

53,241 days without treatment
45,062 days with treatment

This article is protected by copyright. All rights reserved