Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC

Mishra, Rajashree; Åkerlund, Mikael; Cousminer, Diana L; Ahlqvist, Emma; Bradfield, Jonathan P; Chesi, Alessandra; Hodge, Kenyaita M; Guy, Vanessa C; Brillon, David J; Pratley, Richard E; Rickels, Michael R; Vella, Adrian; Ovalle, Fernando; Harris, Ronald I; Melander, Olle; Varvel, Stephen; Hakonarson, Hakon; Froguel, Phillippe; Lonsdale, John T; Mauricio, Didac; Schloot, Nanette C; Khunti, Kamlesh; Greenbaum, Carla J; Yderstræde, Knud B; Tuomi, Tiinamaija; Voight, Benjamin F; Schwartz, Stanley; Boehm, Bernhard O; Groop, Leif; Leslie, Richard David; Grant, Struan F A

Published in:
Diabetes Care

DOI:
10.2337/dc19-0986

Publication date:
2020

Document version
Accepted manuscript

Citation for published version (APA):
https://doi.org/10.2337/dc19-0986

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:
• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version
Genetic discrimination between LADA and childhood-onset type 1 diabetes within the MHC

Short running title: MHC discriminators for Type 1 Diabetes vs. LADA

Rajashree Mishra, PhD1,2*, Mikael Åkerlund, PhD3*, Diana L. Cousminer, PhD1,4*, Emma Ahlqvist, PhD3, Jonathan P. Bradfield, BS5, Alessandra Chesi, PhD1, Kenyaita M. Hodge, MPH1, Vanessa C. Guy, MS16, David J. Brillou, MD6, Richard E. Pratley, MD7, Michael R. Rickels, MD, MS8, Adrian Vella, MD9, Fernando Ovalle, MD10, Ronald I. Harris, MD11, Olle Melander, MD, PhD12, Stephen Varvel, PhD12, Hakon Hakonarson, MD, PhD5,13, Philippe Froguel, MD, PhD14,15, John T. Lonsdale, PhD16, Didac Mauricio, MD, PhD17, Nanette C. Schloot, MD18*, Kamlesh Khunti, MD, PhD19, Carla J. Greenbaum, MD20, Knud B. Yderstræde, MD,PhD21, Tiitamaa Tuomi, MD, PhD22,23,29, Benjamin F. Voight, PhD24,8,24,25, Stanley Schwartz, MD26, Bernhard O. Boehm, MD27,28, Leif Groop, MD, PhD3,29, Richard David Leslie, MD30 and Struan F.A. Grant, PhD1,4,5,8,13

*equal contribution

1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 2Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 3Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Skåne University Hospital, SE-21428 Malmö, Sweden; 4Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 5Weill Cornell Medical College, NY, USA; 6Florida Hospital Translational Research Institute for Metabolism and Diabetes, Orlando FL,USA; 7Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 8Mayo Clinic, Rochester, MN, USA; 9University of Alabama, Birmingham, AL, USA; 10University of Pennsylvania, Philadelphia, PA, USA; 11University of California, San Diego, La Jolla, CA, USA; 12Division of Endocrinology, Department of Pediatrics, University of Pennsylvania Children’s Hospital, Philadelphia, PA, USA; 13Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 14Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 15Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 16Division of Endocrinology, Department of Pediatrics, University of Pennsylvania Children’s Hospital, Philadelphia, PA, USA; 17Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 18Division of Endocrinology, Department of Pediatrics, University of Pennsylvania Children’s Hospital, Philadelphia, PA, USA; 19Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 20Division of Endocrinology, Department of Pediatrics, University of Pennsylvania Children’s Hospital, Philadelphia, PA, USA; 21Institute for Molecular Medicine Finland FIMM, Helsinki, Finland; 22Department of Immunobiology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK;

‡ Currently employed by Lilly Germany
^ Currently employed by Science 37

Corresponding author:
Struan F. A. Grant
Divisions of Human Genetics and Endocrinology
Children’s Hospital of Philadelphia
3615 Civic Center Boulevard, Room 1102D
Philadelphia, PA 19104
Phone: 267-426-2795; Fax: 267-426-0363
Email: grants@email.chop.edu

Word count: 3797

Tables: 1
Figures: 2
Abstract

Objective: The major histocompatibility complex (MHC) region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared to childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC Class I region in a type 1 diabetes population, then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region.

Research Design and Methods: Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes cases (n = 1,985) and controls (n=2,219). The same approach was applied to a LADA cohort (n=1,428) using population-based controls (n=2,850), and in a separate replication cohort (656 type 1 diabetes cases, 823 LADA cases, and 3,218 controls).

Results: The strongest associations in the MHC Class II region (rs3957146, Beta (SE) = 1.44 (0.05)), as well as the independent effect of MHC Class I genes, on type 1 diabetes risk, particularly *HLA-B*^*39* (Beta (SE) = 1.36 (0.17)) were confirmed. The conditional analysis in LADA versus controls showed significant association in the MHC Class II region (rs3957146, Beta (SE) = 1.14 (0.06)); however, we did not observe significant independent effects of MHC class I alleles in LADA.

Conclusion: In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.
‘Latent autoimmune diabetes in adults’ (LADA) is typically defined as initial insulin independency for at least six months after diagnosis and the presence of diabetes associated autoantibodies (1). Despite such features, autoantibody screening is not routinely carried out in routine clinical practice, resulting in frequent misdiagnosis. For instance, in a cohort of apparent type 2 diabetes cases, as many as 8-10% can actually represent misdiagnosed autoimmune diabetes cases (2,3). Hence, there is a need to identify biomarkers to aid in accurately diagnosing LADA as well as other diabetes subtypes(4).

A comprehensive analysis of the genetic etiology of LADA has, until recently, not been performed (5). Previous genetic studies have suggested the condition comprised both type 1 diabetes and type 2 diabetes components either because it is an intermediate form of diabetes or because it is a mixture of type 2 diabetes in a predominantly type 1 diabetes cohort owing to a high false positive detection rate using autoantibodies when screening. There is some debate as to whether LADA is in fact a distinct clinical entity or simply a category imposed on continuous features such as age of onset and time to insulin. However, since LADA is currently defined as a slowly progressive form of type 1 diabetes (6), it is crucial to define genetic differences between childhood-onset type 1 diabetes and LADA if we are to clarify the clinical utility of identifying adult-onset autoimmune diabetes.

Previous genetic studies in LADA have shown a strong association signal in the major histocompatibility complex (MHC), although with diminished effect sizes compared to observations in childhood onset (5,7). The MHC region is located on chromosome 6 and harbors over 400 genes, with two main classes, MHC Class I and MHC Class II, which together harbor
classic human leukocyte antigen (HLA) genes (*HLA-A, HLA-B, HLA-C* and *HLA-DRB, HLA-DQA, HLA-DQB, HLA-DPA, and HLA-DPB*, respectively). The HLA encodes cell surface proteins for antigen presentation and accounts for approximately 50% of the genetic heritability of type 1 diabetes, with susceptibility principally harbored within the MHC Class II genes *HLA-DQB1* and *HLA-DRB1*. However, in addition to Class II genes, previous studies have also suggested MHC Class I genes in susceptibility to type 1 diabetes (8–10); in particular, variation within the MHC class I genes *HLA-A* and *HLA-B* variation has been shown through conditional analysis to further increase type 1 diabetes risk (11). MHC Class I markers have also been shown to be associated with younger age-at-diagnosis in type 1 diabetes, and given the adult-onset phenotype of LADA, we hypothesized that this genetic variation will be less enriched in LADA.

In this effort, we first attempted to recapitulate the independent effects of MHC Class I variants using the SNP2HLA imputation tool followed by stepwise forward logistic regression in the same type 1 diabetes cohort as the previous study (11). In addition, we set out to identify distinguishing features within the MHC between childhood-onset type 1 diabetes from adult-onset LADA, by performing the same conditional analysis followed by a replication attempt in a second case/control set. Finally, we compared beta regression coefficients for each disease to determine whether or not effect sizes differ between LADA cases and controls versus type 1 cases and controls.
Materials & Methods

Study populations

(1) **LADA cases:** 1,492 LADA cases were derived from multiple cohorts across the United Kingdom, Germany and the United States. Details on the participants can be found in Supplementary Table 1. All participants were diagnosed with LADA if they fulfilled the following criteria: age at diagnosis 30-70 years old, tested positive for at least one diabetes-associated autoantibody (most cases were positive for glutamic Acid Decarboxylase autoantibodies (GADA)) and were not on insulin treatment for at least 6 months after diagnosis.

(2) **Controls:** The LADA population-based controls comprised of two cohorts (n=2,979). The first cohort consisted of 1,296 non-diabetic children and adolescents of European ancestry, aged 5-20 years, enrolled in the Bone Mineral Density in Childhood Study (BMDCS (12). The second control cohort consisted of 1,683 adults of European ancestry from a Non-Hodgkin lymphoma GWAS available in dbGaP (www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000818.v2.p1) (13). Details on the control cohorts can be found in Supplementary Table 1. (III) Recapitulating a previous study: We also leveraged 3,000 healthy adult British Birth Cohort controls, 2,000 individuals with childhood-onset type 1 diabetes and 1,999 individuals with type 2 diabetes from the Wellcome Trust Case Control Consortium (WTCCC)(14) to recapitulate observations found in a previous study (11). Individual data from the WTCCC is available through the Consortium’s Data Access Committee (http://www.wtccc.org.uk). More details on cohort information can be found in Supplementary Table 1. (IV) Replication: A cohort of individuals from the All New Diabetics In Scania (ANDIS) and Scania Diabetes Registry (SDR) studies were used for further recapitulation and replication, including case subjects with type 1 diabetes (N = 656), LADA cases (n=823) and
population-based controls (N=3,218). Details on the participants can be found in

Supplementary Table 1. See flow chart for overview of datasets and workflow

(Supplementary Figure 1).

Genotyping

All samples, except the WTCCC data, were genotyped using the Illumina OmniExpress
genotyping chip. WTCCC type 1 diabetes and type 2 diabetes cases were genotyped using
Affymetrix 500K and WTCCC controls were genotyped on the Illumina 1.2M BeadChip.
Quality control was performed using PLINK(15). Individuals with ambiguous sex, genotype
missingness >5%, genome-wide heterozygosiy (3 standard deviations from the mean),
duplicates and related-individuals were excluded (See **Supplementary Table 1** for details).
Principal component (PC) analysis was performed using PLINK, and outliers were removed to
exclude individuals with non-European ancestry. Single nucleotide polymorphisms (SNPs) with
missing rate <5%, minor allele frequency (MAF) <1% and Hardy-Weinberg equilibrium exact
test P-value below 1x10⁻⁵ were removed before HLA imputation.

HLA imputation

Starting from the genotyped SNPs, we imputed chromosome 6 using the HLA imputation
software SNP2HLA along with the Type 1 Diabetes Genetics Consortium (T1DGC) reference
panel (16). A marker window size of 1,000 bp and a posterior probability (gprob) threshold of
0.5 were used. The HLA alleles of LADA cases (n = 1,428) and WTCCC type 1 diabetes cases
(n = 1,985) were imputed to both 2-digit resolution and 4-digit resolution for increased coverage
and resolution of HLA alleles. In total, there were 5,698 SNPs, 424 HLA alleles and 1,276 HLA
amino acids. In this study, we focused on a subset of SNPs and HLA alleles which had a MAF greater than 1% in all three control cohorts (159 HLA alleles and 5,506 SNPs remained).

Power calculations
Power calculations were performed using the Genetic Association Study (GAS) Power Calculator (http://csg.sph.umich.edu/abecasis/cats/). Assumptions included a multiplicative model, a disease incidence of 0.0036, 1,428 cases and 2,979 controls and a significance level of 8.83x10^{-6}, based on a Bonferroni correction for the 5,665 variants tested (Supplementary Table 2).

Recapitulation of a previously published conditional analysis for type 1 diabetes
Logistic regression using SNPTEST (17) was used to test all HLA alleles and SNPs with MAF >1% in all three control cohorts. Sex and the 12 broad geographical regions, provided by the WTCCC, were included as covariates in the analysis. The analyses were performed in the WTCCC type 1 diabetes vs. control datasets using forward stepwise conditional logistic regression until there were no significant signals remaining after correction for multiple testing.

Conditional analysis in LADA vs. population-based controls
Conditional logistic regression was performed using SNPTEST in the LADA versus population-based controls, including sex and the first 4 principal components as covariates.

Replication
To further validate MHC Class I independent effects in type 1 diabetes and lack of MHC Class I independent effects in LADA, we implemented approximate conditional analyses (COJO) in GCTA (18) on summary statistics from the Swedish replication cohort. Association analysis was
performed using SNPTEST, and sex and the first four PCs were used as covariates. There were 656 cases with type 1 diabetes vs 3,218 population-based controls, and 823 cases with LADA vs 3,211 population-based controls.

Sensitivity analysis

We performed sensitivity analysis to determine whether the lack of independent type 1 diabetes-associated signals in MHC Class I genes in LADA cases could be due to a lack of power. We randomly sampled 1,428 type 1 diabetes cases and 714 type 1 diabetes cases (subsets equating to the same size as the LADA cohort and half the size of the LADA cohort, respectively) and 2,219 controls to determine whether the type 1 diabetes-associated signals could be still be detected. Stepwise conditional logistic regression using SNPTEST was performed as above. To test the hypothesis that LADA is simply a mixture of type 1 diabetes and type 2 diabetes cases, we performed a further constrained conditional analysis in 714 randomly sampled type 1 diabetes cases and 714 randomly sampled type 2 diabetes cases (total n = 1,428 cases) and 2,219 WTCCC controls.

Further validating independent signals

PLINK was used to calculate pair-wise linkage disequilibrium (LD) between variants to further validate that the associated variants were truly independent of each other. To confirm independent association of HLA-B*39, the specific HLA-B*39 subtype HLA-B*3906 was tested in the WTCCC type 1 diabetes cases (n = 1985) vs controls (n = 2219) dataset using the presence of *DQB1*0402 and *DQB1*0501 as covariates.
Results

Confirming independent effects of MHC Class I signals in WTCCC type 1 diabetes vs Controls

Before conditioning, we observed rs3957146 as the strongest association signal in the type 1 diabetes vs WTCCC controls analysis ($P = 8.94 \times 10^{-165}$; Figure 1A). rs3957146 is in strong LD with a classical HLA subtype allele, \textit{HLA-DQB1*0302} ($r^2 = 0.99$). After conditioning on the top signal, rs3957146, and subsequent independent MHC Class II signals (\textit{HLA-DQB1*0201} and rs9268633), we observed the reported independent significant association of MHC Class I variants rs1610649 (\textit{HLA-G}, $P = 6.89 \times 10^{-23}$) and HLA-B*39 ($P = 6.89 \times 10^{-23}$) (Figure 1B; Table 1; Supplementary Table 3; Supplementary Figure 2). Conditioning on these variants in addition to the MHC class II variants, also demonstrated significant association with the \textit{HLA-A} locus(rs9259852, $P = 2.04 \times 10^{-8}$).

Conditional analysis in LADA vs population-based controls

We then went on to perform stepwise conditional analysis in 1,428 LADA cases and 2,979 controls. Similar to observations in the type 1 diabetes vs WTCCC controls dataset, before conditioning on any variants, the strongest association signal in LADA vs population-based controls was also rs3957146 ($P = 1.80 \times 10^{-68}$; Figure 2A). Although we had 98% power to detect HLA-B*39 with an allele frequency of 2% and an odds ratio of 2.5 (Supplementary Table 2), when conditioning on the most highly significant MHC Class II alleles (rs3957146, \textit{HLA-DRB1*03}, rs9269081, \textit{DRB1*0404} and \textit{DQB1*0602}), there were no remaining independent signals in the MHC Class I region reaching significance after correction for multiple comparisons ($P < 8.83 \times 10^{-6}$; Figure 2B). Furthermore, we also noted independent effects in the MHC Class III region (rs2143462, $P = 8.24 \times 10^{-8}$) and the MHC Class II region (\textit{HLA-DPA1*02}, $P = 1.62 \times 10^{-6}$ and \textit{HLA-DPB1} variant rs3130192, $P = 5.32 \times 10^{-6}$), which are known to be
associated with type 1 diabetes (19). Here, HLA-DPB1 variant is in strong LD with rs2301225 ($r^2=0.85$) and is independently associated with type 1 diabetes. MHC Class I variants were not observed to be independently associated with LADA after correcting for multiple comparison (Table 1; Supplementary Figure 2; Supplementary Table 4).

Sensitivity analysis in reduced sample of type 1 diabetes vs controls

To ensure that the lack of significant associations with MHC Class I genes in the LADA cohort was not explained by reduced power, we conducted a sensitivity analysis by systematically decreasing the sample size of the type 1 diabetes vs WTCCC control cohort to match the size of the discovery LADA cohort (n= 1428 type 1 diabetes cases and 2219 controls) and performing conditional analysis. Independent significant association signals at HLA-G ($P = 1.37 \times 10^{-17}$), HLA-B ($P = 5.58 \times 10^{-14}$) and MUC22 (rs9262545, $P = 3.36 \times 10^{-9}$; rs9262547, $P = 9.69 \times 10^{-14}$) were still observed in this reduced type 1 diabetes sample size (Supplementary Table 5), although these signals were missing in the comparatively-sized LADA vs controls dataset. Similarly, independent significant association signals at HLA-B ($P = 1.26 \times 10^{-10}$), HLA-G ($P = 0.002$), and MUC22 (rs9262545, $P = 1.57 \times 10^{-5}$) remained after further reducing the type 1 diabetes cohort size to equate with half the LADA cohort size (Supplementary Table 6).

Sensitivity analysis in an randomly mixed cohort of type 1 diabetes and type 2 diabetes cases vs controls

Another explanation for the lack of independent, significant associations across MHC Class I genes in LADA could be due to the possibility that the LADA cohort simply represents an approximately 50/50 mixture of misdiagnosed type 1 diabetes and type 2 diabetes cases. Therefore, we randomly sampled 714 cases with type 1 diabetes, 714 cases with type 2 diabetes and 2,219 controls, creating a “mixture” cohort. We performed the same conditional analysis
described above and observed that the HLA-B, HLA-G and two MUCC2 signals in the MHC Class I regions remained independently significant in this mixed cohort, driven by the type 1 diabetes case subset (Supplementary Table 7).

Replication

We leveraged summary statistics data from Swedish cohorts to attempt replication of our findings. In type 1 diabetes vs controls, the strongest association was rs9275206 ($P = 6.35 \times 10^{-89}$), which is in strong LD with HLA-DQB1*0302 ($r^2 = 0.99$). After conditioning on rs9275206 and subsequent top signals (Supplementary Table 8), we again observed significant association signals at the HLA-G ($P = 1.74 \times 10^{-10}$) and HLA-B (1.10x10^-9) loci. However, when conditional analysis was performed in LADA vs controls, there were no such signals across MHC Class I genes, and very sparse signals in the MHC Class II region (Supplementary Table 9). Furthermore, we observed a significant association signal at the NOTCH4 (rs397081, $P = 1.11 \times 10^{-10}$) locus, the MUC22 locus (rs9262545, $P = 7.83 \times 10^{-11}$ and rs9262547, $P = 7.17 \times 10^{-17}$) and the HLA-A locus (rs9259852, $P = 5.84 \times 10^{-14}$) (Figure 2C). Notably, rs9259852 is in strong LD with the classic HLA subtype allele, HLA-A*32 ($r^2=0.96$).

Further validating HLA*B*39

It has been shown that the HLA-B*3906 allele is associated with a high risk of diabetes only for specific HLA-DR/DQ haplotypes, DRB1*0801-DQB1*0402 and DRB1*0101-DQB1*0501(20). When specifically conditioning on these HLA-DR/DQ haplotypes in the WTCCC type 1 diabetes and control cohort, the independent significant association of the more specific HLA-B*3906 subtype still remained (OR (95% CI) = 4.57 (3.08-6.80); $P = 5.84 \times 10^{-14}$).
Conclusion

The main objective of this study was to perform conditional analysis of the HLA region in LADA, which has been under explored to date in this disease context. The few genetic studies in LADA (5,21,22) only focused on the HLA Class II DRB1 and DQB1 haplotypes. Such studies, in populations of both European and Chinese ancestry, show that type 1 diabetes risk haplotypes are less frequent in LADA compared to childhood-onset type 1 diabetes cases, whereas type 1 diabetes protective haplotypes are more frequent in LADA, suggesting that LADA is a genetically attenuated form of type 1 diabetes. By extending the analysis of HLA in LADA beyond the MHC Class II region, we were able to observe further genetic differences between LADA and childhood-onset type 1 diabetes.

Although previous studies have reported MHC Class I independent effects in type 1 diabetes, those studies used directly HLA-typed cases and controls. Given the cost and challenges of direct HLA typing, we utilized the imputation tool SNP2HLA on genotyping data. SNP2HLA has been commonly used in the field to assess the genetics of autoimmune diseases (16,25,29,30). Furthermore, given this approach differs from that of Nejentsev et al., it was crucial to first ensure that we could recapitulate the previously reported type 1 diabetes observations in the same cohort. First, we leveraged the WTCCC type 1 diabetes and control dataset, as a positive control, with previous studies identifying MHC Class I independent type 1 diabetes associations in the MHC Class I region (8,10,11,23). Since these studies were reported, imputation tools have allowed the analysis of the HLA region more cheaply and, in general, more practically. Before investigating MHC Class II independent LADA associations in the MHC Class I region, given the difference in our analytical approach, we recapitulated the observations in previous studies (10,11), by leveraging the same WTCCC type 1 diabetes and
control datasets. We confirmed that MHC Class I variants are significantly associated with type 1 diabetes, independent of the MHC Class II region using this imputation-based approach followed by stepwise conditional logistic regression. The conditional analysis was repeated in the LADA cohort, which consisted of cases and population-based controls. Crucially, there were no significant independent effects in the MHC Class I region remaining after correction for multiple comparisons; furthermore this observation was replicated in a separate Swedish cohort of type 1 diabetes cases, LADA cases and population-based controls.

The MHC Class I variant HLA-B^*39 is an established locus associated with type 1 diabetes risk (10,11,24). More specifically, studies suggested a strong association with type 1 diabetes for the subtype HLA-B^*3906, which is now used in type 1 diabetes genetic risk scores to predict type 1 diabetes diagnosis (25). It has also been shown that the B^*3906 allele significantly enhances the risk of type 1 diabetes when present on specific HLA-DR/DQ haplotypes (e.g. $\text{DRB1 0801-DQB1 0402 and DRB1 0101-DQB1 0501}$). The frequency of HLA-B^*3906 is different among different populations, and here did not survive our filter of having a MAF > 1% in the replication control cohort of Swedes. Thus, it was excluded in the analyses across the three cohorts. However, we confirmed that the HLA-B^*3906 allele remained significantly associated with type 1 diabetes after conditioning on the presence of the $\text{DRB1 0801-DQB1 0402 and DRB1 0101-DQB1 0501}$ haplotypes. Additionally, HLA-B^*3906 is associated with younger age-at-diagnosis in type 1 diabetes (9,11). A recent study using a NOD mouse model showed that HLA-B^*3906 mediates the development of CD8+ T cells required for type 1 diabetes onset; moreover, in the context of reduced immunological tolerance to insulin, HLA-B^*3906-transgenic NOD mice develop type 1 diabetes at an accelerated rate (26). The lack of an independent HLA-B^*39
association observed in the adult-onset phenotype of LADA further confirms the link between $HLA-B^*39$ with autoimmune progression with earlier onset of clinical disease.

$HLA-B$ associations have been confirmed in a previous study (23), as well as associations around $HLA-G$, which is expressed in human pancreas (27) and may play a role in autoimmune progression (28). However, the MHC Class I variant rs1619379, located in $HLA-G$ and ~100kb telomeric of $HLA-A$, may be less informative compared to $HLA-A$ variants in predicting type 1 diabetes risk (10). This particular MHC Class I variant was independently significant in the downsampled type 1 diabetes cohort, but is in strong linkage disequilibrium with $HLA-G$ variants, rs1610649 and rs2735028, which were significantly associated in the full type 1 diabetes set, the mixture cohort consisting of type 1 diabetes and type 2 diabetes cases, and the type 1 diabetes Swedish replication cohort. Additionally, the MHC Class I variants located in the $MUC22$ locus have not been replicated in separate cohorts, and likely form haplotypes with HLA Class I alleles.

One limitation of this study was that we only tested variants with a MAF > 1% in all three control cohorts, which resulted in filtering out many informative alleles such as $HLA-B^*3906$. By filtering to include only common alleles we limited potential discrepancies between populations, and were able to replicate our observations across cohorts with different frequencies of known risk variants. Furthermore, our study is limited in power to assess the underlying continuous traits of age at onset, time to insulin, and autoantibody titer; future well-designed, large studies are needed to enable those analyses. With larger and more complete data in individuals, we can then formally test the many competing hypotheses regarding the state of LADA in the field. The hypothesis that LADA exists as a different disease to type 1 diabetes with both overlapping genes and distinct genes is unlikely, as we did not clearly observe distinct
susceptible loci that were unique to LADA in this study or our previous GWAS (5). Future studies leveraging cases diagnosed with type 1 diabetes and LADA across the age of onset range will be crucial to test the remaining hypotheses, which are: i) LADA is type 1 diabetes with misdiagnosed type 2 cases that are false positive for autoantibodies ii) LADA cases are essentially type 1 diabetes at later onset with lower rates of progression iii) LADA is a form of diabetes where cases have both type 1 and type 2 risk alleles present at individual level. This first hypothesis (LADA is type 1 diabetes with misdiagnosed type 2 cases that are false positive for autoantibodies) motivated the sensitivity analysis, in which we randomly sampled cases from the WTCCC type 1 diabetes and type 2 diabetes cohort to create an random LADA cohort under the assumption that LADA would be a “mixture” of actual type 1 diabetes and type 2 diabetes cases. In this analysis, we still observed the same independent effects of MHC Class I variants, showing that the type 1 diabetes signature remained in the “mixture” cohort despite not being observed in LADA. However, we recognize that type 1 diabetes cases were sampled from the cohort of childhood-onset type 1 diabetes and to properly test this hypotheses LADA cases would have to be ascertained from another cohort, but also further stratified by autoantibody titre.

Although the underlying populations from which the type 1 diabetes and LADA sets were derived are the same, we addressed if the LD structure in the HLA region could be different between the two sample sets, which in turn could have resulted in inaccurate imputation. However, when we calculated LD for the MHC region in these datasets, we found it to be highly correlated (Pearson correlation coefficient = 0.97). Future studies are needed to address this question in depth as well as validate these findings in a cohort directly typed for MHC Class II and MHC Class I HLA alleles. Additionally, to further delineate this putative distinguishing
genetic feature between LADA and childhood-onset type 1 diabetes, it will be crucial to investigate how the HLA profile compares across the diabetes age continuum stratified for different autoantibody positivity status. A previous study observed different independent effects of MHC Class I variants to GAD autoantibodies and insulinoma-associated antigen-2 autoantibodies (31). Additionally, studies have shown that children with type 1 diabetes who are positive for a single autoantibody are more likely to show type 2 diabetes features (32,33), for instance, a significant association with type 2 diabetes GWAS-implicated variants. Overall, our results point to key differences in the genetic signature in the MHC region, especially Class I markers, between LADA and childhood-onset type 1 diabetes. This study highlights the clinical utility of genetic screening in adult-onset diabetes that may be autoimmune in origin. The potential of defining these subjects who are at risk of rapid loss of insulin secretion using genetic characteristics could enable targeted immune-based, disease-modifying therapy.
ACKNOWLEDGEMENT

We gratefully acknowledge the participation of all the patients and control subjects. We would like to thank the JDRF, German Research Council (DFG: SFB 518, A1), German Diabetes Foundation, EUFP5 (Action LADA), All New Diabetes in Scania (ANDIS), Scania Diabetes Registry (SDR), and Malmö Diet and Cancer Study–Cardiovascular Cohort (MDC-CC) for providing samples for this research. We also would like to thank the Bone Mineral Density in Childhood Study, a multicenter, longitudinal study of bone accrual in healthy children. Authors are listed in Supplementary Material. This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113. We acknowledge Stephen S. Rich, Marcella Devoto, and Andrew Wells for all the fruitful discussions.

FUNDING

D.L.C. is supported by the National Institutes of Health (1K99HD099330-1). D.M. is supported by CIBERDEM, Instituto de Salud Carlos III (Spain). B.O.B. is supported by the German Research Council (SFB 518, A1), LKC School of Medicine’s Ong Tiong Tat Chair of Diabetes Research, the state of Baden-Württemberg, and a Ministry of Education, Singapore startup grant. S.F.A.G. is supported by the National Institutes of Health (R01-DK-085212) and the Children’s Hospital of Philadelphia Daniel B. Burke Endowed Chair for Diabetes Research.
CONFLICTS OF INTEREST

The authors declare that there are no potential conflicts of interest relevant to this article.
Rajashree Mishra is currently employed by GlaxoSmithKline, Nanette C. Schloot is currently employed by Lilly Germany, and Vanessa C. Guy is currently employed by Science 37.

ETHICAL APPROVAL

This study was approved by local institutional ethical review boards.

AUTHOR CONTRIBUTIONS

References

9. Valdes AM, Erlich HA, Noble JA. Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset. Hum Immunol. 2005;

10. Howson JMM, Walker NM, Clayton D, Todd JA. Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A. Diabetes, Obes Metab. 2009;

23. Eike MC, Becker T, Humphreys K, Olsson M, Lie BA. Conditional analyses on the T1DGC MHC dataset: Novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B. Genes Immun. 2009;

28. Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC
class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci. 2003;

31. Howson JMM, Stevens H, Smyth DJ, Walker NM, Chandler KA, Bingley PJ, et al. Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA-2, are distinct. Diabetes. 2011;

Table 1. Comparison of beta coefficients between conditional analyses in type 1 diabetes and LADA cohorts. Beta, and standard error(SE) are calculated for the risk allele frequency (RAF) from stepwise regression conditional on all SNP/HLA-Alleles in rows above (first column) in 1985 type 1 diabetes cases vs. 2219 controls. Beta coefficients and standard error for LADA versus controls correspond to maximum effect size in conditional analysis. P-value is derived from two sample Z test to formally test whether beta coefficients are significantly different or not. Forest plot is shown in Supplementary Figure 2. Three independent signals appeared in both type 1 diabetes and LADA conditional analyses (rs3957146, HLA-DRB1*0404, and rs9269081), however of these three signals only rs3957146 had a significant difference in effect size between type 1 diabetes and LADA (interaction p-value = 4.15x-10).

<table>
<thead>
<tr>
<th>SNP/HLA-Allele</th>
<th>Locus</th>
<th>Position</th>
<th>Alleles (Risk/Other)</th>
<th>WTCCC type 1 diabetes vs WTCCC Controls</th>
<th>LADA vs Controls</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RAF Cases</td>
<td>RAF Controls</td>
<td>Beta</td>
<td>SE</td>
</tr>
<tr>
<td>rs3957146</td>
<td>HLA-DQA2</td>
<td>32789508</td>
<td>T/C</td>
<td>0.385</td>
<td>0.113</td>
<td>1.44</td>
</tr>
<tr>
<td>DQB1*0201</td>
<td>HLA-DQB1</td>
<td>32739039</td>
<td>P/A</td>
<td>0.338</td>
<td>0.140</td>
<td>1.56</td>
</tr>
<tr>
<td>rs9268633</td>
<td>HLA-DRA</td>
<td>32514451</td>
<td>G/A</td>
<td>0.983</td>
<td>0.803</td>
<td>1.46</td>
</tr>
<tr>
<td>rs1610649</td>
<td>HLA-G</td>
<td>29876896</td>
<td>G/A</td>
<td>0.616</td>
<td>0.582</td>
<td>1.36</td>
</tr>
<tr>
<td>B*39</td>
<td>HLA-B</td>
<td>31431272</td>
<td>P/A</td>
<td>0.043</td>
<td>0.016</td>
<td>1.36</td>
</tr>
<tr>
<td>DRB1*0404</td>
<td>HLA-DRB1</td>
<td>32660042</td>
<td>P/A</td>
<td>0.082</td>
<td>0.048</td>
<td>1.04</td>
</tr>
<tr>
<td>rs17427599</td>
<td>HLA-DQB1</td>
<td>32775342</td>
<td>T/C</td>
<td>0.849</td>
<td>0.755</td>
<td>0.59</td>
</tr>
<tr>
<td>rs2301252</td>
<td>HLA-DPA1</td>
<td>33143838</td>
<td>T/C</td>
<td>0.941</td>
<td>0.891</td>
<td>0.72</td>
</tr>
<tr>
<td>rs397081</td>
<td>NOTCH4</td>
<td>32300595</td>
<td>T/C</td>
<td>0.095</td>
<td>0.045</td>
<td>0.79</td>
</tr>
<tr>
<td>rs9262545</td>
<td>MUC22</td>
<td>31101041</td>
<td>A/G</td>
<td>0.913</td>
<td>0.881</td>
<td>0.67</td>
</tr>
<tr>
<td>rs9262547</td>
<td>MUC22</td>
<td>31101206</td>
<td>T/A</td>
<td>0.135</td>
<td>0.119</td>
<td>1.59</td>
</tr>
<tr>
<td>rs9259852</td>
<td>HLA-A</td>
<td>30004400</td>
<td>C/T</td>
<td>0.977</td>
<td>0.959</td>
<td>1.00</td>
</tr>
<tr>
<td>rs9269081</td>
<td>HLA-DRA</td>
<td>32549078</td>
<td>A/C</td>
<td>0.890</td>
<td>0.735</td>
<td>0.57</td>
</tr>
<tr>
<td>rs1978029</td>
<td>HLA-DQB2</td>
<td>32839688</td>
<td>C/T</td>
<td>0.651</td>
<td>0.537</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Figure 1. Conditional analysis in 1985 type 1 diabetes cases and 2219 WTCCC controls. A) Logistic regression analysis without conditioning on MHC Class II alleles. B) Logistic regression analysis conditioning on MHC Class II alleles. C) Logistic regression analysis conditioning on MHC Class II and MHC Class I signals.

Figure 2. Conditional analysis in 1,428 LADA cases and 2,979 WTCCC controls. A) Logistic regression analysis without conditioning on MHC Class II alleles. B) Logistic regression analysis conditioning on MHC Class II alleles.