SURVIVE: let the dead help the living—an autopsy-based cohort study for mapping risk markers of death among those with severe mental illnesses

Banner, Jytte; Hoyer, Christian Bjerre; Christensen, Martin Roest; Gheorghe, Alexandra; Bugge, Anne; Ottesen, Gyda Lokk; Boel, Lene Warner Thorup; Thomsen, Jørgen Lange; Kruckow, Line; Jacobsen, Christina

Published in: Scandinavian Journal of Forensic Science

DOI: 10.2478/sjfs-2018-0002

Publication date: 2018

Document version: Final published version

Document license: CC BY-NC-ND

Terms of use: This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 17. Apr. 2021
SURVIVE: let the dead help the living—an autopsy-based cohort study for mapping risk markers of death among those with severe mental illnesses

Jytte Banner1*, Christian Bjerre Høyer2, Martin Roest Christensen1, Alexandra Gheorghe1, Anne Bugge1, Gyda Lolk Ottesen1, Lene Warner Thorup Boel1, Jørgen Lange Thomsen3, Line Kruckow1, Christina Jacobsen1

1 Department of Forensic Medicine, Frederik V’s Vej 11, DK-2100 Copenhagen, University of Copenhagen
2 Department of Forensic Medicine, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, University of Aarhus
3 Department of Forensic Medicine, J. B. Winsløws Vej 17, DK-5000 Odense, University of Southern Denmark
*Corresponding Author E-mail: jytte.banner@sund.ku.dk

Abstract:
Background: Forensic autopsy strategies may improve differential diagnostics both post-mortem and ante-mortem and aid in clinical settings concerning preventive efforts for premature mortality. Excess mortality and reduced life expectancy affects persons with severe mental illnesses (SMI) for multi-faceted reasons that remain controversial. Somatic conditions, medical treatment and lifestyle diseases, which are primarily examined in the living, contribute to premature deaths. The underlying pathophysiological mechanisms are unclear, though, and the benefits of a focused, standardised autopsy remain unproven. We have developed and implemented an optimised molecular-biological autopsy for deceased persons with SMI. Our aim is to map the occurrence of 1) somatic diseases and organ changes; 2) metabolic syndrome; 3) use and abuse of alcohol, pharmaceuticals and psychoactive substances; 4) pharmacokinetic and pharmacodynamic factors in the metabolism of pharmaceuticals; and 5) genetic variations (acquired and/or congenital) in sudden cardiac death. Additionally, we hope to contribute to diagnostic treatments and preventive measures to benefit those living with SMI.

Methods: SURVIVE: let the dead help the living is a prospective, autopsy-based study on 500 deceased persons with SMI subjected to forensic autopsies under the Danish Act on Forensic Inquests and Autopsy. The autopsies followed an extended, standardised autopsy protocol comprised of whole-body computed tomography scanning, magnetic resonance imaging of the heart and brain and an extended forensic autopsy, including a wide panel of analyses (toxicology, microbiology, genetics, histology and biochemical analysis). Additionally, post-mortem data were linked to ante-mortem health data extracted from Danish national health registers.

Discussion: The SURVIVE autopsy procedure, including tissue sampling and bio banking, has been shown to be effective. We expect that the SURVIVE study will provide unique opportunities to unravel the mechanisms and causes of premature death in persons with SMI. We also expect that identifying prognostic biomarkers for comorbidities will contribute to prevention of premature deaths and comorbidities in persons with SMI.

Keywords:
Expanded standardised autopsy procedure, molecular autopsy, extended biobanking, premature death markers, severe mental illness

BACKGROUND

Forensic medical research may play a key note in developing strategies to improve differential diagnostics within the field. These strategies can lead to improved clinical diagnostics and preventive strategies for comorbidities and premature mortality in living patients.

In 2010, the Danish Society of Forensic Medicine and the three Danish sections of forensic pathology, based at the universities of Aarhus, Southern Denmark and Copenhagen reported patterns in the causes of death among deceased individuals with severe mental illnesses (SMI) subjected to forensic autopsies [1]. The report was based on a retrospective study on 516 cases with death certificates indicating diagnoses within sections F20-F29 and F30-39 [2] in the 10th edition of the World Health Organization’s International Classification of Diseases (ICD-10). The cause of death in many cases was intoxication, while 10% died from cardiovascular causes. In 15% of cases, the cause of death could not be determined after autopsies, a higher rate than in other cases undergoing forensic autopsies in Denmark [1].

Based on this, the project SURVIVE: let the dead help the living—an autopsy-based strategy for mapping risk markers of death among those with severe mental illnesses was launched in May 2013. One aim was to introduce a national, standardised, extended forensic autopsy procedure. The SURVIVE algorithm comprises known risk factors for premature death and comorbidities in persons with SMI, along with anthropometric measures, radiological imaging techniques, biomedical status measures and molecular analysis methods.

The population of people suffering from SMI has higher mortality than the general population [3–6]. Among people suffering from, for example, schizophrenia, mortality is more than double [7], and life expectancy is 25 years lower than in an equivalent group of the general population (standardised mortality rate) [8, 9]. Approximately one-thirds of deaths among persons with SMI are caused by suicides and accidents, while the remaining two-thirds result from natural causes, with cardiovascular causes accounting for nearly half of these cases [10, 11].
However, the underlying reasons for the reduced life expectancy among people with SMI are not sufficiently established. The known risk factors are varied and include cardiovascular diseases (CVD) and lifestyle-related factors, such as diabetes, metabolic syndrome (MetS), obesity, smoking and alcohol and substance use [12-14]. Persons with MetS have increased all-cause mortality and CVD mortality risk [15]. In addition to the risk of intoxication and the detrimental effects of polypharmacy, several antipsychotic and antidepressant pharmaceuticals have been associated with increased risk of sudden cardiac death (SCD) [16-18].

The overall purpose of SURVIVE is to implement an autopsy strategy that can be used to investigate the known risk factors for premature death in a cohort of deceased persons suffering from SMI. These risk factors are lifestyle-associated factors [12], MetS [19], genetic disposition [20], pharmaceuticals [21] and the (ab)use of alcohol and psychoactive substances [22-24]. The aim is to improve differential diagnostics in forensic medicine, clinical diagnostic tools, disease management and treatment in people with SMI within the healthcare sector. No major prospective or systematic autopsy studies have mapped the comorbidities, importance of known risk factors or causes of death in deceased persons with SMI.

RESEARCH QUESTIONS

The objective of SURVIVE is to develop and employ an optimised, molecular-biological autopsy model for deceased persons with SMI to identify the risk factors and causal pathways for sudden and unexpected death. Four main research questions are proposed:

1) What impacts does CVD have on premature death in the study population?
2) What impacts do adipose tissue changes have on the prevalence and severity of CVD?
3) What impacts do medication and substance use have on premature death?
4) Do genetic and epigenetic mechanisms influence medication- and substance-induced cardiac arrhythmia in the study population?

Areas of interest in SURVIVE include but are not limited to:

- patho-anatomical organ changes
- measurable indicators of MetS
- toxicological analyses
- genetic and epigenetic tests for CVD, mental illnesses and drug metabolism
- development of post-mortem radiological methods with post-mortem computer tomography (PMCT), CT angiography and post-mortem magnetic resonance imaging (PMMRI)
- estimation of the representativeness of the SURVIVE populations for Danish patients with mental illness

METHODS AND DESIGN

Design

The SURVIVE study is a national Danish multicentre, prospective, autopsy-based cohort study based at the Department of Forensic Medicine, Copenhagen University, conducted in collaboration with the Department of Forensic Medicine, Aarhus University, and the Department of Forensic Medicine, University of Southern Denmark.

Study period

The study period was 1 May 2013–31 April 2015, and the study sample included 500 deceased individuals (Copenhagen=313, Aarhus=112, Odense=75).

Study population

Inclusion criteria

The project prospectively included all deceased who had known or suspected SMI undergoing forensic autopsy at one of Denmark's three departments of forensic medicine from the 1st of May 2013 and until 500 decedents were included. Upon inclusion of each individual person in the SURVIVE study, the SURVIVE algorithm and workflow were activated. Generally, during the medico-legal inquest, the police decided whether a forensic autopsy should be performed based on the Danish Health Act and the advice of a participating medical health officer or forensic pathologist.

The attending physician determined the presence of SMI or the suspicion of SMI at the time of the medico-legal examination based on information gathered from police reports, next of kin and statements from general practitioners. In some cases, the information was certain and supported a defined diagnosis; in others, it was vague and only indicated suspicion of mental illness. Suspicion included information on treatment with psychotropic pharmaceuticals, defined as prescribed pharmaceuticals with the following codes from The Anatomical Therapeutic Chemical classification system (ATC): N05A, N05B, N06A, N06B and N06C. Decedents receiving N03A pharmaceuticals were included if the indication was due to bipolar or other affective disorders, or the pharmaceutical was N03AE01 (clonazepam). All cases treated with other types of benzodiazepines were included irrespective of the indication. Uncertain information about generic names, tradenames and compounds did not prevent inclusion based on the decision of the attending physician at the department of forensic medicine. The attending physician could at all times confer with a senior physician prior to inclusion or exclusion. Physicians employed by the forensic medical institutes do not have access to the electronic health care files of the health care system and as such, confirmation of a suspicion of SMI was not possible prior to inclusion.

These broad criteria were chosen to avoid missing decedents suffering from an SMI and to include an internal control group of the false positives - decedents without SMI that underwent the same specialised autopsy.

Exclusion criteria

Exclusion criteria were extensive decomposition of the body and if a PMCT scan could not be performed prior to autopsy. Exclusion also happened were the autopsy algorithm would prevent specialised examination required for police investigation (e.g. homicide). Cases in which consent for the SURVIVE project was not given after the autopsy were excluded from further analysis.

Consent

Under Danish legislation, all research protocols involving biological samples from forensic autopsies require informed consent from the next of kin. A
detailed plan to contact the next of kin was accordingly developed. Written
information about the SURVIVE study, including the need for consent and
instructions how to contact the research team by email or phone, was
mailed by post to the next of kin no less than three months after an autopsy
was performed. In the case of no reply, a follow-up phone call was made.
All information regarding consent, contact information of next of kin and
other comments about the information process was recorded in a separate
Microsoft Access 2010™ (Microsoft®, Redmond, Washington, USA) database
separate from the data registered for the research purposes on each
individual case. Cases in which relatives did not give consent were excluded
from SURVIVE. Obtaining consent was completed in May 2017, and the
consent rate from next of kin was higher than 90%.

Blinding

All cases were assigned a unique project identification (ID) number (SURVIVE-
ID) upon inclusion in the study. The case ID numbers and the corresponding
data were recorded in an Access database. De-anonymisation was done
using a separate table linking the project IDs to the social security numbers
of the deceased. Police reports, autopsy reports and correspondence
concerning individual cases were not recorded in the database. Case-specific
results obtained in the SURVIVE project were not available to investigation
of individual cases.

SURVIVE protocol

Post-mortem radiology

All cases were subjected to whole-body PMCT scanning before autopsy at
a department of forensic medicine. Either a Siemens CT scanner Somatom
Definition, 64 slice or a Somatom Spirit dual slice was used. Scan protocols
adhered to the more recent standards from the Danish Accreditation
and Metrology Fund (DANAK) following international standard ISO/IEC
17020:2012. The protocols included both routine scans and scans specifically
for individual SURVIVE projects (e.g. cardiac CT, lumbar spine and hips for
bone mass density (tables 1–4).

SURVIVE scan protocols for PMCT at the three departments of forensic
medicine in Denmark (tables 1–4)

Table 1. CT scan protocol, Department of Forensic Medicine, University of Copenhagen

<table>
<thead>
<tr>
<th></th>
<th>Head and neck</th>
<th>Thorax and abdomen</th>
<th>Lower extremities</th>
<th>Cardiac calcium score</th>
<th>Lumbar spine and hips</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAs</td>
<td>260</td>
<td>90</td>
<td>90</td>
<td>157</td>
<td>200</td>
</tr>
<tr>
<td>kV</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Slice (mm)</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.4</td>
<td>0.24</td>
<td>0.6</td>
<td>0.75</td>
<td>0.95</td>
</tr>
<tr>
<td>Kernel</td>
<td>H20s</td>
<td>B31f</td>
<td>B31f</td>
<td>B30f</td>
<td>B50f</td>
</tr>
</tbody>
</table>

Scanner Siemens Somatom Sensation 4, May–October 2013

Table 2. CT scan protocol, Department of Forensic Medicine, University of Copenhagen

<table>
<thead>
<tr>
<th></th>
<th>Head and neck</th>
<th>Thorax and abdomen</th>
<th>Lower extremities</th>
<th>Cardiac calcium score</th>
<th>Lumbar spine and hips</th>
<th>Whole body</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAs</td>
<td>375</td>
<td>47/40</td>
<td>114</td>
<td>147</td>
<td>275</td>
<td>570</td>
</tr>
<tr>
<td>kV</td>
<td>140</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Slice (mm)</td>
<td>1.0</td>
<td>3.0/1.0</td>
<td>1.0</td>
<td>3</td>
<td>3.0/1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.75</td>
<td>0.5/0.45</td>
<td>0.85</td>
<td>0.35</td>
<td>0.35</td>
<td>1.5</td>
</tr>
<tr>
<td>Kernel</td>
<td>H20s</td>
<td>B30f/B20f</td>
<td>B20s/B40s</td>
<td>B35f</td>
<td>B20f</td>
<td>B30f</td>
</tr>
</tbody>
</table>

Scanner Siemens Somatom Definition, 64 slice, October 2013–May 2015

Table 3. CT scan protocol, Department of Forensic Medicine, University of Aarhus

<table>
<thead>
<tr>
<th></th>
<th>Head and neck</th>
<th>Thorax and abdomen</th>
<th>Lower extremities</th>
<th>Cardiac calcium score</th>
<th>Lumbar spine and hips</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAs</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>210</td>
<td>200</td>
</tr>
<tr>
<td>kV</td>
<td>140</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Slice (mm)</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.75</td>
<td>0.5</td>
<td>0.85</td>
<td>0.5</td>
<td>0.95</td>
</tr>
<tr>
<td>Kernel</td>
<td>H20s</td>
<td>B20f</td>
<td>B20s</td>
<td>B35f</td>
<td>B20f</td>
</tr>
</tbody>
</table>

Scanner Siemens Somatom Definition, 64 slice, May 2013–May 2015
were performed. The analyses comprised screening and quantification of prescribed standard for medication and drug types, analyses matrices and intoxication levels. All the toxicological analyses also adhered to an intersectional, approved DANAK standards under the international standard ISO/IEC 17025:2005. Performed at all three forensic chemistry departments following the current consensus decision. The forensic toxicological analysis after the autopsy was clinical and forensic pathologists, based histopathological description on a Members of the steering group of the SURVIVE-study, who were all certified healthcare professionals.

Sample analysis

Table 4. CT scan protocol, Department of Forensic Medicine, University of Southern Denmark

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Head</th>
<th>Neck</th>
<th>Thorax</th>
<th>Abdomen</th>
<th>Lower extremities</th>
<th>Cardiac calcium score</th>
<th>Lumbar spine and hips</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAs</td>
<td>110</td>
<td>110</td>
<td>60</td>
<td>80</td>
<td>30</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>kV</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Slice (mm)</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.95</td>
<td>0.95</td>
<td>1.8</td>
<td>1.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Kernel</td>
<td>H31</td>
<td>B50</td>
<td>B31</td>
<td>B41</td>
<td>U90</td>
<td>B31</td>
<td>U90</td>
</tr>
</tbody>
</table>

In selected cases, PMCT angiography and PMMRI of the heart and brain were performed.

Extended autopsy algorithm

The standardised autopsy algorithm followed the most recent accredited standards from DANAK. The SURVIVE algorithm built on it by thoroughly describing the registration of physical parameters and anthropometric measurements and the dissection and sampling of each relevant organ (Table 5), focusing on the dissection and registration of heart parameters (Table 6). Dissection of the heart was performed according to international standards [25]. The material needed for registration, sampling and data collection was supplied in an individually assigned cardboard box with a unique SURVIVE-ID. The cardboard box was suitable for the autopsy room and provided before the autopsy. Specifically assigned medical personnel performed all registrations before and during each autopsy (see tables 7–8).

Sampling

The location and sidedness (left or right) of the sample from each organ and tissue were standardised. In addition to the standard autopsy protocol, the samples included peripheral blood and tissue from skeletal muscles, liver, spleen, heart and brain; bone samples from the second lumbar vertebrae and the iliac crest; and hair samples. All tissue and fluid samples were collected in tubes without any additives (15 mL and 5mL, respectively). The relevant samples were stored at -20°C or -80°C until analysis. Tissue for histopathological analyses were fixed in 4% formalin and then embedded in paraffin. Finally, blood was added to DNA filter paper (FTA™ Classic Card, Fitzco, Minneapolis, USA) and stored at room temperature for later analyses.

Table 5. Registration of physical and organ-specific parameters

<table>
<thead>
<tr>
<th>Registrations of physical parameters</th>
<th>Organ-specific registrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Brain weight</td>
</tr>
<tr>
<td>Weight</td>
<td>Thyroid weight</td>
</tr>
<tr>
<td>Abdominal circumference</td>
<td>Lung weight (left and right)</td>
</tr>
<tr>
<td>Hip circumference</td>
<td>Omentum weight</td>
</tr>
<tr>
<td>CRP measurement</td>
<td>Kidney capsule weight</td>
</tr>
<tr>
<td>Hair length</td>
<td>Spleen weight</td>
</tr>
<tr>
<td>Hair treatment</td>
<td>Liver weight</td>
</tr>
<tr>
<td>Hair colour</td>
<td>Liver measurements (h x l x d)</td>
</tr>
<tr>
<td></td>
<td>Kidney weight</td>
</tr>
<tr>
<td></td>
<td>Kidney measurements (h x l x d)</td>
</tr>
<tr>
<td></td>
<td>Heart (see Table 6)</td>
</tr>
</tbody>
</table>

\[h \times l \times d: \text{height \times length \times depth}\]

pharmaceuticals and illicit psychoactive substances, including active metabolites from several samples (Table 9).

Additional forensic biochemical, microbiological and molecular biology analyses (tables 9 and 10) were performed, including but not limited to post-mortem measurements of blood total cholesterol levels, triglycerides, glycated haemoglobin (HbA1c) and urine-albumin/creatinine ratio.

Other data sources

The 500 cases were supplemented with register-based data from the Danish national health registers (see Table 11) including, but not limited to: information on dispensed prescription medication, contacts with primary healthcare providers, admissions to hospitals including emergency wards, ambulatory functions and long term admission, use of involuntary commitment in the psychiatric health care system and registration in substance use treatment facilities,

Study outcomes/SURVIVE—an umbrella for several studies

SURVIVE has yielded extensive data and bio sampling serving as entry points for sub-projects relevant to premature death and comorbidities in the population with SMI. Furthermore, the SURVIVE study provides opportunities for the development and improvement of autopsy techniques. To answer the central research questions of the SURVIVE study, several PhD students...
Table 6. Registration of cardiac parameters

<table>
<thead>
<tr>
<th>Heart Ventricle measurements (cm)</th>
<th>Ostia circumference (cm)</th>
<th>Coronary artery ostia (Grade of coronary artery disease)</th>
<th>Morphological change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (gram)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (along the sulcus coronarius) x B (perpendicular to A, from the sulcus coronarius to the apex) x C (height of heart lying on the posterior side, anterior side facing upwards)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ventricle (anterior, lateral, posterior)</td>
<td>Aorta</td>
<td>Appearance (round, oval or other)</td>
<td>0</td>
</tr>
<tr>
<td>Right ventricle (anterior, lateral and posterior)</td>
<td>Mitral</td>
<td>Localisation related to the commissure (above the commissure line, in the commissure line or beneath the commissure line)</td>
<td>1</td>
</tr>
<tr>
<td>Septum (from left to right ventricle)</td>
<td>Tricuspid</td>
<td>Localisation related to valve insertion (in insertion, not in insertion)</td>
<td>2</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Patency (dia > 2 mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade of coronary artery disease</th>
<th>Morphological change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Fatty streaks</td>
</tr>
<tr>
<td>2</td>
<td>Plaque</td>
</tr>
<tr>
<td>3</td>
<td>Plaque with bleeding</td>
</tr>
<tr>
<td>4</td>
<td>Arteriosclerosis</td>
</tr>
<tr>
<td>5A</td>
<td>Stenosis</td>
</tr>
<tr>
<td>5B</td>
<td>Stenosis</td>
</tr>
<tr>
<td>5C</td>
<td>Stenosis</td>
</tr>
<tr>
<td>5D</td>
<td>Stenosis</td>
</tr>
<tr>
<td>5E</td>
<td>Stenosis</td>
</tr>
<tr>
<td>5F</td>
<td>Occlusion</td>
</tr>
</tbody>
</table>

Table 7. Collection of existing demographic, epidemiological and disease-related data connected to project inclusion

<table>
<thead>
<tr>
<th>General characteristics</th>
<th>Psychiatric disease</th>
<th>Medication</th>
<th>Related paraclinical values (e.g. biochemistry or ECG)</th>
<th>Lifestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of birth</td>
<td>Schizophrenia</td>
<td>Antipsychotics</td>
<td>Kidneys</td>
<td>Smoking habits</td>
</tr>
<tr>
<td>Date of death</td>
<td>Depression</td>
<td>Antidepressants</td>
<td>Liver</td>
<td>Alcohol abuse</td>
</tr>
<tr>
<td>Gender</td>
<td>Bipolar</td>
<td>Other</td>
<td>Thyroid</td>
<td>Drug abuse</td>
</tr>
<tr>
<td>Municipality of residence</td>
<td>Other</td>
<td></td>
<td>Heart</td>
<td></td>
</tr>
<tr>
<td>Next of kin</td>
<td></td>
<td></td>
<td>Cholesterol</td>
<td></td>
</tr>
<tr>
<td>Citizenship</td>
<td></td>
<td></td>
<td>CRP</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
and postdocs have been enrolled and started 17 subprojects by December 2017 (Table 12).

Statistical considerations

For each individual subproject, the project team handles the data, supervised by the project manager. Statens Serum Institut, under the Danish Ministry of Health, supports data retrieval and analyses of the national registries. The methods, statistical analysis, programmes and sample size vary among the subprojects. Those involving tissue and fluid analyses use only relevant samples from cases with consent from next of kin, while other subprojects involving only registry- and PMCT/PMMR-scan data have samples from all 500 cases.

Organisation

The SURVIVE study covers all of Denmark and is embedded in a partnership among the three Danish departments of forensic medicine. Project management is handled by the Department of Forensic Medicine, University of Copenhagen. Several specialised teams have been formed, including data management, pathology, psychiatry, toxicology, genetic, post-mortem radiology, cardiology and registry research groups. See the appendix for the participants and collaborators.

DISCUSSION

Extended autopsies of persons with SMI may help uncover a range of conditions highly important for the survival of these persons. The project autopsy algorithm enables investigations, sampling and analyses impossible to perform in the living. Not all organ changes can be detected with radiological imaging, biopsies or surgical interventions. Direct observation of organs and subsequent tissue microscopy, forensic toxicological analysis and molecular biological testing may contribute detailed information that substantially supplements the methods applied to examination of the living. We expect that by optimising the forensic autopsy of deceased persons with SMI, SURVIVE will increase knowledge of somatic disease, organ change, substance abuse, metabolism of pharmaceuticals and acquired and congenital genetic variations. This knowledge may facilitate the prevention of lower life expectancy and higher mortality among persons with SMI. The symptom complex of lifestyle-related disorders in those with mental illness appears to be an exacerbated version of the general population; therefore, we expect general benefits from the SURVIVE results.

LIMITATIONS AND CONCERNS

The medicolegal system setting and the Danish Act on Forensic Inquests limit the number of included cases with SMI. The police decide whether further investigations warrant forensic autopsy. Consequently, the SURVIVE study does not include the deaths of persons with SMI the police decide not to refer for forensic autopsies. Deaths not subjected to legal inquest, such as hospital deaths and clinical autopsies performed in hospital settings, are not included. The included cases thus are subject to selection bias. The SURVIVE inclusion criteria are very broad to ensure forming a sufficiently large group of controls that do not fulfil the criteria for a verified diagnosis within the ICD-10 F2 or F3 sections.

Table 8. Tissue samples for histopathology

<table>
<thead>
<tr>
<th>Organ</th>
<th>Specific location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omentum</td>
<td>None</td>
</tr>
<tr>
<td>Brain</td>
<td>Frontal cortex</td>
</tr>
<tr>
<td></td>
<td>Hippocampus</td>
</tr>
<tr>
<td></td>
<td>Internal capsule</td>
</tr>
<tr>
<td></td>
<td>Pons</td>
</tr>
<tr>
<td></td>
<td>Medulla oblongata</td>
</tr>
<tr>
<td></td>
<td>Cerebellum</td>
</tr>
<tr>
<td></td>
<td>Hypophysis</td>
</tr>
<tr>
<td>Thyroid gland</td>
<td>Lobe</td>
</tr>
<tr>
<td>Lung</td>
<td>Superior lobe</td>
</tr>
<tr>
<td></td>
<td>Inferior lobe</td>
</tr>
<tr>
<td>Lymph node</td>
<td>Bifurcation</td>
</tr>
<tr>
<td>Aorta</td>
<td>Sinus part</td>
</tr>
<tr>
<td></td>
<td>Abdominal part</td>
</tr>
<tr>
<td>Spleen</td>
<td>Including capsule</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Caput</td>
</tr>
<tr>
<td>Liver</td>
<td>Anterior</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
</tr>
<tr>
<td></td>
<td>Central</td>
</tr>
<tr>
<td>Kidney</td>
<td>Parenchymatous width</td>
</tr>
<tr>
<td>Suprarenal gland</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Subcutaneous fat</td>
<td>Buttock</td>
</tr>
<tr>
<td>Muscle</td>
<td>M. vastus lateralis</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>Second lumbar corpora</td>
</tr>
<tr>
<td>Uterus/prostate</td>
<td>-</td>
</tr>
<tr>
<td>Ovary/testes</td>
<td>-</td>
</tr>
<tr>
<td>Heart</td>
<td>Atrium</td>
</tr>
<tr>
<td></td>
<td>Ventricular ejection area</td>
</tr>
<tr>
<td></td>
<td>Papillary muscle</td>
</tr>
<tr>
<td></td>
<td>Epicardial fat, three areas</td>
</tr>
<tr>
<td>Coronary arteries</td>
<td>Left coronary artery</td>
</tr>
<tr>
<td></td>
<td>Descending branch</td>
</tr>
<tr>
<td></td>
<td>Circumflex branch</td>
</tr>
<tr>
<td></td>
<td>Right coronary artery</td>
</tr>
</tbody>
</table>

SURVIVE is the first Danish forensic research project requiring consent. The setup of the medicolegal system and autopsies required immediate sampling for the study, and it was not possible to ask relatives for informed consent before the autopsies. When contacted several months after the autopsies, many relatives gave consent but also expressed a degree of re-traumatisation by the contact in a situation of grief. Although the final study group of 500 is high by forensic pathology standards, the study group
Table 9. Aliquot biobank samples and subsequent supplementary analyses

<table>
<thead>
<tr>
<th>Aliquot biobank samples</th>
<th>Toxicology</th>
<th>Microbiology</th>
<th>Clinical biochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood (peripheral and heart blood)</td>
<td>X</td>
<td>X (heart blood)</td>
<td>X</td>
</tr>
<tr>
<td>Spinal fluid</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Urine</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Vitreous humour</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Tonsil tissue</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Brain tissue</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Heart tissue</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Liver tissue</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Muscular tissue</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lung tissue</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Epicardial fat</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Omentum</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abdominal fat</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buttocks fat</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blood spot/filter paper</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Hair</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tissue for microscopy (see Table 8)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bone from crista iliaca</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lumbar vertebrae corpus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

is small compared to studies among the living [6, 26, 27]. This poses some constraints for the selection of individual research questions.

ABBRVIATIONS

AAU—University of Aalborg
AU—University of Aarhus
CT—computed tomography
CVD—cardiovascular disease
DANAK—Danish Accreditation and Metrology Fund
KU—University of Copenhagen
MetS—metabolic syndrome
MRI—magnetic resonance imaging
PMMRI—post-mortem magnetic resonance imaging
PMCT—post-mortem computed tomography
RH—Rigshospitalet, hospital in Copenhagen
SCD—sudden cardiac death
SDU—University of Southern Denmark
SMI—severe mental illness
SUD—substance use disorder

DECLARATIONS

Ethics approval and consent to participate

The biobank was approved by the Danish Data Protection Agency for Department of Forensic Medicine, University of Southern Denmark (registration number 2013-54-0399), Department of Forensic Medicine, Aarhus University (registration number 2013-54-0400) and Department of Forensic Medicine, University of Copenhagen (registration number 2011-54-1262). Additionally, the project has approval from the National Committee on Health Research Ethics, Denmark (registration number 1305373). Authorisation of data retrieval from several Danish registers was approved by the Danish Data Protection Agency (registration number SUND-2016-06).

Under Danish legislation, all research protocols involving biological samples from forensic autopsies require informed consent from next of kin. Acquisition of consent was completed in May 2017, and the consent rate from next of kin was higher than 90%.

Consent for publication

Not applicable

Availability of data and material

The data supporting the study findings are available from the Department of Forensic Medicine, University of Copenhagen. Access to the data is restricted under the license for the current study. The data are not publicly available.
Table 11. Danish national health register data on psychiatric, physical state and health issues

<table>
<thead>
<tr>
<th>Name of national health register</th>
<th>Types of data retrieved for each individual person</th>
</tr>
</thead>
</table>
| National Patient Register | Somatic care:
- Admission and discharge dates
- Reason for admittance
- Diagnoses
- Treatment provided
Psychiatric care:
- Admission and discharge dates
- Reason for admittance
- Self-harm
- Diagnosis
- Treatment provided |
| Register of Medicinal Product Statistics | Medication:
- Prescription
- Dosage
- Date of retrieval of dispensed medication
- Indications for prescription |
| National Alcohol Treatment Register | Alcohol abuse:
- Types of abuse
- Severity
- Substitution medications
- Other types of medication |
| Register of Drug Abusers Undergoing Treatment | Drug abuse:
- Types of abuse
- Drugs in use
- Substitution medications |
| Involuntary Commitment Register | Psychiatric care:
- Start and end date of involuntary commitment
- Type of involuntary commitment used (isolation, electro-shock-therapy, medication, etc)
- Reasons for involuntary commitment |
| Danish Psychiatric Central Register | Psychiatric care:
- Admission and discharge dates
- Reason for admittance
- Self-harm
- Diagnoses
- Treatment provided |
| Health Security System | Primary health care system:
- Contacts
- Type of primary health care practitioner |

Table 13. Subprojects under SURVIVE as of December 2017

PhD projects

1. Pato-anatomic organ changes: lifestyle or medication
2. Metabolism and inflammation in fatty tissue
3. Prognostic markers for cardiovascular disease by calcium score and imaging
4. Polypharmacy and arrhythmogenic death
5. Correlation between osteoporosis and treatment with antipsychotic medications
6. Identifying the mechanisms underlying premature death in persons suffering from schizophrenia or severe depression, a registry-based study
7. Hair analysis for medications, illicit substances and the stress cursor cortisol
8. Analysis of medication and illicit substances in tissues and biological fluids to understand the unexpected deaths of mentally ill individuals
9. Stress-related morphological changes

Postdoc projects

10. Genetic-associated arrhythmias vs sudden cardiac death
11. Heart morphology and MRI, T2 quantification
12. Epigenetics: drug-induced sudden cardiac death among individuals with schizophrenia

Scholarships

13. Kidney damage: pharmacologically induced kidney injury in individuals with schizophrenia
14. Virtual organ measurement (CT & MRI): method development
15. Obesity and fatty hearts
16. CT-based volumetric study of hippocampus
17. Steatosis myocardii, fatty infiltration in the myocytes
However, data can be made available from the authors upon reasonable requests and with permission from the Danish Data Protection Agency.

Competing interests

The authors declare that they have no conflicts of interest.

Funding

The SURVIVE project received funding of approximately 20 million DKK from the University of Copenhagen, Aarhus University, University of Southern Denmark, Region of Southern Denmark, Governmental by SATS-puljen, Lundbeck Foundation, Novo Nordisk Foundation, Augustinus Foundation, Oda og Hans Svenningsens Foundation, Aase og Ejnar Danielsens Foundation, Jens Anker Andersens Foundation, Danish Heart Association, Danish Research Council and Medical Society of Copenhagen.

REFERENCES

Authors’ contributions

JBN and CBH designed the study and obtained funding. JLT, GLO and LWB contributed to the study implementation. CBH, MRC, AGG, AB and CJ contributed to designing and arranging the logistics and implementing the algorithm. CJI, PL and LWB designed the PMCT scan protocols. LKR collected the registry data and drafted the second version of the manuscript. MRC, AGG and CJ obtained consent from the next of kin. AGG analysed all the PMCT scans for calcium scores. CJ and JBN designed the first draft of the manuscript. The other authors critically reviewed the manuscript for intellectual content. All the authors read and approved the final manuscript.

ACKNOWLEDGEMENTS

We thank the staff, doctors, secretaries and forensic and laboratory technicians at the three forensic medicine departments, without whose engagement and participation this study would not have succeeded.

Copyright © Holstad Grafisk, Oslo - Print: Prografia, Oslo - ISSN 2353-0707
Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120(16):1640-1645.

APPENDIX

Participants
Forensic pathology: Professor Jytte Banner, KU; Deputy Chief Forensic Pathologist Christina Jacobsen, KU; Professor Lene Warner Thorup Boel, AU; former Deputy Chief Forensic Pathologist Gyda Lolk Ottesen, KU; Professor Emeritus Jørgen Lange Thomsen, SDU; Deputy Chief Forensic Pathologist Peter Thiiis Knudsen, SDU;

Clinical pathology: Professor Ulrik Baandrup, AAU; Professor Niels Marcussen, SDU;

Clinical associate professor Sönke Detlefsen, SDU;

Psychiatry: Professor Merete Nordentoft, KU; Professor Martin Balslev, KU; Clinical associate professor John Teilmann Larsen, SDU;

Cardiology: Clinical associate professor Klaus Fuglsang Kofoed, RH; Dr. Niels Vejlstrup, RH;

Toxicology: Professor Kristian Linnet, KU; Associate professor Sys Stybe Johansen, KU; Senior researcher Jørgen Hasselstrøm, AU; forensic chemist Jakob Jornil, AU;

Radiology: Professor Carsten Thomsen, RH; Dr. Karl Erik Jensen, RH;

Osteology: Professor Ellen Magrethe Hauge, AU; Associate Professor Michel Dalstra, AU;

Genetics: Professor Niels Morling, KU; Senior consultant Claus Børsting, KU;

Statistics: Professor Claus Ekstrøm, KU; Senior researcher Heather Boyd, SSI, KU; Professor Niels Lynnerup, KU;

Pharmacology: Professor Jørgen Rungby, AU, KU;

Anthropology: Professor Niels Lynnerup, KU;

Neuroanatomy: Professor Emeritus Morten Møller, KU;