Cultivating electroactive microbes - from field to bench

Yee, Mon Oo; Joerg, Deutzmann; Alfred, Spormann; Rotaru, Amelia-Elena

Published in:
Nanotechnology

DOI:
10.1088/1361-6528/ab6ab5

Publication date:
2020

Document version
Final published version

Document license
CC BY

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Cultivating electroactive microbes—from field to bench

Mon Oo Yee1, Joerg Deutzmann2, Alfred Spormann2 and Amelia-Elena Rotaru1

1 Nordcee, Department of Biology, University of Southern Denmark, Odense, DK-5230, Denmark
2 Departments of Chemical Engineering and Civil & Environmental Engineering, Stanford University, Stanford, CA 94305, United States of America

E-mail: arotaru@biology.sdu.dk

Received 16 October 2019, revised 26 November 2019
Accepted for publication 13 January 2020
Published 13 February 2020

Abstract
Electromicrobiology is an emerging field investigating and exploiting the interaction of microorganisms with insoluble electron donors or acceptors. Some of the most recently categorized electroactive microorganisms became of interest to sustainable bioengineering practices. However, laboratories worldwide typically maintain electroactive microorganisms on soluble substrates, which often leads to a decrease or loss of the ability to effectively exchange electrons with solid electrode surfaces. In order to develop future sustainable technologies, we cannot rely solely on existing lab-isolates. Therefore, we must develop isolation strategies for environmental strains with electroactive properties superior to strains in culture collections. In this article, we provide an overview of the studies that isolated or enriched electroactive microorganisms from the environment using an anode as the sole electron acceptor (electricity-generating microorganisms) or a cathode as the sole electron donor (electricity-consuming microorganisms). Next, we recommend a selective strategy for the isolation of electroactive microorganisms. Furthermore, we provide a practical guide for setting up electrochemical reactors and highlight crucial electrochemical techniques to determine electroactivity and the mode of electron transfer in novel organisms.

Supplementary material for this article is available online

Keywords: electroactive microorganisms, electrotroph, electrogen, microbial fuel cells, microbial electrolysing, bioelectrochemical systems

Introduction
Living things conserve energy by translocating electrons from an organic food substrate (electron donor) to a terminal electron acceptor (e.g. oxygen) via redox reactions in a respiratory chain. During classical respiration, these redox reactions are intracellular. In electroactive microorganisms, electron transfer reactions extend beyond the cell surface in a process called extracellular electron transfer (EET) [1–4]. EET is a unique metabolic feature that enables electroactive microorganisms to use solid-state electron donors or acceptors located outside the cell, which would otherwise remain inaccessible. Electroactive microorganisms have the unparalleled capability to ‘release’ or ‘retrieve’ electrons from a solid-state extracellular substrate. Microorganisms ‘releasing’ electrons onto a solid-state extracellular electron acceptor are electrogens whereas microorganisms that ‘retrieve’ electrons from an extracellular electron donor are electrotrophs. Electrogens are capable of electron release onto an electrode/anode surface, which is quantifiable as a positive electric current whereas electrotrophs retrieve electrons from a poised electrode/cathode surface, which is quantifiable as a negative electric current [5].
Electroactive microorganisms (electrogens and electro-trophs) employ different mechanisms of EET, which are direct EET or indirect/mediated EET (figure 1).

During direct EET, cells establish physical contacts usually via electron-conductive proteins, which transfer electrons across cell membranes [2–4, 6–8] such as outer-membrane multiheme c-type cytochromes (MHC) [1, 9–11], extracellular MHC wire-extensions [12, 13], [Fe–S] proteins [14], conductive pili [8, 15–19] or periplasmic extensions [20, 21] (figure 1). The mechanisms of direct EET vary significantly between different species of electroactive microorganisms suggestive of these organisms evolving comparable traits via convergent evolution in order to adapt to similar ecological niches in the environment.

During facilitated EET, diffusible redox-active molecules act as electron carriers and link redox reactions happening inside and outside of the cell [6, 22]. Facilitated EET includes EET mediated by redox shuttles, as well as EET mediated by extracellular enzymes producing diffusible chemicals (figure 1). Some examples of microorganisms that secrete and engage shuttles in EET are the Gram-positive Listeria monocytogenes [23], the Gram-negative Pseudomonas [24–26] and Shewanella [27–31]. Generally, secreted shuttles are two-electron carriers like flavins [23, 27–31] or phenazines [24–26]. However, an unusual soluble menaquinone (2-amino-3-carboxy-1,4-naphthoquinone) was recently linked to EET in Shewanella oneidensis [32]. Besides shuttles, EET can be facilitated by extracellular enzymes that prompt the recycling of electrons from an extracellular surface in certain methanogens and acetogens. For example, the methanogen Methanococcus maripaludis and acetogens of the genus Sporomusa, or Acetobacterium use Ni–Fe-hydrogenases and/or heterodisulfide reductase [33–36] to retrieve electrons from the surface of an electrode or of metallic iron (figure 1).

Electroactive microorganisms have earned considerable attention in the field of applied microbiology. Accordingly, bioengineering technologies have been developed to match the direction of the electron flow to cells (microbial electro-synthesis) and from cells (microbial fuel cells), independent of the electron transfer mechanism. There are two focus areas in the application of electroactive microorganisms that can be distinguished by the direction of electron flow: electron-releasing bioanodes when cells remove electrons from the feed to be ‘released’ onto an anode; and electron-retrieving biocathodes when cells ‘retrieve’ electrons from a cathode to use them as feed.

Some of the earliest bioelectrochemical systems dealt with bioanodes in microbial fuel cells (MFC) where microbes converted chemical energy from food substrates into electrical energy by transferring electrons to an anode [37, 38]. In MFCs, microorganisms oxidize simple/complex organics (e.g. glucose) or mixed organics from wastewaters [39], while producing high anodic current densities with coulombic efficiencies as high as 100% [38, 40–42]. The effectiveness of MFCs for the production of electrical energy remains a matter of debate [43, 44]. Nevertheless, MFCs were successfully applied to purify wastewater [39], to bioremediate toxic chemicals [45], or to adjust the redox balance of a fermentation broth [46–48]. These properties make MFCs a technology of interest, especially for remote geographic locations where access to water purification and bioremediation technologies is limited [49].

On the other hand, bioelectrochemical systems that deal with biocathodes are microbial electrosynthesis systems (MES), where microorganisms retrieve electrons from a cathode and convert electrical energy into chemical energy to be stored in synthesis products. In MES, autotrophic microorganisms use cathode-derived electrons to convert CO₂ to platform chemicals (e.g. acetate) [50–53], fuels (e.g. methane) [54–57], bioplastics (e.g. polyhydroxyalkanoates) [58], or bio-detergents (e.g. rhamnolipids) [59]. Additionally, cathodic electrons could be used to drive microorganisms to recover metals from metallurgy waste streams [60].

The success of bioelectrochemical applications depends on the electrochemical setup as much as on the electroactivity of microorganisms. In 2016, Koch and Harnisch listed 94 species as electroactive [61] with electroactivity confirmed beyond the Geobacter and Shewanella genera, in almost all tested metal-reducers including the Betaproteobacterium—Rhodoferax ferrireducens [62]; the Chloroflexi—Ardentia tena maritima [63] or the hyperthermophilic Archaea—
Feroglobus placidus and Geoglobus ahangari [64]. Furthermore, electroactivity was confirmed in iron oxidizers like Acidithiobacillus ferrooxidans [65], nitrate reducers like Pseudomonas alkaliphila [66], sulfate reducers like Desulfobulbus propionicus [67], acetogens like Sporomusa ovata [51, 53, 68, 69], methanogens like Methanosarcina barkeri [56, 70] and photoautotrophs like Rhodopseudomonas palustris [71] or Prostheochloris aestuarii [72].

Until now, electroactivity testing and downstream biotechnology applications rely mostly on laboratory strains isolated and maintained on soluble substrates. Nevertheless, strains adjusted to soluble substrates adapt to a nonselective metabolism by decreasing the expression or by losing components for EET. On the other hand, their environmental analogs maintain EET competence in order to function in a selective EET environment (e.g. mineral rich sediments). For example, two G. sulfurreducens strains isolated with bioelectrochemical methods (table 1) led to higher power outputs than laboratory strains of the same species [73, 74]. Moreover, lab cultivation on diffusible substrates (H2) led to diminished cathodic electron use in M. maripaludis, which lost the entire genomic island relevant for EET [36]. In extreme cases, we may be deceived on the electroactivity of a species by studying solely culture collection strains maintained on soluble substrates. This was the case for the culture-collection strain Rhodopseudomonas palustris ATCC 17001, which could not use an anode as electron acceptor whereas a same species isolate from an MFC, R. palustris DX-1, did produce anodic current [75].

Since electroactive microorganisms lose their EET-capabilities when grown under non-specific conditions in the laboratory, enrichment of biotechnologically relevant and effective electroactive microorganisms requires an electrochemical isolation approach. Throughout an electrochemical isolation procedure, electrical current (negative or positive) will provide the selective pressure for the isolation of electroactive microorganisms. In this review, we provide an overview of table 1 and suggest a strategy for figure 2 enrichment and isolation of environmental isolates with innate electroactivity. We provide a guide for the isolation of electroactive microbial analogs in a standardized microbial electrochemical system (box 1), particularly suited for anaerobes, and finally offer an overview of essential methodologies to detect electroactivity and distinguish between direct and facilitated electron transfer.

Niches for electroactive microorganisms

It is anticipated that electroactive microorganisms occur in environments where a solid-state extracellular electron acceptor or donor is naturally abundant, offering a positive selective pressure for an electroactive metabolism to dominate such a specialized ecological niche. Surprisingly, in a previous review, authors did not find a specific ecological niche for electroactive microorganisms [61]. Most electroactive species described have been isolated on soluble substrates. However, their natural distribution is not suggestive of niche partitioning [61], likely because these species typically do not perform EET in their environment. In other words, species easily isolated on soluble substrates that preserve their EET properties are unsurprisingly not exhibiting EET-niche partitioning, probably because they adopted a generalist behavior and are adjusted to a variety of soluble substrates typical of their environment.

Environments with a predominance of solid-state electron donors and acceptors include:

(i) Iron-rich minerals. Iron is the most abundant metal on Earth, so microorganisms have adapted to use iron from minerals such as magnetite or pyrite, as a source or sink of electrons (see below) [76, 77];

(ii) Metallic iron (Fe0). Unalloyed Fe0 is rare in the Earth’s crust (e.g. in serpentinite; iron ores), unless mined and enriched for human use (mild-steel infrastructure). Nevertheless, during the Anthropocene microorganisms adjusted to using Fe0 as an electron donor [78];

(iii) Carbonaceous materials. Some non-metallic materials occur in the environment, have the property to conduct charge and can therefore be used as donors or acceptors by microorganisms. Examples of carbonaceous materials are chars [79] and humic acids, the later includes the majority of undegradable organics in sediments and soils [80]. Chars are especially abundant in areas affected by forest fires [81] or are added to agricultural soils to stimulate plant or the decontamination of toxins [82];

(iv) Other cells act as electron donors and acceptors carrying thermodynamically synchronized metabolic interactions by sharing electrons via extracellular molecular electrical conduits (see below) [56, 83–85]. Cell-to-cell interactions in aquatic sediments may also strictly rely on naturally abundant conductive minerals to transfer electrons in between metabolically co-dependent microorganisms [86].

Some natural occurrences of iron-rich-minerals are the conductive structures found in hydrothermal vent chimneys or serpentining springs, aquatic sediments and soils [87–89]. Environments where conductive minerals abounded dominated throughout Earth’s history. Ancient oceanic environments were iron-rich [90] and likewise are present analogs (e.g. lake Matano Indonesia, lake La Cruz, Spain) [91, 92]. One environment where electroactive microorganisms may have adapted over long evolutionary time scales [93] to electrically conductive surfaces are hydrothermal chimney walls [94–96], which are thought to spontaneously generate electricity [94, 95]. In fact, hydrothermal vent isolates were capable of EET with insoluble electron donors like rocks/minerals [97–100] or electrodes [101, 102].

Last but not least, some microbial species can exchange electrons with each other by transferring electrons from an electron to an electrotroph via direct interspecies electron transfer (DIET) [29, 83–85]. During DIET, the electron is provided with an electron donor for oxidative metabolism, but without any of its electron acceptor, whereas the electrotrophs is provided only with an electron acceptor. Thus, by coupling
Table 1. Overview of microorganisms isolated with the aid of bioelectrochemical systems.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum source</th>
<th>Bioelectrochemical enrichment</th>
<th>Other enrichment approach</th>
<th>Isolation method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANODIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium butyricum IG3</td>
<td>Starch processing wastewater</td>
<td>Wastewater EDs and an anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating on agar-media with glucose (ED) and Fe(III)/citrate (TEA)</td>
<td>[162]</td>
</tr>
<tr>
<td>Aeromonas hydrophila PA3</td>
<td>Undefined inoculum</td>
<td>Acetate (ED) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating on agar-media with acetate (ED) and Fe(III)/pyrophosphate (TEA)</td>
<td>[163]</td>
</tr>
<tr>
<td>Geopsychrobacter electrodephilus</td>
<td>Marine Sediment</td>
<td>Sediment organics (ED) and a sediment-anode no set potential (TEA)</td>
<td>Primary: Liquid dilution series with acetate (ED) and insoluble Fe(III)oxide (TEA) 3x Secondary: Plated with acetate (ED) and Fe(III) pyrophosphate (TEA) Tertiary: Liquid dilution with acetate/benzolate (ED) and Fe(III)/pyrophosphate (TEA)</td>
<td>[164]</td>
<td></td>
</tr>
<tr>
<td>Ochrobacterium anthropi YZ-1</td>
<td>Primary clarifier wastewater</td>
<td>Acetate (ED) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Serial dilution MFCs with acetate (ED) and an anode no set potential (TEA) 5x</td>
<td>[126]</td>
</tr>
<tr>
<td>Rhodopseudomonas palustris DX-1</td>
<td>Undefined inoculum</td>
<td>Acetate (ED) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution series (roll-tubes) with acetate (ED) and amorphous Fe(III) (TEA)</td>
<td>[75]</td>
</tr>
<tr>
<td>Thermincola potens JR</td>
<td>Thermophilic anaerobic digester</td>
<td>Anode no set potential (TEA) and acetate (ED)</td>
<td>None</td>
<td>Primary: Liquid dilution series with acetate (ED) and AQDS (TEA) Secondary: Dilution series (agar shakes) with acetate (ED) and AQDS (TEA)</td>
<td>[40, 165]</td>
</tr>
<tr>
<td>Brevibacteria sp. (2 strains)</td>
<td>Domestic wastewater</td>
<td>Glucose/wastewater organics (EDs) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Primary: Liquid dilution series on LB media, O2 (TEA); 6x Secondary: Dilution series in LB agar slants, O2 (TEA)</td>
<td>[139]</td>
</tr>
<tr>
<td>Arcobacter sp. (2 species)</td>
<td>Marine sediment</td>
<td>Acetate (ED) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating with organics (ED yeast, blood etc) under aerobic (O2; TEA) or anaerobic (fermentative) conditions</td>
<td>[140]</td>
</tr>
<tr>
<td>Aeromonas sp.</td>
<td>Wastewater</td>
<td>Glucose (ED) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating with glucose (ED) and ferric citrate (TEA) 3x</td>
<td>[166]</td>
</tr>
<tr>
<td>Shewanella marisflavi EP1</td>
<td>Marine Sediment</td>
<td>Primary: Lactate (ED) and an anode no set potential (TEA)</td>
<td>Secondary: Anode biofilm + lactate (ED) and Fe(III)/citrate (TEA)</td>
<td>Dilution series (roll-tubes) with lactate (ED) and ferric citrate (TEA) 3x</td>
<td></td>
</tr>
<tr>
<td>Comamonas denitrificans DX-4</td>
<td>Wastewater</td>
<td>Acetate (ED); anode no set potential (TEA)</td>
<td>None</td>
<td>Serial dilution MFCs with acetate (ED) and an anode no set potential (TEA) 3x</td>
<td>[146]</td>
</tr>
<tr>
<td>Citrobacter sp. SX-1</td>
<td>Wastewater</td>
<td>Acetate (ED); anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating with acetate (ED) and ferric citrate (TEA)</td>
<td>[167]</td>
</tr>
<tr>
<td>Geobacter bremenensis (5 strains)</td>
<td>Garden compost</td>
<td>Primary: acetate (ED) and 12 sediment-anodes at +0.7 V (TEA)</td>
<td>Secondary: Anode biofilm with ethanol or lactate (ED) and AQDS, Fe(III)/citrate or Fe(III)/NTA (TEA)</td>
<td>Primary: Liquid dilution series (3x) with ethanol/lactate (ED) and AQDS, Fe(III)/citrate or Fe(III)/NTA (TEA) Secondary: Dilution plating: same substrates as above</td>
<td>[168]</td>
</tr>
<tr>
<td>Bacillus pseudofirmus MC02</td>
<td>Undefined inoculum</td>
<td>Primary: Unknown EDs; anode no set potential (TEA)</td>
<td>Secondary: Anode biofilm with acetate (ED) and AQDS (TEA). 3x</td>
<td>Dilution plating on LB-agar, O2 (TEA) followed by colony re-streaking on LB agar, O2 (TEA)</td>
<td>[141]</td>
</tr>
<tr>
<td>Tolotumonas osonensis OCF 7</td>
<td>Anaerobic sewage sludge</td>
<td>Glucose (ED); anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating with glucose (ED) and Fe(III)/citrate (TEA)</td>
<td>[169]</td>
</tr>
<tr>
<td>Geobacter sulfurreducens D8</td>
<td>Rice paddy soil</td>
<td>Primary: anode at +0.544 V (TEA) and undefined EDs from the soil</td>
<td>None</td>
<td>Dilution to extinction prior to plating onto agar-media with acetate (ED) and amorphous Fe(III) (TEA). 10x</td>
<td>[170]</td>
</tr>
<tr>
<td>Organism</td>
<td>Inoculum source</td>
<td>Bioelectrochemical enrichment</td>
<td>Other enrichment approach</td>
<td>Isolation method</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Raoultella electrica</td>
<td>Wastewater</td>
<td>Glucose (ED); anode no set potential</td>
<td>None</td>
<td>Dilution plating onto LB agar, with O₂ (TEA)</td>
<td>[142]</td>
</tr>
<tr>
<td>Enterobacter sp. R2B1</td>
<td>Precond. activated sludge</td>
<td>Acetate (ED); anode no set potential</td>
<td>None</td>
<td>Dilution series (roll-tubes) with acetate (ED) and insoluble Fe(III)oxides (TEA)</td>
<td>[127]</td>
</tr>
<tr>
<td>Geobacter sp. SD-1</td>
<td>Domestic wastewater</td>
<td>Formate (ED); anode no set potential</td>
<td>None</td>
<td>Serial dilution MFCs with acetate (ED) and an anode 0.7 V across the circuit (TEA), 5x</td>
<td>[125]</td>
</tr>
<tr>
<td>Klebsiella sp. MC-1</td>
<td>Undefined inoculum</td>
<td>Glucose (ED) + cyanide and an anode no set potential (TEA);</td>
<td>None</td>
<td>Dilution series in liquid and solid with glucose (ED) + cyanide and Fe(III)citrate (TEA)</td>
<td>[171]</td>
</tr>
<tr>
<td>Citrobacter freundii Z7</td>
<td>Aerobic sewage sludge</td>
<td>Primary: Glucose (ED) and an anode no set potential (TEA)</td>
<td>Secondary: anode biofilm in LB broth with Fe(III)citrate (TEA) and O₂ (TEA)</td>
<td>Dilution plating onto agar plates; with O₂ (TEA)</td>
<td>[137]</td>
</tr>
<tr>
<td>Desulfovivibrio vulgaris</td>
<td>Deep subsurface aquifer</td>
<td>Primary: In situ borehole anode (TEA)</td>
<td>Secondary: Biodiode transferred with acetate (ED) and set at +0.24 V (TEA)</td>
<td>None</td>
<td>[117]</td>
</tr>
<tr>
<td>Delftia sp. WE1-13</td>
<td>Deep subsurface aquifer</td>
<td>Secondary: H₂ (ED); anode (TEA) at one of the voltages +0.272/0.372/0.472/0.572 V</td>
<td>Primary: Sponge reactor with H₂ (ED), ferrihydrite + Mn(IV)oxides (TEA)</td>
<td>Plating onto R2A agar; O₂ (TEA)</td>
<td>[122]</td>
</tr>
<tr>
<td>Azoarcus sp. WE2-4</td>
<td>Deep subsurface aquifer</td>
<td>Secondary: acetate (ED); anode (TEA) at one of the voltages +0.272/0.372/0.472/0.572 V</td>
<td>Secondary: Anode biomass with acetate (ED) and soluble Fe(III)NTA (TEA)</td>
<td>None</td>
<td>[138]</td>
</tr>
<tr>
<td>Aeromonas jandaui SCS5</td>
<td>Activated sludge</td>
<td>Acetate (ED) anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution series (roll-tubes) with acetate (ED) and insoluble Fe(III)oxide</td>
<td>[172]</td>
</tr>
<tr>
<td>Clostridium beijerinckiae</td>
<td>Rumen liquid</td>
<td>Autoclaved hay (ED) and an anode no set potential (TEA)</td>
<td>None</td>
<td>Dilution plating onto nutrient agar with O₂ (TEA)</td>
<td>[89]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Serpentinizing spring</td>
<td>Primary: In situ anode (TEA) in serpentinizing spring containing H₂ (ED)</td>
<td>Secondary: Biodiode at +0.4 V (TEA) with i.e. galactose (ED)</td>
<td>None</td>
<td>[155]</td>
</tr>
<tr>
<td>Geobacter metallireducens</td>
<td>Urban canal sediment</td>
<td>Primary: An anode at +0.4/0.6 V (TEA) and sediment EDs</td>
<td>None</td>
<td>Plating with acetate (ED) and Fe(III)citrate (TEA)</td>
<td>[119]</td>
</tr>
<tr>
<td>Dietzia sp. RNV-4</td>
<td>River sediment</td>
<td>Primary: Sediment organics (ED) and a sediment-anode no set potential (TEA)</td>
<td>None</td>
<td>Primary: Liquid dilution series with acetate (ED) and Fe(III)citrate (TEA). 4x</td>
<td>[173]</td>
</tr>
<tr>
<td>Geobacter sulfurreducens</td>
<td>Rice paddy soil</td>
<td>Primary: Anode at +0.544 V (TEA) soil EDs and acetate (ED)</td>
<td>Secondary: Anaerobic enrichment (ED and TEA not disclosed)</td>
<td>Primary: Dilution to extinction</td>
<td>[173]</td>
</tr>
<tr>
<td>Desulfovivibrio vulgaris</td>
<td>Deep subsurface aquifer</td>
<td>Primary: In situ borehole anode (TEA)</td>
<td>Secondary: Biodiode transferred with acetate (ED) and set at +0.24 V (TEA)</td>
<td>None</td>
<td>[117]</td>
</tr>
</tbody>
</table>
Table 1. (Continued.)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum source</th>
<th>Bioelectrochemical enrichment</th>
<th>Other enrichment approach</th>
<th>Isolation method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrobacter sp. KVM11</td>
<td>Contaminated groundwater and sludge</td>
<td>Petroleum hydrocarbon mix (ED) and an anode no set potential</td>
<td>None</td>
<td>Dilution plating with acetate (ED) and ferric citrate (TEA)</td>
<td>174</td>
</tr>
<tr>
<td>Kluyvera georgiana MCC 3673</td>
<td>Freshwater lake sediment</td>
<td>Primary: Oilseed cake (ED) and an anode no set potential (TEA); media replenished 15x</td>
<td>LB-broth; O2 (TEA)</td>
<td>Dilution series on LB-agar media, O2 (TEA)</td>
<td>124</td>
</tr>
<tr>
<td>Enterococcus avium strain Gut-S1</td>
<td>Pecal sample</td>
<td>Acetate or lactate (ED) and an anode set at −0.2 V (TEA)</td>
<td>None</td>
<td>Anode biomass streaked on agar plates with acetate or lactate (ED) and manganese dioxide (TEA)</td>
<td>175</td>
</tr>
<tr>
<td>Citrobacter sp. strain ND-2</td>
<td>Rice paddy soil</td>
<td>Primary: Soil organics (ED) and a sediment-anode no set potential (TEA)</td>
<td>Secondary: Bioanode further cultivated in bioelectrochemical reactor with acetate (ED) and anode poised at −0.2 V (TEA)</td>
<td>Dilution plating onto solid agar supplemented with acetate (ED) and FTO electrode poised at 0 V (TEA)</td>
<td>143</td>
</tr>
</tbody>
</table>

CATHODIC

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum source</th>
<th>Bioelectrochemical enrichment</th>
<th>Other enrichment approach</th>
<th>Isolation method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dechlorosporillum strain VDY</td>
<td>Groundwater</td>
<td>Primary: Groundwater inoculated H cell reactor with cathode poised ca. −0.3 mV (ED) and perchlorate (TEA)</td>
<td>Secondary: biocathode in media with acetate (ED) and perchlorate (TEA). Repeated once</td>
<td>Dilution series in agar shakes with acetate (ED) and perchlorate (TEA)</td>
<td>135</td>
</tr>
<tr>
<td>Labrenzia aggregata<sup>a</sup> (7 sp.)</td>
<td>Marine Sediment</td>
<td>Primary: A cathode under sunlight (EDs) and O2 (TEA)</td>
<td>None</td>
<td>Primary: Dilution series with FeS (ED) and O2 (TEA)</td>
<td>110, 111, 120</td>
</tr>
<tr>
<td>Hyphomonas adhaerens<sup>b</sup> (1 sp.)</td>
<td>Marine Sediment</td>
<td>Secondary: Bioanode at +0.310 V (ED) under O2 atmosphere (TEA)</td>
<td>None</td>
<td>Secondary: Plating and re-streaking on marine agar broth Difco, aerobically (O2; TEA)</td>
<td></td>
</tr>
<tr>
<td>Bacillus firmus<sup>b</sup> (1 sp.)</td>
<td>Marine Sediment</td>
<td></td>
<td></td>
<td>Or plating on agar-media with acetate (ED) and O2 (TEA)</td>
<td></td>
</tr>
<tr>
<td>Marinobacter<sup>c</sup> (2 sp.)</td>
<td>Marine Sediment</td>
<td></td>
<td></td>
<td>Unsuccessful isolation</td>
<td>121</td>
</tr>
<tr>
<td>Phaeobacter daeponensis<sup>b</sup> (4 sp.)</td>
<td>Marine Sediment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidatus ‘Tenderia electrophaga’</td>
<td>Marine Sediment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. aquamarina (1 sp.)</td>
<td>Seawater</td>
<td>In situ stainless steel cathode ca. 0 V (ED) and O2 (TEA)</td>
<td>None</td>
<td>Dilution plating on marine agar, aerobically (O2 as TEA)</td>
<td>136</td>
</tr>
<tr>
<td>Roseobacter sp. (4 sp.)</td>
<td>Seawater</td>
<td></td>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>Silicibacter (2 sp.)</td>
<td>Seawater</td>
<td></td>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>Winogradskyella portororum,</td>
<td>Seawater</td>
<td></td>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>Acinetobacter johnsonii</td>
<td>Seawater</td>
<td></td>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>Thiocella electrothophila, Halomonas sp.,</td>
<td>Marine Sediment</td>
<td>Primary: Sediment microorganisms with a cathode at −0.203 V and +0.2 V and undefined TEAs from the sediment</td>
<td>Secondary: Cathode-biofilm enriched using −0.203 V (ED) and nitrate (TEA)</td>
<td>Dilution series in agar shakes and/or plating with either Fe(II), S<sup>0</sup> or thiosulfate (ED) and nitrate or Fe(III)-NTA (TEA)</td>
<td>132, 133</td>
</tr>
<tr>
<td>Idiomarina sp., Marinobacter sp.,</td>
<td>Marine Sediment</td>
<td>Secondary: Cathode-biofilm enriched using insoluble substrates Fe<sup>3+</sup> and S<sup>0</sup> (ED) and nitrate (TEA)</td>
<td>Tertiary: Cathode-biomass enriched using insoluble substrates Fe<sup>3+</sup> and S<sup>0</sup> (ED) and nitrate (TEA)</td>
<td>Dilution series in agar shakes and/or plating</td>
<td>132, 133</td>
</tr>
<tr>
<td>Pseudomonas sp., Thalassospira sp.</td>
<td>Marine Sediment</td>
<td></td>
<td></td>
<td></td>
<td>132, 133</td>
</tr>
<tr>
<td>Bacillus sp. strain H</td>
<td>Anaerobic digestor sludge</td>
<td>Digestor sludge H-cell with Cr(VI) (TEA) and a cathode (ED) with an undefined potential from degradation of wastewater organics at the anode</td>
<td>None</td>
<td>Dilution plating of cathodic biofilm on LB agar with Cr(VI), O2 (TEA)</td>
<td>131</td>
</tr>
</tbody>
</table>

Note: All the potentials reported here are against the standard hydrogen electrode. MFC microbial fuel cell; AQDS Anthraquinone-2,6-disulfonate; ED electron donor; TEA terminal electron acceptor; FTO fluorine-doped tin oxide. Primary, secondary, tertiary and quaternary refer to the succession during the enrichment/isolation procedure.

^a Labrenzia species were inactive on a cathode. Only one showed an FeS-oxidation band for three successive transfers.

^b Not tested on a cathode, however, it did not maintain FeS-oxidation activity over three successive transfers.

^c One strain (Marinobacter adherens) was electroactive using a cathode as electron donor only when 2 mM acetate was provided as carbon source.
the two processes the dual-species consortia can thrive. During DIET, the electron requires the same EET conduit that is required for interactions with electrodes, which includes pili and extracellular MHC-cytochromes [1]. The dependency on the electrical conduit was verified with genetically manipulated partners, incapable to express an EET conduit, and with partners known to use other EET mechanisms (e.g. H$_2$ rather than DIET) [84, 85]. Conversely, it is challenging to demonstrate DIET in the environment, as we do not have a specific molecular or chemical fingerprint. Despite this, DIET has been reported by indirect measurements in environments such as anaerobic digesters [103, 104], rice paddies [105], or deep-sea sediments [106, 107]. In environmental consortia, DIET is often endorsed by indirect observations such as: (i) high conductivity of the consortia [103, 104]; (ii) failure to make use of diffusible formate or H$_2$ [103]; (iii) high expression of genes associated with EET [105–107]; (iv) stimulation of the metabolism by conductive materials [108]; (v) or by phylogenetic affiliation to DIET-species [109]. However, in these environments, the actual mechanism of interaction and partner co-dependency remain a matter for future inquiry.

Finally, the ability to exchange electrons with the extracellular milieu provides a selective advantage for electroactive microbes in a variety of ecological niches in the environment. Of these pre-adapted electroactive species we can selectively isolate novel strains, characterize them, and use their properties in sustainable technologies relying on bioelectrochemical systems.

Electrochemical enrichment and isolation

The challenge during the isolation of electroactive strains is that isolation on non-selective media was previously shown to lead to loss of electroactivity [110–112]. We reviewed the studies that employed electrochemical technologies to obtain electroactive strains (Table 1). Sometimes, isolation was possible despite the use of unselective media during the procedure. Nonetheless, below we will focus on those studies, which maintained the selective pressure throughout the steps of enrichment and isolation, with the help of solid-state electron sinks or sources.

A suitable approach to enrich electroactive microorganisms involves the use of *in situ* electrodes, because it overcomes enrichment bias artifacts [113] that would otherwise lead to changes in cultivability [114] or viability [115], for example due to grazing [116]. *In situ* enrichment often leads to the isolation of new electroactive strains. For example, an anode inserted directly into a borehole of a deep underground mine provided a niche for the growth of the electroactive *Desulfuromonas soudanensis* [117]. Different approaches were used to enrich electroactive organisms from groundwater or sediments, *in situ*. Thus, for *in situ* colonization, the groundwater from 1478 m depth was passed through a self-designed electrochemical reactor equipped with four electrodes, two poised at oxidizing, and the other two at reducing potentials [118]. For *in situ* enrichment from sediments, naturally existing redox gradients can be exploited in benthic or sediment MFC (SMFC). SMFCs operate with the anode embedded in the anoxic sediment and the cathode in the oxic water above [44]. The organisms in the sediment provide the electron source, while O$_2$ in the water above acts as the electron sink. SMFCs can selectively enrich native electroactive microorganisms both at the anode and the cathode. This was the case of the electrogen *Dietzia* sp. RNV-4, which was isolated from the anode of a river sediment SMFC [119], whereas the electrotophore ‘Candidatus Tenderia electrophaga’ was enriched from the bio cathode community of a marine phototrophic SMFC [110, 111, 120, 121].

Generally, the isolation of a species requires growing it from a single cell to ensure a single cell origin. Besides, isolation of a species with unique traits requires sustaining the selective pressure for the entire duration of the isolation. Attempts to isolate electroactive strains often involve unselective media such as solid-LB, due to the simplicity of the isolation procedure, which requires only aerobic streaking to attain single cell colonies [119, 122–124]. Conversely, only a few studies upheld selective conditions during enrichment and isolation by adding insoluble electron acceptors to the dilution series [125, 126]. Insoluble Fe(III)-oxides have been often used as electron acceptors to isolate electrogenic microbes [117, 127]. Nonetheless, by providing insoluble minerals as electrode replacements, we may restrict isolation to microbes skilled for example at insoluble Fe(III)-oxide-respiration, but unskilled at electrode-respiration, which was the case of *Geobacter bremenensis* [128].

Isolation of electrotophores by conventional methods is more challenging than that of electrogens which led to a low number of cathodic isolates (Table 1). Electrotophore are of interest for biotechnology [112, 129, 130], but are usually isolated with soluble electron donors [131, 132]. Some exceptional strains were enriched with metallic iron (Fe0) as an extracellular source of electrons [132–134]. However, the researchers discontinued the use of a solid electron donor during the strain purification procedure and instead set up dilution series with H$_2$ or other soluble/diffusible substrates [120, 123, 135, 136]. Growth on soluble substrates could lead to incapacitation of the strains in using the solid surface at all, as was the case with *M. maripaludis* strains, which lost the genomic islands relevant for EET-constituents when grown on H$_2$ [36].

Consistently, many authors applied one ineffective strategy for the isolation of electroactive microorganisms, which is aerobic cultivation with nutrient-rich agar (Table 1) [111, 122–124, 131, 136–142]. This strategy favors fast-growing, oxygen-respiring organisms over electrotophobic ones, obscuring downstream electrochemical studies, and interpretation of data. For example, multiple isolates obtained from a phototrophic SMFC on rich-agar media were not electroactive [111], whereas the actual cathodic microorganism ‘Candidatus Tenderia electrophaga’ could not be enriched.
Preparation of the reference electrode

An electrochemical reactor consists of one or two chambers with at least two electrodes submerged in a conductive ionic solution (electrolyte). In bioelectrochemical systems, the electrolyte is usually the growth media of the microorganisms without an external electron donor and acceptor. The electrodes used are a working electrode (WE) and counter electrode (CE), with the redox reaction of interest happening at the WE. The circuit (WE/CE) can be closed when the two electrodes get connected to a potentiostat. For precise control of the potential, the WE can be calibrated against a reference electrode (RE) by the potentiostat. The chambers are preferably segregated to keep the oxidation and reduction reactions isolated. Typically, the two compartments are separated by a membrane selective for proton exchange. The following protocol is based on the setup used in our lab and has been tested successfully for cultivation of strict anaerobes such as methanogenic Archaea (e.g. [56]). The list of materials used available in the supplementary materials.

Preparation of the working and counter electrodes

1. Wash the graphite block. Soak in 1 M HCl overnight. Soak in 1 M NaOH overnight. Rinse with deionized water until the pH of the refuse is neutral. Air dry before proceeding

2. Drill a hole on top of each graphite block 2 cm (h) × 2 mm (ø) (figure S1 is available online at stacks.iop.org/NANO/31/174003/mmedia)

3. Coat one end of a Ti-wire 2 mm (ø) × 12.5 cm (l) with conductive epoxy and insert the wire into the hole of the graphite block. Coat the wire-graphite junction with a biocompatible non-conductive epoxy

4. Cure the epoxy by baking the electrode-wire set up at 80 °C for 3 h

5. The electrode-wire connection is tested with a multimeter by examining the resistance between the graphite block and the wire. A good electrical connection gives an internal resistance below 10 Ω

6. To ensure anaerobiosis, reactors are secured with black GL45 rubber stoppers pierced to the disconnected end of the Ti-wire. Stoppers can be drilled or pierced with an 18 G heated needle to produce holes of ∼2 mm (ø) (figure S1). Seal the junction between the wire and the stopper with epoxy to avoid possible gas leaks or O2-contamination

Preparation of the reference electrode

7. Pierce a hole 2 mm (ø) through a blue butyl septum 20 mm (h) using a heated 18 G needle

8. Insert the reference electrode (RE) from the top to protrude ∼4 cm below the stopper and ensure close proximity to the working electrode ∼1 cm (for a 500 ml chamber; see figure S1). Do not seal the junction because sometimes RE must be changed

9. Sterilize the RE attached to the stopper by soaking 10 min in 10% NaOCl, dip in ethanol (98%) and then keep in sterile MQ until further use

Preparation of the H-cell reactors

10. Cut the membrane guided by the inner diameter of the outer O-ring (figure S1-red circle)

11. Place the membrane in miliQ water to allow expansion. Do not allow it to dry

12. Insert butyl stoppers and crimp seal all side ports of the H-cells

13. Place the wet membrane onto the assembled O-ring (figure S1) and sandwich it between the two glass chambers. Proceed to the next steps immediately not to allow for the membrane to dry

14. Fill both chambers with ∼500 ml miliQ water. Insert the WE and CE electrodes attached to the GL45 stoppers into the appropriate chambers and seal the bottles with an autoclavable open top screw cap

15. Before autoclaving, place a 22 G needle in the stoppers of each chamber to allow steam release during autoclaving, because the membranes cannot withstand the autoclave pressure. Autoclave 20 min at 121 °C. After autoclaving, quickly remove the needles and seal visible holes in the stoppers with quick-dry epoxy

From this point forward work sterile. Use sterile tubing, connections, needles, syringes and filters. Ensure sterility by ethanol-flaming septa before needle insertion. Filter-sterilize the anaerobic gas (N2: CO2, 80:20). Work with only one chamber at a time.

16. Chamber #1: Flush with sterile gas (N2:CO2) while vacuuming sterile water from the lowest port of the chamber. Use a sterile needle fitted to a Luer-lock adapter which is lodged in a sterile tube and connected to a vacuum pump (figure S2).

17. For the chamber with the WE, replace the stopper for the middle port with a sterile RE joined to a rubber stopper (figure 4). Work quickly and close to a flame to ensure sterility.

18. Degas the chamber for 10 min to reestablish anoxia.

19. Pressurize a bottle of sterile media with sterile N2CO2 (figure S2). Use the pressure buildup to push ∼550 ml media into the H-cell chamber. Connect the media bottle to the reactor chamber. For this use a sterile tube with Luer-lock adapter ends fitted with needles and controlled by a valve (figure S2).

Box 1. Protocol to set up bioelectrochemical reactors for microbial electrosynthesis

Principle: An electrochemical reactor consists of one or two chambers with at least two electrodes submerged in a conductive ionic solution (electrolyte). In bioelectrochemical systems, the electrolyte is usually the growth media of the microorganisms without an external electron donor and acceptor. The electrodes used are a working electrode (WE) and counter electrode (CE), with the redox reaction of interest happening at the WE. The circuit (WE/CE) can be closed when the two electrodes get connected to a potentiostat. For precise control of the potential, the WE can be calibrated against a reference electrode (RE) by the potentiostat. The chambers are preferably segregated to keep the oxidation and reduction reactions isolated. Typically, the two compartments are separated by a membrane selective for proton exchange. The following protocol is based on the setup used in our lab and has been tested successfully for cultivation of strict anaerobes such as methanogenic Archaea (e.g. [56]). The list of materials used available in the supplementary materials.
on any rich media [121]. Therefore, several researchers developed small-scale electrochemical reactors for the isolation of electroactive microbes. With this approach, Geobacter sp. SD-1 and Ochrobactrum anthropi YZ-1 were isolated via successive liquid dilutions to extinction series in electrochemical reactors exclusive of nutrient-rich media [125, 126]. Additionally, an ‘electrode-plate method’ has been successfully employed to isolate electrogenic microorganisms [141]. The authors used a diluted cell suspension streaked on agar plates containing the soluble electron donor, however with a transparent anode at the top as a solid-state electron acceptor. Besides the anode, a reference and counter electrode were placed inside the agar for precise control of the voltage. It remains to be tested whether this electrode-plating method has applicability in the reverse direction in order to isolate electrotrophs. Published reports revealed challenges in finding an appropriate solid-state electron donor for electrotrophs. Solid-state electron donors like Fe0 although successfully applied in liquid media [132] pose two problems in solid media—one being the lack of specificity because Fe0 generates H_2 gas abiotically, and secondly H_2-gas would induce fractures in the solid media rendering isolation of single cell colonies impossible. As an alternative to Fe0, we recommend to use other biocompatible materials that can store charge and be pre-reduced electrically, such as Prussian Blue (a low-cost hexacyano-Fe complex material [144]) or biochar [145], as solid-state electron donors for selective isolation on agar-plates.

Below we present an electrochemical cultivation strategy (figure 2) by combining strategies presented in previous studies, including in situ primary enrichment in bioelectrochemical setups (see table 1), followed by laboratory electrochemical enrichment and dilution to extinction series in liquid or solid media with electrodes as electron donor/acceptor, as described by four previous reports [125, 126, 143, 147]. Most electroactive microorganisms are anaerobes [61]; thus, we propose to conduct all steps under anoxia because many anaerobes get inhibited by exposure to O$_2$. Anoxia can be achieved by working under a N$_2$ gas-stream, or ideally inside an anaerobic bag/chamber. For isolation under selective conditions, we propose to follow five

Box 1. (Continued.)

20. Flush the chambers for 15–30 min by bubbling sterile N$_2$CO$_2$ via the lower ports. Use a needle outlet on the top port to allow a steady flow through the reactor.

21. Chamber #2: Repeat steps 16 and 18–20

22. Initiate electrochemical measurements

Inoculation and sampling

23. Use a side port to inject 5 ml of a 20x concentrated cell inoculum harvested under sterile and anoxic conditions. Afterwards, flush for 5 min with sterile N$_2$CO$_2$ to ensure anoxia and removal of carry over gases

24. For gas-samples, extract headspace gas from the chamber via the G45/top port. Use sterile, flushed, gas-tight syringes with a gas-tight valve

Figure 2. Strategy to isolate electroactive microorganisms from the environment. 1. In situ colonization of the electrode; 2. Laboratory enrichment of the bioelectrode in a bioelectrochemical system; 3. Mechanical separation of the electrode biofilm under anoxic conditions; 4. Liquid dilution series in bioelectrochemical reactors; 5. Transfer of the last grown dilution on solid media with electrodes as donor/acceptor; 6. Growth on/in conductive agar with an electrode as sole electron donor/acceptor. Electrotaxis may occur.
steps of which two are optional: (1) in situ electrode colonization; (2—optional) electrochemical enrichment; (3) biofilm detachment; (4—optional) liquid electrochemical dilutions to extinction; (5) dilution to extinction on solid-media via electrode-plating.

Step 1: Electrode colonization in situ (e.g. SMFC). The biofilm colonizing the electrode in situ would be the ideal source for single cell direct isolation on solidified media after biofilm detachment. Alternatively, electroactive microorganisms from an environment can be sorted based on polarizability [147] for downstream isolation.

Step 2 (optional): Transfer the electrode-biofilm to a media with a chemical composition similar to the in situ water (enrichment). Enrichment biases are unlikely [113–115], and therefore this step could be discarded for the next step.

Step 3: There are two ways to carry out mechanical detachment by scraping the electrodes or by light sonication (few cycles at <20% intensity to ensure cell integrity) followed by gentle rinsing with a stream of anoxic media. This step should preferably occur in an anaerobic chamber.

Step 4 (optional): The biofilm-suspension can be used for liquid dilutions to extinctions, ideally, in batch bioelectrochemical reactors (figure 3). In box 1, we illustrate a protocol for anaerobic batch bioelectrochemical reactors. This step could be repeated until one morphotype and 16S phylotype becomes isolated. Membrane-less, small volume, high throughput electrochemical cells [148] were previously used to enrich anode respiring electrogens and reduce the costs of isolation associated with dual chamber BES. However, membrane-less BES cannot be used to isolate strict anaerobes because inhibitory O₂ is produced at the anode.

Step 5: Ultimately, for isolation of a new species the highest liquid dilution in which growth was observed is used as inoculum for a dilution series in solid media. Solid dilution series should provide us with colonies from a single cell. To maintain the selective pressure, we advise using the electrode-plate method [143]. Another possibility is to place the inoculum at a distance from the electrode, so electroactive cells use taxis towards a solid-state electrode [99, 100].

Electrochemical tests

Once isolated, the new strains must have their electrochemical properties tested because the mere association with an electrode is not proof of electroactivity. Nowadays, various types of high throughput methods demonstrate electroactivity, relying on electrochromic approaches with tungsten oxide (WO₃) [149], electrochemiluminescence [150], colorimetric [151, 152] and dielectrophoretic methods [153]. An example of a high-performance, eco-friendly approach for rapid electrochemical characterization is a paper-based 64-well sensing array containing MFC wirings (anode and cathode connected with a load) [154]. Nonetheless, these methods are not commercially available, so the use of conventional bioelectrochemical techniques is still necessary for standardization between laboratories. Some of the conventional bioelectrochemical techniques are chronamperometry and cyclic voltammetry. Chronoamperometry helps investigate the ability of a new isolate to facilitate electron transfer to and from an electrode [124, 132, 155]. Cyclic voltammetry helps distinguish between a direct and facilitated EET mechanism [117]. Hence the two must be used in combination to determine the type of EET mechanism employed by an electroactive microorganism.

Chronoamperometry (CA) is a technique in which the potential of a working electrode (exposed to microorganisms) stepped against a reference standard electrode gives a current response (mA), to be recorded over time (figure 4). For instance, microorganisms transfer electrons to the working electrode (anodic reactions) leading to the production of positive current, while their uptake of electrons from the working electrode (cathodic reactions) produces a negative one (figure 4). CA in a batch reactor is usually carried out until the current output stops and falls back to the baseline conditions when the soluble electrode acceptor or donor got depleted. From the current output, we can calculate current density and coulombic efficiency, which can then be used to compare performance with other studies [156]. For example, in an MES-system, the coulombic efficiency describes the recovery of the consumed current in the form of a synthesis product. For a methanogenic MES, the overall coulombic efficiency (ηCE, %) can be calculated from the amount of current consumed (I) for the formation of reduced products (CH₄, 8 electrons) for the given time (t) according to the equation (1) where F is the Faraday constant (96485.332 C mol⁻¹), m is the number of moles and n is the

![Figure 3. Schematic diagram of the two-chamber H cell set up inoculated with a methanogen performing electromethanogenesis on the cathode coupled to water oxidation on the anode.](image-url)
number of electrons.

\[\text{CE (\%) = \frac{(m_{\text{CH}_4} n_{\text{CH}_4})F}{\int_0^t I dt} \times 100\%} \]

During cyclic voltammetry (CV), the potential is cycled between two setpoint potentials (V1 and V2), while the resulting current flow gets measured throughout the scan (figure 4). CV produces both an oxidative and a reductive current curve for the potential range between V1 and V2 (figure 4). Electroactive species carrying out reversible reactions between the electrode and the microbe may produce two current peaks, one for each direction (cathodic and anodic).

The CV technique can also be applied to distinguish the mode of electron transfer (direct or facilitated). Direct electron transfer should exhibit electrode-associated electroactivity, which we can assess by comparing current production rates of a microbial culture before and after exchanging the entire liquid volume. If the performance is similar in both conditions, the electroactive agent is localized at the electrode surface and not in solution. In the case of poor biofilm formers, we typically compare the CV of the grown culture to that of the spent cell-free filtered medium. This approach helps identify whether the planktonic cells or a soluble shuttle in the medium are involved in electron exchange with the electrode. For detailed information on how to analyze cyclic voltammograms, as well as data from other electrochemical techniques, we recommend several excellent guides written by other research groups [157–160].

Conclusions

The field of electromicrobiology is rapidly emerging. Applications utilizing the ability of microorganisms to transport electrons extracellularly have moved far beyond its initial intended use in electricity generation. For example the development of hybrid bioelectrical systems with the ability to reduce carbon bonds with electricity or light [161]. With advances in several interdisciplinary fields, including electrochemistry, material science and biotechnology, microbial electrochemical systems have a real potential to provide meaningful solutions to current energy problems. There is...
increasing interest in the biotech potential of microorganisms capable of EET. However, electroactive microorganisms could not get isolated via traditional means. Here, we have provided an overview of studies that isolated electroactive microorganisms from the environment; and supplied guidelines for bioelectrochemical isolation methods aspiring to promote the discovery of additional electroactive species for biotechnology.

Acknowledgments

This work is a contribution to grant 4106-00017 from the Innovation fund Denmark.

ORCID iDs

Mon Oo Yee @ https://orcid.org/0000-0002-3206-0791
Joerg Deutzmman @ https://orcid.org/0000-0002-1337-4103
Amelia-Elena Rotaru @ https://orcid.org/0000-0003-2415-8585

References

[27] Marsili E, Baron D B, Shikhare I D, Coursolle D, Granick J A and Bond D R 2008 Shewanella secretes flavins that mediate extracellular electron transfer PNAS 105 3968–73
Nanotechnology 31 (2020) 174003
M O Yee et al

[37] Potter M C 1911 Electrical effects accompanying the decomposition of organic compounds Proc. R. Soc. B 84 260–76

[38] Santoro C, Arbizzani C, Erable B and Leporellos I 2017 Microbial fuel cells: from fundamentals to applications. A review J. Power Sources 356 225–44

[57] Li H et al. 2012 Integrated electromicrobial conversion of CO2 to higher alcohols Science 335 1596

[63] Kawachi S et al. 2018 Anodic and cathodic extracellular electron transfer by the filamentous bacterium Arthrobacter maritima 110S Front. Microbiol. 9 68

biocathode for direct electrocatalytic reduction of oxygen Bioens. Bioelectron. 26 877–80

[67] Holmes D E, Bond D R and Lovley D R 2004 Electron transfer by Desulfbolbubus propionicus to Fe(III) and graphite electrodes Appl. Environ. Microbiol. 70 1234–7

[69] Nevin K P, Woodard T L and Franks A E 2010 Microbial Electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds MBio 1 1–4

[88] Lyew D and Sheppard J 2001 Technical note use of conductivity to monitor the treatment of acid mine drainage by sulphate-reducing bacteria Water Res. 35 2081–6

[90] Poulton S W and Canfield D E 2011 Ferruginous conditions: a dominant feature of the ocean through Earth’s history Elements 7 107–12

[93] Teske A and Stroeven K B 2008 Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 3 3–18

[94] Takai K et al 2008 Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin J. Geophys. Res. 113 G02031

nov. and Zetaproteobacteria class Arch. Microbiol. 199; 335–46

[101] Kawaiichi S et al 2018 Anodic and cathodic extracellular electron transfer by the filamentous bacterium Ardenticaena maritima Front. Microbiol. 9; 1–11

[105] Holmes D E et al 2017 Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils Appl. Environ. Microbiol. 2; AEM.00223-17

[113] Sacco N J, Bonetto M C and Cortín E 2017 Isolation and characterization of electrochemically active subsurface Delftia and Azonexus species Front. Microbiol. 7; 756

[114] Erable B, Vandecandelaere I, Faimali M, Delia M L, Etcheverry L, Vandamme P and Bergel A 2010 Marine aerobic biofilm as biocathode catalyst Bioelectrochemistry 78; 51–6

[116] Nov., a versatile electrode and sulfur-oxidizing bacterium Front. Microbiol. 6; 474

[122] Phillips J et al 2019 An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sp. FEMS Microbiol. Ecol. 95; 1–13

[143] Ueoka N, Komuza A and Watanabe K 2018 Electrode plate-culture methods for colony isolation of exoelectrogens from anaerobic microorganisms Bioelectrochemistry 124 1–6

[144] Rengasamy K, Ranaivoniarosa T, Singh R and Bose A 2018 An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1 Bioelectrochemistry 122 164–73

[159] Harnisch F and Freguia S 2012 A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biosfilms Chem.—An Asian J. 7 466–75

[168] Nercessian O, Parot S, Délia M L, Bergel A and Achouak W 2012 Harvesting electricity with Geobacter bremensis from rice paddy soil with higher bioelectricity generation through gas transfer

[170] Deng D, Zhang Y and Liu Y 2015 A Geobacter strain isolated from rice paddy soil with higher bioelectricity generation
capability in comparison to Geobacter sulfurreducens PCA
RSC Adv. 5 43978–89