Identification of Heterotopic Ossification Using 18F-NaF PET/CT

Seraj, Siavash Mehdizadeh; Al-Zaghal, Abdullah; Østergaard, Brian; Høilund-Carlsen, Poul F.; Alavi, Abass

Published in: Clinical Nuclear Medicine

DOI: 10.1097/RLU.0000000000002448

Publication date: 2019

Document version: Accepted manuscript

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 28. May. 2021
Identification of Heterotopic Ossification Using 18F-NaF/CT

Abstract
Heterotopic ossification (HO) is a benign condition characterized by the abnormal formation of mature lamellar bone in extra-skeletal soft tissues. Most frequently, HO is observed around the hip joint after fractures or surgical procedures such as open reduction internal fixation or total hip arthroplasties. We are presenting a case of HO as detected by 18F-NaF PET/CT in a 68-year-old woman with history of internal-fixation of the right hip. Many previous publications have reported 18F-NaF uptake portraying calcification in soft tissue, these reports demonstrate the feasibility of 18F-NaF PET/CT to assess extra-osseous calcification.

Keywords:
Heterotopic ossification, calcification, NaF, PET, multiple myeloma
Figure 1. Coronal maximum intensity projection (MIP) 18F-NaF PET (A), axial 18F-NaF PET (B), CT (C), and fused 18F-NaF PET/CT (D) images. A 68-year-old female known to have multiple myeloma had undergone 18F-NaF PET/CT imaging. No history of prior chemotherapy, known inflammatory disease, recent radiotherapy was present at the time of imaging. The patient had undergone surgical internal-fixation of the right hip joint. Unexpected 18F-NaF uptake in the right gluteal region was noted on PET images (A and B, black arrows). Focal 18F-NaF avidity (SUVmean of 9.7, SUVmax of 15.6) corresponded to heterotopic ossification (HO) detected by CT (C, white arrow; average Hounsfield unit of 237). The most common etiologies of HO are: neurogenic, genetic and traumatic. Severe burns, fractures, dislocations and operative procedures are typical scenarios for traumatic HO [1]. Moreover, incidence of HO is tied to hip surgical procedures [1]. Although the definitive physiologic factor triggering HO has remained uncertain, it is believed that the inappropriate differentiation of pluripotential mesenchymal cells into osteoblastic stem cells is the causal factor [2]. The degree of 18F-NaF uptake in skeleton measures the amount of osteoblastic activity [3]. In soft tissue, NaF uptake depends on the rate of calcium deposition rather than the density of the calcification, therefore, the observed NaF uptake in the site of calcification indicates an active process of calcium salts deposition [3]. Our findings along with another recent study [4] provide evidence that 18F-NaF PET has a potential role in assessing HO regardless of its etiology. Previous research studies have also showed 18F-NaF uptake in extra-osseous tissues [5-14]. These reports have led to increased interest in the feasibility of 18F-NaF PET/CT to assess extra-osseous calcification.
References

5. Al-Zaghal A, Seraj SM, Werner T, Gerke O, Høilund-Carlsen PF, Alavi A. Assessment of Physiological Intracranial Calcification in Healthy Adults Using 18F-NaF PET/CT. *Journal of Nuclear Medicine* 2018;118.213678.

