Remission of Bile Acid Malabsorption Symptoms Following Treatment With the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide

Kårhus, Martin L.; Brønden, Andreas; Røder, Michael E.; Leotta, Salvatore; Sonne, David P.; Knop, Filip K.

Published in:
Gastroenterology

DOI:
10.1053/j.gastro.2019.04.002

Publication date:
2019

Document version
Accepted manuscript

Document license
CC BY-NC-ND

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 29. Apr. 2021
Remission of bile acid malabsorption symptoms following treatment with the glucagon-like peptide 1 receptor agonist liraglutide

Martin L. Kårhus, Andreas Brønden, Michael E. Røder, Salvatore Leotta, David P. Sonne, Filip K. Knop

PII: S0016-5085(19)35669-0
DOI: https://doi.org/10.1053/j.gastro.2019.04.002
Reference: YGAST 62583

To appear in: Gastroenterology
Accepted Date: 2 April 2019

Please cite this article as: Kårhus ML, Brønden A, Røder ME, Leotta S, Sonne DP, Knop FK, Remission of bile acid malabsorption symptoms following treatment with the glucagon-like peptide 1 receptor agonist liraglutide, Gastroenterology (2019), doi: https://doi.org/10.1053/j.gastro.2019.04.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Remission of bile acid malabsorption symptoms following treatment with the glucagon-like peptide 1 receptor agonist liraglutide

Martin L. Kårhus1,2, Andreas Brønden1, Michael E. Røder3, Salvatore Leotta4, David P. Sonne1,5, Filip K. Knop1,2,6

1Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
2Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
4Department of Gastroenterology, Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
5Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
6Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Correspondence to: Filip K. Knop, Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, Denmark; e-mail: filip.krag.knop.01@regionh.dk

F.K.K. has served on scientific advisory panels for, been part of speaker’s bureaus for, served as a consultant to and received research support from Novo Nordisk, the producer of liraglutide. Novo Nordisk has had no role in the writing of or the cases reported in the present manuscript. The remaining authors report no potential conflicts of interest.

M.L.K. drafted and revised the manuscript; A.B. reviewed and edited the manuscript; M.E.R. provided patient data, reviewed and edited the manuscript S.L. provided patient care and reviewed and edited the manuscript; D.P.S. reviewed and edited the manuscript; F.K.K. conceptualized, reviewed and edited the manuscript.
Introduction

As much as 50% of patients with chronic diarrhea may suffer from bile acid malabsorption (BAM) [7]. BAM is associated with spillover of bile acids from the small intestine to the colon triggering osmotic-induced fluid secretion with subsequent watery diarrhea and high stool frequency alongside gastrointestinal symptoms such as abdominal pain and bloating [7]. The gold standard for the diagnosis of BAM is the 75selenium-homotaurocholic acid test (SeHCAT), which evaluates the 7-day retention of orally administered 75selenium-labeled bile acids. Retention of $\geq 15\%$ is consistent with normal bile acid reabsorption, 10-15% is considered mild BAM, 5–10% moderate and <5% retention severe BAM [5]. Bile acid sequestrants are the only approved pharmacological treatment for BAM. These drugs act through luminal binding of bile acids, which eliminates the osmotic effects of bile and thereby causes a reduction of colonic fluid secretion. However, many patients respond poorly to bile acid sequestrant treatment [7] and new treatment options for BAM are highly needed.

Cases

Here we present two cases of BAM in which the glucagon-like peptide 1 (GLP-1) receptor agonist liraglutide (Victoza®) was initiated as a treatment of overweight and type 2 diabetes, respectively, and caused complete remission of BAM symptoms.

Case 1

A 65-year-old woman experienced diarrhea with up to seven watery stools per day, abdominal pain and bloating following a cholecystectomy in 2011. The woman was diagnosed with severe BAM by SeHCAT (5% retention) in 2013. Treatment with the bile acid sequestrant cholestyramine was initiated with only modest effect and the woman continued to experience high stool frequency and reduced quality of life. In 2015, the woman initiated subcutaneous liraglutide treatment for her overweight (initiated at 0.6 mg once-daily and up-titrated to 1.2 mg once-daily). A few days after treatment initiation, the woman experienced total remission of BAM symptoms including normalization of stool frequency and consistency. Relapses of BAM symptoms were reported on days when the liraglutide dose was missed and during an attempt to down-titrate liraglutide from 1.2 mg to 0.6 mg daily. SeHCAT performed following initiation of liraglutide treatment demonstrated a normal 75selenium-labeled bile acid retention above 20%. At control visits in 2016, 2017 and 2018, the woman reported no BAM-related symptoms and at her last visit, she reported one daily bowel movement with normal consistency and a high quality of life on liraglutide treatment.

Case 2

A 49-year-old man experienced watery diarrhea with high stool frequency and was diagnosed with severe BAM by SeHCAT (5% retention) in 2013. Treatment with cholestyramine caused no relief of BAM symptoms. In September 2017, the man was diagnosed with type 2 diabetes
and initiated liraglutide treatment, which resulted in an immediate and total remission of gastrointestinal symptoms. At a control visit in February 2018, the man reported one bowel movement per day with normal consistency. SeHCAT performed in June 2018 showed an unchanged 75selenium-labeled bile acid retention of 5%, but the man continued to be without BAM-related symptoms and experienced increased quality of life on liraglutide treatment.

Discussion and conclusion

The incretin hormone GLP-1 is well known for its glucose-lowering and satiety-promoting actions. In addition, GLP-1 delays upper gastrointestinal motility and treatment with the GLP-1 receptor agonist liraglutide increases small intestinal transit time [1, 4]. Likely, this enhances passive reabsorption of bile acids from the gut to the bloodstream with a subsequent reduction in spill-over of bile acids to the colon (Fig. 1). During the process of passive reabsorption, bile acids stimulate the nuclear farnesoid X receptor (FXR) in enterocytes [7]. The activation of FXR stimulates the synthesis and secretion of fibroblast growth factor 19 (FGF19), which in turn reduces the de novo synthesis of bile acids via suppression of CYP7a1 activity in the liver [2, 3]. Interestingly, individuals with BAM have reduced plasma concentrations of FGF19 compared to healthy subjects [6], which points to a compromised negative feedback on bile acid synthesis that could potentially add fuel to the fire by which BAM symptoms burn. Thus, liraglutide-induced deceleration of small intestinal transit time and ensuing greater passive reabsorption of bile acids in these patients may not only reduce spill-over of bile acids to the colon, it may also increase FXR activation and restore FGF19-mediated negative feedback on bile acid synthesis (Fig. 1), grabbing BAM pathophysiology by the root.

In conclusion, treatment with liraglutide in two individuals with BAM led to remission of BAM-related gastrointestinal symptoms accompanied by normalization of SeHCAT in one of the cases. Randomized controlled studies are warranted to delineate the treatment potential of liraglutide in patients suffering from BAM.
References

Figure and legend

Figure 1. Hypothesized effects of liraglutide on bile acid malabsorption

Left panel: Bile acid malabsorption (BAM) is characterized by hepatic overproduction of bile acids, incomplete small intestinal absorption of bile acids (resulting in reduced negative feedback on hepatic bile acid production by fibroblast growth factor 19 (FGF19) and bile-mediated hepatic FXR activation) and spillover of bile acids from the small intestine to the colon triggering osmotic-induced watery diarrhea. Right panel: We hypothesize liraglutide-induced deceleration of small intestinal transit time to increase the passive absorption of bile acids throughout the small intestine allowing active bile acid absorption in the distal part of the small intestine to clear any remaining intraluminal content of bile acids. Also, we speculate the liraglutide-induced increase in small intestinal absorption of bile acids to elicit an increase in circulating FGF19 levels as well as hepatic FXR activation, which will elicit a decrease in the hepatic synthesis of bile acids.
Bile acid malabsorption

Bile acid synthesis

FGF19

Bile acids

Portal circulation

Normal small intestinal transit time

Bile acid malabsorption + GLP-1 receptor agonist treatment

Bile acid synthesis

FGF19

Bile acids

GLP-1 receptor

Liraglutide

Decelerated small intestinal transit time