Incidence of device-related infection in 97 750 patients
clinical data from the complete Danish device-cohort (1982-2018)

Olsen, Thomas; Jørgensen, Ole Dan; Nielsen, Jens Cosedis; Thøgersen, Anna Margrethe; Philbert, Berit Thornvig; Johansen, Jens Brock

Published in:
European Heart Journal

DOI:
10.1093/eurheartj/ehz316

Publication date:
2019

Document version
Final published version

Document license
CC BY-NC

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Incidence of device-related infection in 97,750 patients: clinical data from the complete Danish device-cohort (1982–2018)

Thomas Olsen 1*, Ole Dan Jørgensen 2,3, Jens Cosedis Nielsen 3,4, Anna Margrethe Thøgersen 5, Berit Thornvig Philbert 6, and Jens Brock Johansen 1,3

1 Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark; 2 Department of Heart, Lung and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark; 3 Danish Pacemaker and ICD Register, Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark; 4 Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark; 5 Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, Aalborg 9000, Denmark; and 6 Department of Cardiology, Blegdamsvej 9, 2100 Denmark, Rigshospitalet, Copenhagen

Received 6 December 2018; revised 19 February 2019; editorial decision 30 April 2019; accepted 6 May 2019; online publish-ahead-of-print 1 June 2019

See page 1870 for the editorial comment on this article (doi: 10.1093/eurheartj/ehz407)

Aims

Device-related infection (DRI) is a severe complication to cardiac implantable electronic devices (CIED) therapy. Device-related infection incidence and its risk factors differ between previous studies. We aimed to define the long-term incidence and incidence rates of DRI for different types of CIEEs in the complete Danish device-cohort and identify patient-, operation- and device-related risk factors for DRI.

Methods and results

From the Danish Pacemaker (PM) and implantable cardioverter-defibrillator (ICD) Register, we included consecutive Danish patients undergoing CIED implantation or reoperation from January 1982 to April 2018, resulting in 97,750 patients, 128,045 operations and follow-up of in total 566,275 device years (DY). We identified 1,827 DRI causing device removals. Device-related infection incidence during device lifetime was 1.19% (1.12–1.26) for PM, 1.91% (1.71–2.13) for ICD, 2.18% (1.78–2.64) for cardiac resynchronization therapy (CRT)-pacemakers (CRT-P), and 3.35% (2.92–3.83) for CRT-defibrillators (CRT-D). Incidence rates in de novo implantations were 2.04/1000 DY for PM, 3.84 for ICD, 4.38 for CRT-P, and 6.76 for CRT-D. Using multiple-record and multiple-event per subject proportional hazard analysis, we identified implantation of complex devices (ICD and CRT), reoperations, prior DRI, male sex, and younger age as significantly associated with higher DRI risk.

Conclusion

Overall risk of infection was low in PM implantations but considerably higher in CRT systems and after reinterventions. These data support the importance of evaluating all patients considered for CIED therapy thoroughly, in order to identify potential modifiable risk factors and reduce the risk of early reoperations.

Keywords

CIED • Device • Infection • Incidence • Pacemaker • ICD • CRT

Introduction

Cardiac implantable electronic devices (CIED) are safe and effective for treating cardiac arrhythmias with increase in survival and quality of life. 1–3 Implant rate is increasing due to widening of indications and increasing number of generator replacements. 4 Device-related infections (DRI) are amongst the most dreaded complications causing significant morbidity and mortality and generating substantial healthcare costs. 5–7 It has been claimed that DRI rate has risen disproportionally to the rate of implantations. 8,9 Increasing proportions of implantable cardioverter-defibrillator (ICD) and cardiac resynchronization therapy (CRT) systems as well as implantations in patients at higher risk of infection may explain these findings.

* Corresponding author. Tel: +45 2635 1337, Fax: +45 6541 3003, Email: thomas.olsen1@rsyd.dk
© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Reported DRI rates vary considerably depending on definition of device infection, type of operation, device type, and the duration of follow-up. The risk of infection is highest early after the operation, estimated to 0.5–1% for PM patients within the first 12 months,10–12 0.7–1.7% for ICD patients within 6 months,13,14 and up to 4.3% within the first 2.5 years of CRT implantation.15,16 Long-time risk of DRI has been reported sparsely in the literature and often with mixed types of operations, making it difficult to interpret the results. We therefore examined the incidence and incidence rates of DRI in different types of CIED with lifelong follow-up. We also investigated patient-, operation-, and device-related risk factors to identify patients with the highest risk of DRI.

Methods

Study population and event definition

All Danish patients who received a CIED from January 1982 to April 2018 were identified in the Danish Pacemaker and ICD Register (DPIR) and included. Type of operation (first implant, replacement, or up-/downgrade) and all reoperations with changes in implanted hardware were recorded. In cases with CIED system removal, the reason was specified. We recorded DRI as CIED removals due to either device pocket infection or systemic infection. The patients were followed until DRI or right censored at death, emigration or lost to follow-up. Patients with more than one operation were censored at time of reoperation and had a new entry for time of risk with the new device. The study was approved by the Danish Data Protection Agency [Jrn. 18/20048(16/39520)] and performed according to declaration of Helsinki. According to Danish law, Ethics Committee approval is not required for registry-based studies.

Data sources

In Denmark, CIED operations are centralized to 14 centres. Pacemaker implantations are performed in all centres while ICD and CRT-operations are undertaken only in six, respectively five high-volume centres. The DPIR is a national clinical quality database founded in 1982 by physicians from all implanting centres. Clinical and technical information of all CIED operations in Denmark have been recorded prospective-ly by the treating physicians. The registry is co-financed by the device industry, but it is controlled by a steering committee of physicians appointed by the Working Group of Arrhythmia under the Danish Society of Cardiology. Data are audited regularly and data quality is considered of high standard.17 The entire Danish population is registered in the Danish Civil Registrations System and is continuously updated on vital status.18

Statistical analysis

All statistical analyses were performed using Stata software package (Stata/MP version 14.2, for Windows). Categorical variables are presented with number and/or frequencies while age is presented as median with interquartile range (IQR). Absolute incidence and incidence rates were calculated for each device and operation type as number of DRI per device operation and over time as DRI per 1000 years of follow-up and presented with 95% confidence interval (CI). Median time to infection was calculated and presented with IQR.

Multiple-record and multiple-event per subject proportional hazards analyses were used to identify independent patient-, surgery- and device-related risk factors of DRI and were presented as hazard ratios (HR) with 95% CI. A surrogate variable (complexity) for the duration and complexity of the operation was constructed by counting the number of pieces of hardware implanted and removed during the same operation. Exact duration of surgery and body mass index (BMI) was available for a subset of patients. We stratified continuous numeric variables in groups and divided implantation centres into PM-centres and ICD-centres. [The three major university centres (1982–2018) and centres implanting ICDs from the year starting ICD implantations] Total number of operations and any previous infection were counted for each patient and included in the analysis. The multivariable regression analysis included sex, device type, operation type, age, implant year, prior infection, centre volume, and complexity. P-values of <0.05 were considered statistically significant.

Results

Study population

During the study period, 99 105 patients underwent a de novo CIED implantation and n = 23 092 received one or more replacement and/or an up-/downgrade operation adding up to a total of 129 863 operations. One hundred and seventy-nine observations were removed because of misclassification. We excluded 1271 patients with unknown status in the Central Person Register, 309 patients who emigrated, and 59 patients lost to follow-up. Thus, the final study population consisted of 97 750 (97 732 first implants in Denmark) patients with a total number of 128 045 operations. Mean follow-up was 4.42 device years (DY) per device with a combined follow-up time of 566 275 DY.

Most patients (81.2%) had PM, 12.3% had ICD, and 6.5% had CRT-system with- or without ICD. The PM patients had a nearly even gender distribution (males 55.2%) and a median age of 77, while the ICD and CRT populations had predominance of males (70–80%) and were younger (Table 1).

Incidence

A total of 1827 systems were explanted due to DRI, coded as either ‘Systemic infection/endoocarditis’ (n = 535) or ‘Local pocket infection/skin erosion’ (n = 1292). Of all, 1074 DRI occurred after first device implantation while 544 and 209 infections were observed after replacements and up-/downgrade operations, respectively. Median time to infection in de novo operations was 286 (IQR 52–932) and 415 (IQR 69–1401) days for pocket and systemic infection, respectively, vs. 269 (IQR 83–734) and 506 (IQR 112–1307) in replacement operations.

Of all, 952 patients developed a surgical site infection (infection within 12 months of operation)19 with a median time to infection of 74 (IQR 29–175) days. The 875 DRIs appearing after 12 months had a median time to infection of 1053 (IQR 643–1762) days. The proportions of DRIs categorized as surgical site infections were 51.3%, 53.7%, and 52.2% for de novo implantations, replacements-, and up-/downgrade operations, respectively.

The combined incidence of infection during the device lifetime was 1.19% for PM, 1.91% for ICD, 2.18% for CRT-P, and 3.35% for CRT-D. The risk was lowest in de novo implantations (PM = 0.94%, ICD = 1.66%, CRT-P = 1.60%, and CRT-D = 2.42%) and considerably higher in all other types of operations (Table 2). The incidence of early infection ranged from 0.16% to 0.30% at 30 days and 0.31% to 0.86% at 90 days for PM and CRT-D, respectively (Figure 1).

The incidence rate of DRI after first implantations was 2.04, 3.84, 4.38, and 6.76/1000 DY for PM, ICD, CRT-P, and CRT-D,
respectively. The incidence rate was considerable higher in reopera-
tions with rates at 4.62–5.14/1000 DY for PM replacement and up-/
downgrade operations and as high as 18.94/1000 DY for CRT-D
replacement operations (Table 2 and Supplementary material online,
Table S2). The lifetime risk of infection for a patient living with a de-
vice through several years is illustrated in Take home figure.
Figure 1 (A) Kaplan–Meier curve of the time to infection after de novo implant in different types of devices in the Danish CIED population, 1982–2018, \(n = 97,732 \). (B) The first 120 days after implantation. (C) Enlarged portion of (A).

Take home figure Cumulative lifetime risk of device-related infection in different types of devices in the Danish CIED population, 1982–2018, \(n = 97,750 \).
Risk factors

The multiple proportional hazard analysis showed that device type was associated with a higher risk of infection with uni- and multivari-
able HR of 1.83, 2.48, and 4.19 and 1.26, 1.67, and 2.22 for ICD, CRT-
P, and CRT-D systems, respectively as compared to PM. Any kind of re-
operation was correlated with a substantial but similar increase in
risk of infection with HR of 5.95 and 6.91 for each replacement and
up-/downgrade operations. These findings persisted in the multivari-
able analysis with HR of 4.93 (CI 4.17–8.54) and 4.39 (CI 3.65–5.29),
respectively. We did not find any significant difference between
upgrades and replacement operations, whatever the type of device,
but the HR increased with each operation summing up in HR of
61.35 for five or more operations as compared to de novo
implantations.

When we examined device indication, we found that PM and
CRT-P patients that received their device due to AV-block (HR 1.47,
CI 1.31–1.67) had the highest risk of DRI, while the risk was highest in
those ICD and CRT-D patients that received a primary prophylactic
defibrillator unit (HR 1.48, CI 1.23–1.79) (Supplementary material
online, Table S3). In univariate analysis, risk of DRI was significantly
higher in ICD-centres, but in the multivariable analysis, the risk was
significantly lower in ICD-centres.

Male sex, young age, prior DRI, longer operation time, and higher
complexity of the operation as well as BMI > 30 were all associated
with higher risk of DRI in univariate analysis; however, BMI and opera-
tion time were not significantly associated with higher risk of DRI in
the multivariable analysis (Table 3 and Supplementary material online,
Table S3). Cumulative incidence function curves of the time to infec-
tion with death as competing risk were calculated and graphically
illustrated in Figure 2.

Discussion

We found lowest incidence of DRI in PM patients and considerable
higher in all other types of CIEDs. The risk was lowest in de novo
implantations and several folds higher in all types of reoperations. In
multivariable analysis, both ICD and CRT systems were statistically
significant independent risk factors as compared to pacemakers.
Other independent risk factors were young age, male sex, and prior
DRI.

Incidence

We observed a combined incidence of DRI of 1.19% for PM
patients with an incidence rate of 2.59/1000 DY. The incidence
was lowest in de novo implantation and considerable higher in all
types of reoperations. These findings are in line with our previous
study but lower than other studies. In ICD patients, the com-
bined incidence of DRI was 1.91% during the device lifetime. A re-
cent study of 200 909 North American ICD and CRT-D patients
reported a combined incidence of 1.7% for ICD and CRT-D
patients within 6 months of follow-up. Although the risk is highest
within the first 12 months after implantation, these numbers are
higher than ours, likely because this study included ICD and
CRT-D systems. Our incidence also is lower than the 2.2% after
3 months reported in an earlier retrospective study. However,
this study included patients who were not operated by specialized
electrophysiologist. In our population, all ICD implantations are
performed in six centres by specialized electrophysiologist with
a high annual number of operations which may add to explain the
low incidence of DRI.

The risk of DRI in CRT patients has been reported sparsely in the
literature and often as subgroups in mixed device populations. Other
studies reported combined DRI incidence of about 4.2–4.8% in
CRT patients. These studies report few infections, a short follow-up
and no stratification for operation type. In our dataset with lifelong
follow-up, we observed lower DRI risk with a combined incidence of
2.18% and 3.35% for CRT-P and CRT-D, respectively and even lower
after de novo implantation.

Selected CRT patients have been upgraded from a non-CRT device,
and the longevity of a CRT-device is considerably shorter than for a PM.
Therefore, CRT patients experience more reoperations and a higher
total number of operations when compared to PM and ICD patients.
These factors might partly explain the increased incidence of DRI how-
ever the incidence is still higher in de novo implantations as compared to
pacemakers. This indicates that device type is an independent risk factor,
likely because CRT-implantations are more technical challenging and
time-consuming. Other risk factors related to comorbidity, which have
not been examined in this study, may also be important.

Risk factors

Implantable cardioverter-defibrillator patients had a slightly higher
risk of DRI as compared to PM patients, whereas CRT-P and CRT-D
systems were associated with considerably higher risk of DRI. De
 novo implantations had lower risk for DRI in all device types, while
any reoperation was associated with a significantly increased risk of
DRI, independent of the type of device and the type of reoperation.

It is thus evident that patients undergoing reoperations are high-
risk patients, and whenever surgery is performed, it is important to
take appropriate actions to prevent infections. Currently, we do not
have evidence of the best way to reduce DRI risk in these patients,
but a recently published randomized trial has demonstrated that an
antibiotic envelope can reduce pocket infections in high-risk patients.
Our findings emphasize the importance of considering choice of de-
vice type thoroughly when planning CIED therapy in order to mini-
imize risk of early reoperation. Furthermore, the device industry must
focus on increasing device longevity. Even though all CIED operations
in Denmark are performed by specialized cardiologist, we still find a
significant lower risk in ICD-centres. This emphasizes the importance
of operators keeping a high annual number of operations.

Young age and male sex were independent patient-related risk fac-
tors associated with higher DRI risk. These findings have been
described by others in the field of cardiology as well as in prosthe-
tic joint infections. There are no obvious reason for this diversity
amongst gender; however, bacterial skin colonization differs among
genders which may reflect differences in host response to bacterial
infection. Risk of infection in the oldest patients was low compared to
younger patients. As we only included DRI with hardware re-

Downloaded from https://academic.oup.com/europace/article-abstract/40/23/1862/5509978 by University of Southern Denmark user on 11 July 2019
that a small proportion of elderly patients had unrecognized DRI, since such patients are more often admitted to non-cardiology departments where the infection might remain undiagnosed. Still it is very likely from these data that the DRI risk is considerable higher in younger patients. The reason remains unclear and should be investigated further.

Device indication as a marker of underlying heart disease also seemed to play a role but could not be included in the

Table 3 Risk factors for device-related infections

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th></th>
<th>P-value</th>
<th>Multivariable</th>
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Devices</td>
<td>HR 95% CI</td>
<td></td>
<td></td>
<td>HR 95% CI</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>51 484</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>76 561</td>
<td>1.94 1.75</td>
<td>2.14</td>
<td>1.55 1.40 1.72</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Operation type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First implant</td>
<td>97 732</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement</td>
<td>23 332</td>
<td>5.95 5.09</td>
<td>6.95</td>
<td>4.93 4.17 5.84</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Up-/downgrade</td>
<td>6981</td>
<td>6.91 5.82</td>
<td>8.20</td>
<td>4.39 3.65 5.29</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Device type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>100 374</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD</td>
<td>16 718</td>
<td>1.83 1.62</td>
<td>2.07</td>
<td>1.26 1.09 1.47</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>CRT-P</td>
<td>4630</td>
<td>2.48 2.02</td>
<td>3.04</td>
<td>1.68 1.34 2.11</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>CRT-D</td>
<td>6323</td>
<td>4.19 3.62</td>
<td>4.85</td>
<td>2.22 1.83 2.70</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–20</td>
<td>1171</td>
<td>1.62 1.16</td>
<td>2.25</td>
<td>1.70 1.22 2.37</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>21–50</td>
<td>7976</td>
<td>1.36 1.16</td>
<td>1.58</td>
<td>1.40 1.20 1.64</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>51–60</td>
<td>11 847</td>
<td>1.21 1.05</td>
<td>1.40</td>
<td>1.20 1.04 1.39</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>61–70</td>
<td>26 714</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71–80</td>
<td>42 355</td>
<td>0.75 0.66</td>
<td>0.84</td>
<td>0.81 0.72 0.92</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>81–90</td>
<td>32 476</td>
<td>0.43 0.37</td>
<td>0.51</td>
<td>0.53 0.45 0.62</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>91+</td>
<td>5506</td>
<td>0.30 0.18</td>
<td>0.48</td>
<td>0.38 0.23 0.61</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Year of implantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979–89</td>
<td>8871</td>
<td>1.40 1.13</td>
<td>1.72</td>
<td>1.84 1.48 2.29</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>1990–99</td>
<td>20 070</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000–09</td>
<td>43 007</td>
<td>1.44 1.23</td>
<td>1.68</td>
<td>1.23 1.05 1.44</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>2010–18</td>
<td>56 097</td>
<td>2.06 1.77</td>
<td>2.40</td>
<td>1.42 1.20 1.67</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Total number of operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>97 750</td>
<td>1</td>
<td><0.001</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22 851</td>
<td>5.54 4.78</td>
<td>6.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5452</td>
<td>16.08 12.98</td>
<td>19.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1401</td>
<td>33.60 24.84</td>
<td>45.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+</td>
<td>591</td>
<td>61.35 41.20</td>
<td>91.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>125 998</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2047</td>
<td>4.36 3.57</td>
<td>5.34</td>
<td>1.65 1.34 2.04</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM-centre</td>
<td>43 649</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD-centre</td>
<td>84 396</td>
<td>1.36 1.23</td>
<td>1.50</td>
<td>0.89 0.79 0.995</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2</td>
<td>63 297</td>
<td>1</td>
<td><0.001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>53 009</td>
<td>1.01 0.91</td>
<td>1.12</td>
<td>1.25 1.10 1.42</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>4+</td>
<td>11 739</td>
<td>2.61 2.30</td>
<td>2.96</td>
<td>1.20 1.03 1.40</td>
<td>0.019</td>
<td></td>
</tr>
</tbody>
</table>

Results from the univariate and multivariable proportional hazards analysis. The multivariable model includes sex, operation type, and device type, and age, year of implantation, prior infection, centre, and complexity (number of hardware pieces implanted and removed during the same operation).
multivariable analysis due to collinearity. However, this might indi-
cate that comorbidity influences risk of DRI, in line with a recent
published meta-analysis.27 Obesity often lead to surgical complica-
tions28 and BMI > 30 correlated to a higher risk of DRI in our data,
but not statistically significant in the multivariable model. Long dur-
atation of surgery was also expected associated with increased DRI
risk, but this could not be confirmed, probably due to collinearity
with device type.

We observed the highest risk of infection in the early period
(\textit{Table 3}), although rate of infection has increased in recent years.
This increase may be due to a higher number of CRT systems and
reoperations. Nevertheless, these findings persisted in the multivari-
able model, suggesting that there are more patient-related risk fac-
tors, yet to be revealed.

\section*{Strengths and limitations}

This study is a retrospective study and therefore conclusions about
causality cannot be drawn. Data were entered prospectively in DPIR,
and the patients were followed prospectively. With more than
35 years of reporting and follow-up it would be unlikely that the
entered data are flawed by any systematic bias. All registers are prone
to underreporting of complications as well as misclassifications,
but this register is audited regularly and considered complete with re-
spect to changes in hardware with a high validity and quality in regis-
tration of complications.17

The observed incidence of DRI represents the lowest estimate
since DRI was counted only for patients who had their system
removed due to infection. However, the large number of consecutive
patients in a nationwide setting with lifelong follow-up is likely to pro-
vide reliable minimal estimates for the absolute risk of DRI.

\section*{Conclusion}

In this nationwide cohort of the Danish CIED population with a life-
long follow-up, we found the lowest incidence and incidence rate of
DRI in de novo PM implantations. The risk was slightly higher in ICD
systems and considerably higher in CRT systems. Majority of risk fac-
tors for DRI were patient- and operation-related such as total num-
ber of operations, type of operation, young age, and male sex.

It is important to be aware of these risk factors and consider the
device indication and the choice of device type thoroughly when
planning CIED therapy in order to modify adjustable risk factors and
minimize risk of early reoperation. Furthermore, the device industry
should focus on increasing device longevity to reduce the number of
replacement operations.

\section*{Supplementary material}

\textit{Supplementary material} is available at \textit{European Heart Journal} online.

\section*{Funding}

The Danish Heart Association and the Region of Southern Denmark (15-
R99-A5950-22895, 16/36792).

\textbf{Conflict of interest:} Dr J.C.N. received grant from the Novo Nordisk
Foundation (NNF16OC0018658).

\section*{References}

Saksena S, Waldo AL, Wilber D, Brown MW, Heo M. Improved survival with an
implanted defibrillator in patients with coronary disease at high risk for ventricu-

\textit{Figure 2} Cumulative incidence function with death as competing risk of the time to first infection in different device types after first implants (Fi)
and replacement (Re) operations. The competing risk analysis is adjusted for sex, age, year of implantation, centre, and complexity (number of hardware pieces implanted and removed during the same operation).
Incidence of device-related infection in 97,750 patients

16. Unsworth JD, Zaidi A, Hargreaves MR. Increased late complex device infections are determined by cardiac resynchronization therapy-defibrillator infection. Europace 2015;17:1708–1711.

