Supercritical fluid extraction of carotenoids from Ulva lactuca (Chlorophyta)

Razi Parjikolaei, Behnaz; Casas Cardoso, Lourdes; Fernandez-Ponce, Maria Teresa; Mantell Serrano, Casimiro; Bruhn, Annette; Christensen, Knud Villy; Fretté, Xavier

Publication date:
2014

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 26. Mar. 2021
Supercritical Fluid Extraction of Carotenoids from *Ulva lactuca* (Chlorophyta)

Behnaz Razi Parjikolaei1, Lourdes Casas Cardoso2, Maria Teresa Fernandez-Ponce2, Casimiro Mantell Serrano2, Annette Bruhn1, Knud Villy Christensen1, and Xavier C. Fretté1

1 Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
2 Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz International Agri-food Campus of Excellence, ceeA3, P.O. Box 40, Puerto Real 11510, Cádiz, Spain
3 Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark

References

Introduction

Ulva lactuca is an edible species of green macroalgae containing a high amount of nutrients and functional bioactive compounds such as carotenoids. The current market value of commercially used carotenoids was estimated at nearly $1.2 billion in 2010. However, most of the naturally produced and harvested *U. lactuca* biomass is not optimally used nowadays. The main reason is the absence of environmentally friendly, efficient, and industrially viable technologies for extraction processes. Supercritical fluid extraction (SCFE) has become a promising alternative separation technique in the field of food and nutraceutical applications. SCFE was found to be selective in the extraction of desired compounds without leaving toxic residues in extracts and the risk of degradation of thermal labile or easily oxidized compounds such as lipids and carotenoids.

Objective: Characterizing the effect of pressure, temperature, and percentage of co-solvent on SCFE of carotenoids from freeze-dried *U. lactuca*.

Material and Methods

- **U. lactuca** was collected from Nakebølle Fjord, Fyn, Denmark
- Algae samples were freeze-dried to reach the uniform particle size of 600 μm
- Carotenoids identification and quantification were performed using HPLC
- Conventional solvent extraction method using EtOH was applied as a reference process versus SCFE

Results

- The main considered carotenoids were fucoxanthin, lutein, and β-carotene

Conclusion

- Increasing the temperature and pressure had a positive effect on the amount of carotenoids extracted
- Applying SC-CO2 was not as efficient as conventional extraction with pure EtOH
- Adding 5% of EtOH as a co-solvent increased the total amount of carotenoid extracted by 70% and 53% compared to using pure SC-CO2 and EtOH, respectively
- The SCFE technique is promising and should be considered for further investigation under different flow rates and scales

Acknowledgment

This paper is a part of the research within the Innovation Consortium Natural Ingredients and Green Energy (NIGE)-with sustainable purification technologies financially supported by Danish Agency for Science Technology and Innovation to whom the authors are indebted.