Adherence to treatment in allergic rhinitis using mobile technology. the mask study

Published in: Clinical and Experimental Allergy

DOI: 10.1111/cea.13333

Publication date: 2019

Document version: Accepted manuscript

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.
ARTICLE TYPE: ORIGINAL ARTICLE-ASTHMA AND RHINITIS

ADHERENCE TO TREATMENT IN ALLERGIC RHINITIS USING MOBILE TECHNOLOGY. THE MASK STUDY

SHORT TITLE: ADHERENCE TO TREATMENT IN THE MASK STUDY

E Menditto (1), E Costa (2), L Midão (2), S Bosnic-Anticevich (3), E Novellino (4), S Bialek (5), V Briedis (6), A Mair (7), R Rajabian-Soderlund (8), S Arnavielhe (9), A Bedbrook (10), W Czarlewski (11), I Annesi-Maesano (12), JM Anto (13-16), P Devillier (17), G De Vries (18), T Keil (19), A Sheikh (20), V Orlando (1), D Larenas-Linnemann (21), L Cecchi (22), G De Feo (23), M Illario (24), C Stellato (23), J Fonseca (25), J Malva (26), M Morais-Almeida (27), AM Pereira (28), A Todo-Bom (29), R Rajabian-Soderlund (30), A Valiulis (31), KC Bergmann (32), L Klimek (33), R Mösges (34), O Pfaar (33,35), T Zuberbier (32), V Cardona (36), J Mullol (37), NG Papadopoulos (38), EP Prokopakis (39), M Bewick (40), D Ryan (41), RE Roller-Wirnsberger (61), PV Tomazic (42), AA Cruz (43), P Kuna (44), B Samolinski (45), WJ Fokkens (46), S Reitsma (46), I Bosse (47), JF Fontaine (48), D Laune (9), T Hahtela (49), S Toppila-Salmi (49), C Bachert (50), PW Hellings (51), E Melén (52), M Wickman (53), C Bindsliev-Jensen (54), E Eller (54), RE O’Hehir (55), C Cingi (56), B Gemicioglu (57), O Kalayci (58), JC Ivancevich (59), J Bousquet (10, 60) and the MASK group

1. CIRFF, Center of Pharmacoeconomics, University of Naples Federico II, Naples, Italy.
2. UCIBIO, REQUIMTE, Faculty of Pharmacy, and Competence Center on Active and Healthy Ageing of University of Porto (Porto4Ageing), University of Porto, Portugal.
3. Woolcock Institute of Medical Research, University of Sydney Woolcock Emphysema Centre and Sydney Local Health District, Glebe, NSW, Australia.
4. Director of Department of Pharmacy of University of Naples Federico II, Naples, Italy.
5. Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Warsaw Medical University, Warsaw, Poland.
6. Head of Department of Clinical Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania.
7. DG for Health and Social Care, Scottish Government, Edinburgh, UK.
8. Department of Nephrology and Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
9. KYomed INNOV, Montpellier, France.
10. MACVIA-France, Fondation partenariale FMC VIA-LR, Montpellier, France.
11. Medical Consulting Czarlewski, Levallois, France.
12. Epidemiology of Allergic and Respiratory Diseases, Department Institute Pierre Louis of Epidemiology and Public Health, INSERM and Sorbonne Université, Medical School Saint Antoine, Paris, France.
13. ISGlobAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
14. IMIM (Hospital del Mar Research Institute), Barcelona, Spain.
15. CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
16. Universitat Pompeu Fabra (UPF), Barcelona, Spain.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/cea.13333

This article is protected by copyright. All rights reserved.
17. Laboratoire de Pharmacologie Respiratoire UPRES EA220, Hôpital Foch, Suresnes, Université Versailles Saint-Quentin, Université Paris Saclay, France.
19. Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, Germany.
20. The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK.
21. Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico.
22. SOS Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy.
23. Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
24. Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET) Naples, Italy.
26. Coimbra Institute for Clinical and Biomedical Research (ICBR), Faculty of Medicine, University of Coimbra, Portugal; Ageing@Coimbra EIP-AHA Reference Site, Coimbra, Portugal.
27. Allergy Center, CUF Descobertas Hospital, Lisbon, Portugal.
28. Allergy Unit, CUF-Porto Hospital and Institute; Center for Research in Health Technologies and information systems CINTESIS, Universidade do Porto, Portugal.
29. Imunollogologia, Centro Hospitalar Universitário de Coimbra and Faculty of Medicine, University of Coimbra, Portugal.
30. Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
31. Vilnius University Institute of Clinical Medicine, Clinic of Children's Diseases, and Institute of Health Sciences, Department of Public Health, Vilnius, Lithuania; European Academy of Paediatrics (EAP/UEMS-SP), Brussels, Belgium.
32. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, a member of GA²LEN, Berlin, Germany.
33. Center for Rhinology and Allergology, Wiesbaden, Germany.
34. Institute of Medical Statistics, and Computational Biology, Medical Faculty, University of Cologne, Germany and CRI-Clinical Research International-Ltd, Hamburg, Germany.
35. Department of Otorhinolaryngology, Head and Neck Surgery, Universitätssmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
36. Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron, & ARADyAL Spanish Research Network, Barcelona, Spain.
37. Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic; Clinical & Experimental Respiratory Immunology, IDIBAPS, CIBERES, University of Barcelona, Spain.
38. Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK, and Allergy Department, 2nd Pediatric Clinic, Athens General Children’s Hospital “P&A Kyriakou,” University of Athens, Athens, Greece.
39. Department of Otorhinolaryngology University of Crete School of Medicine, Heraklion, Greece.
40. IQ4U Consultants Ltd, London, UK.
41. Honorary Clinical Research Fellow, Allergy and Respiratory Research Group, The University of Edinburgh, Edinburgh, Past President SLAAI, FACAAI, UK
42. Department of ENT, Medical University of Graz, Austria
43. ProAR – Nucleo de Excelencia em Asma, Federal University of Bahia, Brasil and WHO GARD Planning Group, Brazil.
44. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland.
45. Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.
46. Department of Otorhinolaryngology, Academic Medical Centre, Amsterdam, the Netherlands.
47. Allergist, La Rochelle, France.
48. Allergist, Reims, France.
49. Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

This article is protected by copyright. All rights reserved.
Abstract

Background: Mobile technology may help to better understand the adherence to treatment MASK-rhinitis (Mobile Airways Sentinel NetwoK for allergic rhinitis) is a patient-centered ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries.

Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App.

Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from January 1, 2016 to August 1, 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach.
Results: 12,143 users were registered. 6,949 users reported at least one VAS data recording. Among them, 1,887 users reported ≥ 7 VAS data. 1,195 subjects were included in the analysis of adherence. 136 (11.28%) users were adherent (MPR ≥70% and PDC ≤ 1.25), 51 (4.23%) were partly adherent (MPR ≥70% and PDC =1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR<70%). Of those, the largest group was non-adherent to medications and the time interval was increased in 442 (36.68%) users.

Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous versus on-demand treatment for AR symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This represent a novel approach also for analyzing medication taking behavior in a real-world setting.

Key words: mHealth, mobile technology, adherence, rhinitis, treatment, observational study

Abbreviations

AR: Allergic rhinitis
ARIA: Allergic Rhinitis and Its Impact on Asthma
MASK: Mobile ARIA Sentinel networK
mHealth: mobile health
MPR: Medication Possession Ratio
OTC: Over the counter
PDC: Proportion of Days Covered
QOL: Quality of life
VAS: Visual analogue scale

Introduction

Globally, non-adherence to medications is a major obstacle to the effective delivery of health care. Medication adherence and medication persistence are two different constructs. Medication adherence is defined as an active, cooperative and voluntary participation of the patient on following recommendations from a healthcare provider. This is a multifactorial behaviour that involves three critical steps, including initiation, implementation and discontinuation (1). Medication
persistence refers to the act of continuing the treatment for the prescribed duration (2). In research employing electronic databases in pharmacies, primary adherence assesses whether the patient received the first prescription whereas secondary adherence is an ongoing process that measures whether the patient received dispensing or refills as prescribed during a defined observation period (3). Medication persistence implies that the patient must have exhibited at least primary adherence, as it cannot be measured unless the patient has received the first dispensing (3). The two most commonly used secondary adherence medication measures are the Medication Possession Ratio (MPR) and the Proportion of Days Covered (PDC) (2). These two measures are closely related as they are both refill record-based adherence measurements.

Many mobile phone apps are available to support people in taking their medications and to therefore improve medication adherence (4,5). However, a recent meta-analysis found that the majority did not have many of the desirable features and were of low quality (4).

It is known that adherence to treatment is low in allergic diseases and asthma (6,7). Mobile technology may help to better understand the adherence and its determinants as well how to improve adherence to treatment (8). MPR and PDC are of interest. They have been applied on mobile technology (9) but cannot be used directly in anonymized app users as there is usually no information on prescription. Thus, the concepts of MPR and PDC should be modified when using data gathered from such apps.

MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centered ICT (information and communication technologies) system (10). A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. It has been validated (11) and was found to be an easy and effective method of assessing symptoms of AR and work productivity (11-14). MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JA-CHRODIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) (15).

The aim of this study was to assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App.
Methods

Design of the study

An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from January 1, 2016 to August 1, 2017. Five visual analogue scales (VAS) assessed the daily control of the disease (i.e. global evaluation of allergic symptoms, nose, eyes, asthma and work) (16). Since users are anonymized and cannot be contacted, we could not use an adherence questionnaire such as the Morisky (17,18). The paper was written according to the STROBE checklist.

Inclusion criteria: people who had allergic rhinitis, who used the Allergy Diary, who completed at least 7 days (not necessarily consecutive) of symptom recording (VAS global score), and who continued to use the same AR medication over the study period.

Setting

Users from 22 countries filled in the Allergy Diary (Table 4). The Allergy Diary is available in 16 languages (translated and back-translated, culturally adapted and legally compliant).

Users

All consecutive users who registered to the Allergy Diary were included if they had filled in the VAS global measured. The Allergy Diary is filled independently from the presence/absence of symptoms. There were no exclusion criteria for participation in the Allergy Diary initiative. Basic demographic characteristics (age, sex, country and language) were recorded. The Allergy Diary was used by people who found it on the internet, Apple store, Google Play or in any other way. Some users were patients who were asked by their physicians to use the app. However, due to anonymization of data, specific information could not be gathered as previously described in detail (12,13). The diagnosis of allergic rhinitis is based on the question “I have allergic rhinitis” but all users had rhinitis symptoms (11-14).

Allergy Diary and outcomes

The Allergy Diary collects information on AR symptoms experienced (nasal and ocular), disease type (intermittent/persistent), how symptoms impact users’ lives, and type(s) of AR treatment used. Geolocalized users assess their daily symptom control via the touchscreen functionality on their smartphone: they click on 5 consecutive VAS measures (VAS-global measured, VAS-nasal, VAS-
ocular, VAS-asthma and VAS-work). Levels range from zero (not at all bothersome) to 100 (very bothersome). Independency of VAS questions was previously assessed using the Bland and Altman regression analysis (13,19). Users input their daily medications using a scroll list which contains all country-specific OTC and prescribed medications available (Figure 1 online). The list has been populated using IMS data.

Some of the VAS data used in this study have been analyzed in other studies with a different aim including work productivity (12) and assessment of treatment or multimorbidity (papers submitted). Moreover, the time frame of the three other studies was different.

Ethics

The Allergy Diary is CE1 registered. The terms of use have been translated into all languages and customized according to the legislation of each country. This thereby allows the use of the results for research purposes. The data are anonymized - including the geolocalized data - using k-anonymity (20-22). An Independent Review Board approval was not needed for this observational study.

Assessment of adherence

1- Definitions used: Several adherence calculation methods are based on tablet counts, electronic monitoring by medication containers, patient diaries, and use of adjudicated prescription claims from administrative databases. However, using the Allergy Diary, MPR and PDC with the IPSOR terminology cannot be directly calculated using a classical method (23). They can however be approached. In the present paper, we used:

- Proportion of medication possession ratio (modified MPR): ratio of days that medication was reported to be used on days in a given time interval (see definitions 2 and 3 for further details)

- Proportion of days covered over a time interval (modified PDC): ratio of days that medication was reported to be used on days in the time interval between the first and the last record considered (i.e. the first and the last day in which the VAS about symptoms control is filled in)

2- Number of days with VAS reported: a cut-off of at least 7 records of VAS was set up to ensure an adequate amount of data which assess adherence. Therefore, only users matching this cut-off were enrolled/included in the study.
3- **Predetermined Time interval:** The first 14 records were analyzed since the duration of symptoms in AR is usually short (24):

- In users who reported 7 to 14 days of data/symptom recording, we analyzed the total number of days of recording.
- In users who reported over 14 days of data/symptom recording, only the first 14 were analyzed.
- Data in duplicate (reporting, for the same day, 2 assessments) and multiplicate (reporting, for the same day, more than 2 assessments) have occurred (<10% of subjects).
 - For 7 records, any duplicate led to the withdrawal of the user.
 - For 8 records, 1 duplicate was allowed.
 - For 9 records, 2 duplicates were allowed.
 - For ≥10 records, 3 duplicates were allowed.
 - Thus, all users with less than 7 records were withdrawn.

4- **Medication possession ratio (modified MPR):** We proposed that:

- The same rhinitis treatment should be used during the time interval. No change in treatment for rhinitis was accepted and change represents an exclusion criteria. However, treatment for asthma was not considered and may vary.
- Based on an accepted adherence level ≥70%, the minimum number of days of data recording/collection was determined (Table 1).
- The modified MPR score was calculated as:

\[
\text{modified MPR score} = \frac{\text{days of reported treatment}}{\text{time interval (as determined by predetermined time interval)}}
\]

5- **Proportion of days covered over a time interval (modified PDC)**

Both continuous and discontinuous/intermittent reporting was monitored/evaluated. We defined 5 levels of adherence depending on the modified PDC (Table 2)

- The first and last days of data recording were identified and defined the time interval.
- The dates of reporting within the time interval were assessed and counted.
• For duplicates or multiplicates, the number considered was the exact number (1, 2, 3...).
• The modified PDC score was calculated as:
 \[
 \frac{\text{days of reporting}}{\text{time interval (as determined by first and last day of use)}}
 \]
• A number of recorded days greater than the time interval considered indicates that the user is taking more drugs than the initial treatment. We used two levels of PDC ≤ 1.25 (adherent user to time interval as defined by first and last days of recording and ≤ 1.5 (adherent or partly-adherent user to time interval as defined by first and last day of recording). Combining PDC ≤ 1.25 or ≤1.5 with MPR values, 4 groups were defined (Table 3).

Biases

In this study, we did not include the types of treatment used due to the significant variability between treatment recommendations in different countries and no clear pattern of treatment being easily identified from the data collected.

Although MASK can be used to assess medication adherence, there are biases which should be considered: (i) In the literature, there is no clear definition on what is considered “adherent” or “non-adherent”, in terms of app usage; (ii) It is not known whether adherence with an app in any way reflects adherence with either medication or control; (iii) Users are anonymized, it is impossible to know how people use apps and the results may not reflect their daily AR management; (iv) It is possible that they take more medications than reported by the App as they may forget to register their daily symptoms.

Sample Size

In this exploratory study, all registered users who fulfilled the inclusion criteria over the study period were included in order to obtain the best possible estimates for the specified time window.

Statistical analysis

For normally distributed data, means and SD were used.
Results

Characteristics of the user

A total number of 12,143 users were registered in the Allergy Diary during the observational period. 6,949 users reported at least one VAS data recording. A total of 64,566 VAS recordings were made. Among them, 1,887 users reported ≥ 7 VAS data (Figure 1). There were 888 (47%) males and 999 (53%) females. They had a median age of 32 years (25-75 percentiles: 22-44 years). The repartition of user by country is presented in Table 4.

Overall results

Overall results are presented in Table 5. Only 136 (11.28%) users were adherent (MPR ≥70% and PDC ≤ 1.25). In addition, 51 (4.23%) users were partly adherent (MPR ≥70% and PDC =1.50), and 176 (14.60%) were switchers, defined as users who did not use the same medication but for the defined interval (MPR ≥70% and PDC > 1.50). On the other hand, 832 (69.05%) users were non-adherent to medications (MPR<70%). Of those, the largest group was non-adherent to medications and the time interval was increased in 442 (36.68%) users.

For a number of days reported under 15 to 20, users were vastly non-adherent (MPR<70). On the other hand, above this level, users were more adherent to medications (PDC) than before. It therefore seems that users who reported VAS levels over 15 days are more likely to be adherent. Moreover, the median level of time interval was different between groups, suggesting that discontinuous treatment is associated with poorer medication adherence.

Discussion

Our study was characterized by information retrieved from patients from 22 countries. To our knowledge, this is the first study to perform an evaluation of medication adherence based on data retrieved from a mobile app using a routine way/real life setting. This study shows the very low adherence to treatment in AR patients in a real-life setting.
Strengths and limitations

The strengths and limitations of this study are those of mobile technology, as previously discussed (12, 13, 25). There are potential measurement biases when using apps since the information collected is usually restricted and less complete than when using more detailed paper or web-based questionnaires. App users may be a selected subset and therefore not fully representative of all AR patients. Higher education or specific age ranges might apply. The study was not meant to be representative of the general population. Precise patient characterization is impossible via an App used in real life, but every observational study using the Allergy Diary gave highly consistent results with a clear clinical perspective (11-14). Users self-reported the diagnosis of rhinitis but this was confirmed by the questionnaire on rhinitis and conjunctivitis symptoms included in the App. Mobile technology is likely to become an important tool to better understand and manage AR and asthma.

Other limitations should also be considered. Among a high number of users, only a relatively low number were constantly filling information on treatment in the app and we only considered users reporting over 6 days. We did not analyse the type of treatment due to its great variability. This will be done when more data become available and using machine learning approaches. Another limitation is that the app is based on the unsupervised input of data. There is, therefore, a bias related to potentially missing data input. Nevertheless, our study took the opportunity of analysing real-world adherence and designing new methodologies for analysing such data.

We did not include a questionnaire on medication adherence since users report their daily medications.

Discussion of results

Our data show that about 70% of AR patients filling data over 6 days (27.2% of the entire database) are non-adherent to medications. Only 11.3% of AR users filling data over 6 days were fully adherent to medications and time interval (MPR ≥70% and PDC ≤ 1.25).

Few studies reported the prevalence of adherence in AR patients in the real-life context. 35% of patients were non-adherent for some time during the treatment and 38% indicated that they discontinued treatment when they felt better (26, 27). One study, carried out in the outpatient setting, suggests that a short message service (SMS) helps to improve AR treatment (28).
Adherence in randomized control trials is high but does not reflect the real-life situation (29,30) and alternative measurement of adherence in a real-life setting is needed. The best studies would be using electronic devices that count and record the drugs taken. However, these devices are expensive and, as such, not a viable solution for large studies in AR patients (31). Considering that we live in an era of "digital revolution" and that a huge percentage of people have a smartphone, mobile applications appeared as a good alternative to improve patient control over their illness. Such m-health technology has enormous potential to be used as a reliable, cost-effective and usable tool, not only for AR, but also for other diseases (26,32,33). Although there are already some m-health tools for allergic rhinitis, there are few studies evaluating their benefits and impact (26).

There is a growing understanding of barriers to adherence and ways to overcome them. The development of mAdherence tools to explore barriers to maintaining engagement is growing and will be important in the development of mHealth interventions.

There is no gold standard for measuring adherence to medication. There are mainly direct and indirect measures. All methods have their limitations, so it is highly recommended to combine more than one (34). In this study, we used a combination of MPR and PDC, the most used measures of secondary adherence. We defined adherence as MPR≥70% and PDC≤1.25. Results were grouped by PDC value by using a cut-off value of 1.25. Therefore, the resulting groups had PDC≤1.25 and PDC>1.25 respectively. It was possible to verify that, although with some differences, both follow the same trend. Under 15 to 20 days, patients were mostly non-adherent, and there are some theories that can explain this such as that for many patients AR is only intermittent and that the most troublesome symptoms can be managed with a short course of medication. There are several subtypes of allergic rhinitis and, depending on the type and severity of the condition, the treatment may be different. AR can be described as a seasonal condition, therefore some patients may present persistent symptoms while others may present symptoms only when the allergen is present. On the other hand, above 15 days of VAS reported, patients tend to be more adherent, which may also be a result of more severe symptoms, leading to continuous treatment (27, 35) or to a better adherence in people reporting longer periods of use. It would be important to also study the attitudinal and behavioural clusters of individuals who continue to monitor and treat their AR above 15 days. Insights from research in asthma suggest that determining attitudinal clusters can provide insights into medication use and taking behaviour (36). All the participants were volunteers and anonymous, making them very remote from direct clinical input. Also, patients had no sense of being watched over (Hawthorn effect) which prevents a biased increase in adherence. In RCTs, adherence is likely to be much higher (37). Further research is needed to understand how patients can be motivated to use and app regularly and the role of the healthcare professional in suggesting that the app is used.
as a means of assisting the patient to better understand their disease, monitor their symptoms and promote adherence.

Conclusion

This is the first paper to present adherence to AR treatment in a real-world setting from a European population sample. From a methodological point of view, this study highlights the opportunity to measure secondary adherence from an app (modified MPR and modified PDC). From a clinical point of view, this study gives the opportunity to discuss the gap that exists between theory and real word evidence, based on data from real practice, paving the way for a change management in allergic rhinitis. Further information will derive from the ongoing recruitment of Allergy Diary users. AR treatment is based on concepts that do not necessarily apply to real life. All recommendations propose a continuous treatment rather than an on-demand use (38). Our results show that adherence to treatment is low. The relative efficacy of continuous versus on-demand treatment for AR symptoms is still a matter of debate (39). In general, medical use (if achieved), non-anonymised and linked to the patients’ electronic health-records, may be higher because of the Hawthorn effect (40,41). However, a requirement to use the app to gain assistance should always be offered without any coercion. In other words, careful patient counselling is required. Moreover, in real life, patients rarely follow treatment indications (guidelines). Finally, the use of such an app in the context of routine clinical care may present the opportunity to describe different Allergic Rhinitis (and Non-Allergic Rhinitis) phenotypes, each of which may potentially have its own adherence pattern (to app usage and treatment) and may ultimately help to identify early on which patients might benefit from specialist assessment.
References

This article is protected by copyright. All rights reserved.

38. Single maintenance and reliever therapy (SMART) for asthma DTB 2011;49:126-129.

Table 1: Modified MPR cut-off for the assessment of medication adherence

<table>
<thead>
<tr>
<th>Time interval*</th>
<th>Data on treatment*</th>
<th>Medication adherence** (Modified MPR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>71.4%</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>75.0%</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>77.8%</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>70.0%</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>72.7%</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>75.0%</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>76.9%</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>71.4%</td>
</tr>
</tbody>
</table>

*: Results expressed in days. **accepted cut-off for adherence is Modified MPR > 70%
Table 2: Number of days assessed to calculate the modified PDC

<table>
<thead>
<tr>
<th>Time interval*</th>
<th>1</th>
<th>1.25</th>
<th>1.5</th>
<th>2</th>
<th>≥2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>14</td>
<td>≥15</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>≥17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>18</td>
<td>≥19</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>≥21</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>22</td>
<td>≥23</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>24</td>
<td>≥25</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>26</td>
<td>≥27</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>28</td>
<td>≥29</td>
</tr>
</tbody>
</table>

*Results expressed in days

Table 3: Definition of groups for adherence

<table>
<thead>
<tr>
<th>PDC Criteria</th>
<th>MPR Criteria</th>
<th>Descriptor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1.25 or 1.5</td>
<td>≥ 70%</td>
<td>Users who always used the same medication for the defined time interval</td>
<td>Adherent user</td>
</tr>
<tr>
<td>≤ 1.25 or 1.5</td>
<td><70%</td>
<td>Users who always used the same medication but at a time greater than the defined time interval</td>
<td>Partly adherent user</td>
</tr>
<tr>
<td>>1.25 or 1.5</td>
<td>≥ 70%</td>
<td>Users who did not use the same medication for the defined interval</td>
<td>Non-adherent user</td>
</tr>
<tr>
<td>>1.25 or 1.5</td>
<td><70%</td>
<td>Users who did not use the same medication and at a time greater than the defined time interval</td>
<td>Non-adherent user</td>
</tr>
<tr>
<td>Country</td>
<td>Users</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1887</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Overall results: number of users depending on MPR, PDC and duration of reporting

<table>
<thead>
<tr>
<th>Modified MPR</th>
<th>≥70%</th>
<th><70%</th>
<th>Total users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified PDC</td>
<td>1</td>
<td>1 1/4</td>
<td>1/2</td>
</tr>
<tr>
<td>7 days</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8 days</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9 days</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10 days</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11 days</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>12 days</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13 days</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14 days</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>15 days</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16 days</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17 days</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>18 days</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>19 days</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20-22 days</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>23-24 days</td>
<td>7</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>25-29 days</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>30-34 days</td>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>35-39 days</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>40-49 days</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>50-59 days</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>60-74 days</td>
<td>5</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>75-99 days</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>>100 days</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Data are reported in user
Figure 1: Flow chart of users

MASK Study group

This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.
Mask Study Group

1. University Hospital, Montpellier, France.
2. MACVIA-France, Fondation partenariale FMC VIA-LR, Montpellier, France.
3. VIMA. INSERM U1168, VIMA : Ageing and chronic diseases Epidemiological and public health approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, UMR-S 1168, Montigny le Bretonneux, France and Eureorea, Brussels, Belgium.
4. Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
5. Department of Dermatology, Medical University of Graz, Graz, Austria.
6. Transylvania University Brasov, Brasov, Romania.
7. Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
8. Project Manager, Chairman of the Council of Municipality of Salerno, Italy.
9. Center for Health Technology and Services Research- CINTESIS, Faculdade de Medicina, Universidade do Porto; and Medida, Lda Porto, Portugal.
10. Allergology department, Centre de l’Asthme et des Allergies Hôpital d’Enfants Armand-Trousseau (APHP); Sorbonne Université, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Equipe EFAP, Paris, France.
11. Epidemiology of Allergic and Respiratory Diseases, Department Institute Pierre Louis of Epidemiology and Public Health, INSERM and Sorbonne Université, Medical School Saint Antoine, Paris, France.
12. Department of Allergy and Immunology, Hospital Quirón Bizkaia, Erandio, Spain.
13. Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, and Astrid Lindgren Children’s Hospital, Department of Pediatric Pulmonology and Allergy, Karolinska University Hospital, Stockholm, Sweden.
14. David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom.
15. Regionie Puglia, Bari, Italy.
16. Regionie Liguria, Genoa, Italy.
17. Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent, Belgium.
18. Allergy and Respiratory Diseases, Ospedale Policlinico San martino, University of Genoa, Italy.
19. PNDR, Portuguese National Programme for Respiratory Diseases, Faculdade de Medicina de Lisboa, Lisbon, Portugal.
20. Director of the Geriatric Unit, Department of Internal Medicine (DIBIMIS), University of Palermo, Italy.
21. Telbioso SRL, Milan, Italy.
22. Universidade do Estado do Pará, Belem, Brazil.
23. Department of Medicine, University of Cape Town, Cape Town, South Africa.
24. Hospital Civil de Guadalajara Dr. Juan A. Menchaca, Guadalara, Mexico.
26. Section of Respiratory Disease, Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy.
27. Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, The Netherlands.
28. Charité - Universitätsmedizin Berlin, corporate member of Free Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Global Allergy and Asthma European Network (GA2LEN), Berlin, Germany.
29. Dept of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh.
30. Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, Linköping, Sweden.
31. Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.
32. BIEBER. Department of Dermatology and Allergy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.
33. Dept of Biochemistry and Clinical Chemistry, University of Pharmacy with the Division of Laboratory Medicine, Warsaw Medical University, Warsaw, Poland.
34. Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark.
35. Department of Respiratory Medicine and Allergology, University Hospital, Lund, Sweden.
36. Department of Geriatrics, Montpellier University Hospital, Montpellier, France.
37. EA 2991, Euromov, University Montpellier, France.
38. Department of Pathophysiology and Transplantation, University of Milan, IRCCS Fondazione Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy.
39. Argentine Association of Respiratory Medicine, Buenos Aires, Argentina.
40. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland.
41. Pediatric Department, University of Verona Hospital, Verona, Italy.
42. UOC Pneumologia, Istituto di Medicina Interna, F. Policlinico Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy, and National Heart and Lung Institute, Royal Brompton Hospital & Imperial College London, UK.
43. Second University of Naples and Institute of Translational Medicine, Italian National Research Council.
44. Woolcock Institute of Medical Research, University of Sydney and Woolcock Emphysema Centre and Local Health District, Glebe, NSW, Australia.
45. Allergist, La Rochelle, France.
46. Associate professor of clinical medicene, Laval’s University, Quebec city, Head of medicine department, Hôpital de la Malbaie, Quebec, Canada.
47. Quebec Heart and Lung Institute, Laval University, Québec City, Quebec, Canada.
48. Centre Hospitailer Valenciennes, France.
115. EFA European Federation of Allergy and Airways Diseases Patients’ Associations, Brussels, Belgium
116. AQuAS, Barcelna, Spain & EUREGHA, European Regional and Local Health Association, Brussels, Belgium
117. Policlinica Geral do Rio de Janeiro, Rio de Janeiro – Brasil
118. Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy.
120. Social workers coordinator, Sorrento, Italy.
121. Federal University of the State of Rio de Janeiro, School of Medicine and Surgery, Rio de Janeiro, Brazil
122. Allergology and Immunology Discipline, "Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania.
123. Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada.
124. Laboratoire de Pharmacologie Respiratoire UPRES EA220, Hôpital Foch, Suresnes, Université Versailles Saint-Quentin, Université Paris Saclay, France.
125. Farmacie Dei Goffi Group, Massa Lubrense, Italy.
126. Rangueil-Larrey Hospital, Respiratory Diseases Department, Toulouse, France.
127. University Clinic of Pulmology and Allergy, Medical Faculty Skopje, Republic of Macedonia.
128. Allergologo, Mexico City, Mexico.
129. Service de Pneumo-Allergologie, Centre Hospitalo-Universitaire de Béni-Messous, Algiers, Algeria.
130. Clinic of infectious, chest diseases, dermatology and allergology, Vilnius University, Vilnius, Lithuania.
131. Allergy and Clinical Immunology National Heart and Lung Institute, Imperial College London, UK.
132. Guy’s and st Thomas’ NHS Trust, Kings College London, UK.
133. Section of Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.
134. Pediatric Allergy and Immunology Unit, Children’s Hospital, An Shams University, Cairo, Egypt.
135. Department of Computing Science, Umeå University, Sweden and Four Computing Oy, Finland.
136. Clinic of Children’s Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
137. University of São Paulo Medical School, Sao Paulo, Brazil
139. Global Allergy and Asthma Platform GAAPP, Vienna, Austria.
140. Division of Allergy, Department of Pediatric Medicine - The Bambino Gesù Children’s Research Hospital Holy see, Rome, Italy.
141. Department of Otorhinolaryngology, Academic Medical Centers, Amsterdam, the Netherlands.
142. CINTEIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal
143. Allergist, Reims, France.
144. Hospital General Regional 1 "Dr Carlos Mc Gregor Sanchez Navarro" IMSS, Mexico City, Mexico.
145. Regional hospital of ISSSTE, Puebla, Mexico.
146. National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia.
147. Allergologo, Guadalajara, Mexico.
148. Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico.
149. Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
151. Medical University, Faculty of Public Health, Sofia, Bulgaria.
152. Allergy and Immunology Division, Clinica Ricardo Palma, Lima, Peru.
153. Department of Internal Medicine, section of Allergology, Erasmus MC, Rotterdam, The Netherlands.
154. Allergy & Asthma Unit, Hospital San Bernardo Salta, Argentina.
155. Allergy Clinic, Hospital Regional del ISSSTE 'Lic. López Mateos', Mexico City, Mexico.
156. Head and Professor, Centro Regional de Excelencia CONACYT y WAO en Alergia, Asma e Inmunología, Hospital Universitario, Universidad Autónoma de Nuevo León , Monterrey NL, Mexico.
157. Center of Allergy and Immunology, Georgian Association of Allergology and Clinical Immunology, Tbilisi, Georgia.
158. Center of Tuberculosis and Lung Diseases, Riga, Latvia.
159. Federal District Base Hospital Institute, Brasilia, Brazil.
160. Institute of Health Policy and Management iBMG, Erasmus University, Rotterdam, The Netherlands.
161. University Hospital Olomouc – National eHealth Centre, Czech Republic.
162. Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile.
163. Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
165. Autonomous University of Baja California, Ensenada, Baja California, Mexico.
166. Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
167. Hospital General Regional 1 "Dr. Carlos MacGregor Sánchez Navarro” IMSS, Mexico City, Mexico.
168. Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR S999, Le Kremlin Bicêtre, France.
169. Dipartimento di medicina, chirurgia e odontoiatria, università di Salerno, Italy.
170. Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET) Naples, Italy.
171. Servicio de Alergia e Immunología, Clínica Santa Isabel, Buenos Aires, Argentina.
172. President, Libra Foundation, Buenos Aires, Argentina.
173. Medical University of Gdałsk, Department of Allergology, Gdańsk, Poland.
174. Airway Disease Infection Section, National Heart and Lung Institute, Imperial College; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
175. Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
176. Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-do, South Korea.
177. Department of Clinical Immunology, Wroclaw Medical University, Poland.
178. Ukrainina Medical Stomatological Academy, Poltava, Ukraine.
This article is protected by copyright. All rights reserved.
CONFLICT OF INTEREST:
S. Bosnic-Anticevich reports grants from Teva, Boehringer Ingelheim, Sanofi, GSK, AstraZeneca, outside the submitted work.

J. Bousquet reports personal fees and other from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Uriach, other from Kyomed, outside the submitted work.

L. Cecchi reports grants from Menarini, grants from Malesci, outside the submitted work.

T. Haahotela reports personal fees from Mundipharma, Novartis, OrionPharma, outside the submitted work.

P. Kuna reports personal fees from Adamed, Boehringer Ingelheim, AstraZeneca, Chiesi, FAES, Berlin Chemie, Novartis, Polpharma, Allergopharma, outside the submitted work.

V. Kvedariene has received payment for consultancy from GSK and for lectures from Stallergens Greer, Berlin-Chemie outside the submitted work.

R. Mösges reports personal fees from ALK, allergopharma, Allergy Therapeutics, Friulchem, Hexal, Servier, Klosterfrau, Bayer, FAES, GSK, MSD, Johnson&Johnson, MEDA, Stada, UCB, Nuvo, Menarini, grants from ASIT biotech, Leti, Optima, BitopAG, Hulka, Ursapharm, grants and personal fees from Bencard, Stallergenes, grants, personal fees and non-financial support from Lofarma, non-financial support from Roxall, Atmos, Bionorica,
personal fees and non-financial support from Novartis, non-financial support from Otonomy, Ferrero, outside the submitted work.

N. Papadopoulos reports personal fees from Novartis, Faes Farma, BIOMAY, HAL, Nutricia Research, Menarini, Novartis, MEDA, Abbvie, Novartis, MEDA, MSD, MEDA, Omega Pharma, Danone, grants from Menarini outside the submitted work.

O. Pfaar reports grants and personal fees from ALK-Abelló, Allergopharma, Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, Biotech Tools S.A., Laboratorios LETI/LETI Pharma, Anergis S.A., personal fees from Novartis Pharma, MEDA Pharma, Mobile Chamber Experts (a GA²LEN Partner), Pohl-Boskamp, Indoor Biotechnologies, grants from Biomay, Nuvo, Circassia personal fees from Glaxo Smith Kline, outside the submitted work.

T. Zuberbier reports and Organizational affiliations: Committee member: WHO-Initiative "Allergic Rhinitis and Its Impact on Asthma" (ARIA) Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI) Head: European Centre for Allergy Research Foundation (ECARF) Secretary General: Global Allergy and Asthma European Network (GA²LEN) Member: Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).