To the Editor

B lymphocytes produce antibodies, act as antigen-presenting cells and produce cytokines. They can be classified into functional subsets according to their distinct expression of surface markers and their profile of secreted cytokines. Regulatory B cells (Bregs), control excessive inflammatory responses primarily through secretion of IL-10. IL-10 inhibits proinflammatory cytokine production and supports regulatory T cell differentiation.

An important in vivo functional role for human Bregs has been suggested by the finding that exacerbations of colitis and psoriasis take place after B cell depletion therapy.

An increase in peripheral CD19⁺CD25⁺CD71⁺CD73⁺ Bregs upon allergen-specific immunotherapy of patients has been linked to the suppression of IgE and upregulation of IgG4 production, as well as increased IL-10 production in allergen-specific T and B cells. So far, three different IL-10⁺ Breg subsets have been identified in humans. CD19⁺CD5⁺CD1d⁺ and CD19⁺CD24⁺CD38⁺ Bregs were shown to suppress Th1 cells, whereas CD19⁺CD25⁺CD71⁺CD73⁺ Bregs may play a role in allergen-specific immune tolerance. Moreover, Kamekura et al. have demonstrated significant decrease of CD19⁺CD24⁺CD27⁺ Bregs in allergic rhinitis and asthma. In contrast, another study reported an increase of CD19⁺CD24⁺CD27⁺ B cells and a decline of CD19⁺CD24⁺CD38⁺ B cells in allergic rhinitis compared to healthy individuals.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/all.13672

This article is protected by copyright. All rights reserved.
noteworthy that none of these studies assessed production of IL-10, which is a crucial feature of Bregs, as a marker of this population. Therefore, in view of this data and the lack of IL-10 measurement in the previous studies, we aimed to compare the percentages of IL-10-producing Breg subsets in peripheral blood from clinically-well characterized asthmatic, allergic rhinitis and healthy 14-15 years old individuals (Table S1) using multicolor flow cytometry. Peripheral blood mononuclear cells were stained with antibodies specific for IL-10, CD1d, CD5, CD24, CD38, CD25, CD71 and CD73. Three types of Breg cells were studied according to the gating strategy shown in Figure 1A, based on the isotype controls (Figure S1). Since IL-10 has been proposed as a key suppressive cytokine of Breg cells in vivo and in vitro, we aimed to compare the percentage of IL-10-producing B cells between patients with asthma, allergic rhinitis and healthy controls at day 0. Donor-dependent variation in the total number of IL-10+ B cells (ranging between 1% and 24% of total B cells) was observed and there was no difference between the studied groups (Figure 1B). Further comparison of IL-10 expression within the three Breg populations revealed no difference in the percentage of CD19^IL-10^CD25^CD71^CD73^ (Figure 1C), CD19^IL-10^CD24^CD38^- (Figure 1D), and CD19^IL-10^CD5^CD1d^- (Figure 1E) Breg cells within or between patients with asthma and allergic rhinitis, and healthy controls at day 0. The comparison of total B cell percentage as well as naïve and memory B cells gated based on the expression of CD27 and IgD (Figure S2A) did not show any significant difference between the studied groups (Figure S2B). Despite the number of samples being limited, this observation may suggest that there is no deficiency in circulating Bregs in asthmatic and allergic.

As we were interested in the response of B cells to B cell-specific stimulants, we aimed to analyze if there is any difference in the capacity for the induction of IL-10 expression in the three groups after 3 days of stimulation with CpG oligonucleotides (CpG) or anti-B cell receptor (αBCR) and CD40 ligand (CD40L). Cells were gated according to the strategy shown in Figure 2A. IL-10 production was significantly induced upon CpG stimulation in patients with asthma and healthy controls. There was a trend towards lower number of IL-10-producing Bregs in patients with allergic rhinitis. Therefore, it

This article is protected by copyright. All rights reserved.
would require a larger patient cohort to determine whether patients with allergic rhinitis have a significant Breg deficiency. One can speculate that even the modest differences in Breg frequencies and function, may have an impact on systemic responses, as Bregs have been associated with the suppression of excessive inflammation, restoration of Th1/Th2 balance, inhibition of Th1 and Th17 differentiation and induction of regulatory T cells, mediated not only through the release of soluble factors, but also via cell-to-cell contact. Moreover, a slight difference in circulating Breg frequencies could reflect a significant difference in tissue-infiltrating Breg cells. Further studies are needed to quantify Breg populations in respiratory mucosal tissues.

Although, αBCR+CD40L stimulation resulted in increase of IL-10⁺ B cells in some individuals, there was no significant change (Figure 2B). The patients who responded strongly to αBCR+CD40L did not have less severe symptoms compared to the rest of the subjects in allergic rhinitis group. There was no significant difference in the percentage of viable CD19⁺ B cells in total cells between the studied groups. The CD19⁺CD25⁺CD71⁺CD73⁻ Bregs showed a very profound response to CpG and αBCR+CD40L stimulations in patients with asthma, whereas in patients with allergic rhinitis this increase was observed only after CpG treatment (Figure 2C). However, a significant induction of CD19⁺CD25⁺CD71⁺CD73⁻ Bregs was influenced by donor-dependent variation in response to CpG stimulation. The other two subsets, CD19⁺CD24⁺CD38⁺ Bregs (Figure 2D) and CD19⁺CD5⁺CD1⁺ (Figure 2E) were decreased upon stimulation with both CpG and αBCR+CD40L. In line with a previous study, we observed an increase in IL-10⁺ B cells upon stimulation with CpG³ and αBCR+CD40L⁷. Although CpG is a potent stimulus for inducing IL-10 production by B cells, there was no significant difference between the groups. The observed decrease in the percentage of CD19⁺CD24⁺CD38⁻ Bregs upon stimulation with both CpG and αBCR+CD40L may be explained by the fact that CD19⁺CD24⁺CD38⁻ Bregs develop from transitional B cells and they might have already differentiated after three days of stimulation into a less CpG responsive B cell population. Interestingly, we found that CD24⁺CD38⁺ Breg cells express surface
markers associated with other described Breg subsets. Most prominently, CD24+ CD38+ Breg cells also express CD71 and CD5 (data not shown).

In conclusion, our results showed no differences in numbers of peripheral Bregs both at baseline and after stimulation in patients with asthma and allergic rhinitis compared to healthy controls. Although we observed a trend towards decreased induction of IL-10-producing B cells in response to stimulation in patients with allergic rhinitis, due to limited number of study subjects, we cannot conclude whether there is a deficiency. It is likely that we did not observe an impaired induction of Bregs in response to stimulation as both patients with asthma and allergic rhinitis were under treatment. Nonetheless we cannot exclude that exacerbation of asthma or allergic rhinitis may influence the Breg responses. It is likely that frequency of Bregs in peripheral blood may not reflect the potential impairment in local regulation of Bregs. Direct responses should be studied in the nasal tissue and induced sputum. It has been demonstrated that IgE+ B cells were existing in sputum but not in blood and bone marrow. Further research on a larger population focusing on IL-10-producing Bregs in the periphery and affected organs may be necessary to conclude whether there is a deficiency in Breg subsets in patients with allergic rhinitis and asthma.

References

Figure Legend

Figure 1. Percentages of Breg cell subsets and their expression of IL-10 are similar in patients with asthma (A) or allergic rhinitis (R) compared to healthy individuals (H) at day 0.

A. Gating strategy of three different Breg cell subsets in an asthmatic donor.

B. Percentage of IL-10+ B cells within total B cells. Kruskal-Wallis test was used to compare differences between the groups. C-E. Three different Breg cell subsets:

C. CD19-CD25-CD71-CD73 D. CD19-CD24-CD38+ E. CD19-CD5-CD1d+

measured as a percentage of total IL-10+ B cells. Wilcoxon matched-pairs signed rank test was used to analyze changes in response to different stimulation. H (n=6), A (n=6), R (n=6). Each bar represents the mean ± SEM.

Figure 2. Three Breg cell subsets are responding differently to CpG and αBCR+CD40L stimulations compared to unstimulated control (U.S.) in patients with asthma (A) or allergic rhinitis (R) and healthy individuals (H) at day 3.
A. Gating strategy of three different Breg cell subsets shown in an asthmatic donor.

B. Increase in IL-10 expression in total B cells. (n=8), A (n=6), R (n=8). C-D. Three different Bregs subsets:

C. CD19^+CD25^+CD71^+CD73^-

D. CD19^+CD24^+CD38^-

E. CD19^+CD5^+CD1d^+ measured as a percentage of total IL-10^+ B cells. Wilcoxon matched-pairs signed rank test was used to analyze changes in response to different stimulation. *p<0.05; **p<0.01. H (n=5-6), A (n=6), R (n=6). Each bar represents the mean ± SEM.

Letter to the Editor

Comparison of regulatory B cells in asthma and allergic rhinitis

Wirz Oliver F.1 #, Głobińska Anna1,2 #, Ochsner Urs1, van de Veen Willem1, Eller Esben3, Christiansen Elisabeth S3,11*, Halken Susanne11, Nielsen Christian12, Bindslev-Jensen Carsten3, Antó Josep M.4-7, Bousquet Jean8-10, Akdis Cezmi A.1, Akdis Mübeccel1

1 Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland

2 Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Poland

3 Odense Research Center for Anaphylaxis (ORCA), Dept. Dermatology & Allergy Center, Odense University Hospital, Odense C, Denmark

4 ISGLoBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain

5 IMIM (Hospital del Mar Research Institute), Barcelona, Spain

6 CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain

7 Universitat Pompeu Fabra (UPF), Barcelona, Spain

8 University Hospital, Montpellier, France

This article is protected by copyright. All rights reserved.
9 MACVIA-France, Contre les MALadies Chronique spour un Vieillissement Actif en France

European Innovation Partnership on Active and Healthy Ageing Reference Site, France

10 INSERM, VIMA: Ageing and chronic diseases. Epidemiological and public health approaches, U1168, Paris, and UVSQ, UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, France

11 Hans Christian Andersen Children’s Hospital, Odense University Hospital, University of Southern Denmark, DK-5000 Odense C, Denmark

12 Department of Clinical Immunology, Odense University Hospital, Odense C, Denmark

These authors contributed equally to this work

Correspondence to:

Mübeccel Akdis
Swiss Institute of Allergy and Asthma Research (SIAF)
Obere Strasse 22, CH-7270, Davos Platz, Switzerland.

Tel.: +41 81 410 08 48 Fax: +41 81 410 08 40

E-mail: akdism@siaf.uzh.ch

This article is protected by copyright. All rights reserved.
Source of funding: The authors’ laboratories are supported by the European Commission’s Seventh Framework programme under grant agreement No. 261357 (MeDALL), European Commission’s Seventh Framework programme under grant agreement No. 260895 (PREDICTA) and the Swiss National Science Foundation (SNSF) No. 320030-159870.

Wirz Oliver F.¹ #, PhD
Głobińska Anna ¹,² #, PhD
Ochsner Urs ³, Sci Tec
van de Veen Willem ¹, PhD
Eller Esben ³, PhD, MSc
Christiansen Elisabeth Søgaard ³,¹¹, PhD, MD
Halken Susanne ¹¹, PhD, MD
Nielsen Christian ¹², PhD, MSc
Binslev-Jensen Carsten ³, PhD, MD
Antó Joseph M. ⁴-⁷ PhD, MD
Bousquet Jean ⁸-¹⁰, PhD, MD
Akdis Cezmi A ¹, MD
Akdis Mübeccel ¹, PhD, MD

¹Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland, Davos, Switzerland
²Rheumatology and Allergy Department, Medical University of Lodz, Poland
³Odense University Hospital, Odense C, Denmark
⁴ISGLoBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
⁵IMIM (Hospital del Mar Research Institute), Barcelona, Spain

This article is protected by copyright. All rights reserved.
6 CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain

7 Universitat Pompeu Fabra (UPF), Barcelona, Spain

8 University Hospital, Montpellier, France

9 MACVIA-France, Contre les MAladies Chronique spour un Vleillisement Actif en France

European Innovation Partnership on Active and Healthy Ageing Reference Site, France

10 INSERM, VIMA : Ageing and chronic diseases. Epidemiological and public health approaches, U1168, Paris, and UVSQ, UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, France

11 Hans Christian Andersen Children’s Hospital, Odense University Hospital, University of Southern Denmark, DK-5000 Odense C, Denmark

12 Department of Clinical Immunology, Odense University Hospital, Odense C, Denmark
Figure 1
Figure 2