The effectiveness of instrumented gait analysis for interdisciplinary interventions in young children with cerebral palsy
A randomised controlled trial

Published in:
Gait and Posture

DOI:
10.1016/j.gaitpost.2018.06.065

Publication date:
2018

Document version
Accepted manuscript

Document license
CC BY-NC-ND

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 28. Apr. 2021
Accepted Manuscript

Title: O 047 – The effectiveness of instrumented gait analysis for interdisciplinary interventions in young children with cerebral palsy – a randomised controlled trial

PII: S0966-6362(18)30792-6
DOI: https://doi.org/10.1016/j.gaitpost.2018.06.065
Reference: GAIPOS 6182

To appear in: Gait & Posture

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
O 047 - The effectiveness of instrumented gait analysis for interdisciplinary interventions in young children with cerebral palsy – a randomised controlled trial

A. Holsgaard-Larsen¹, H.M. Rasmussen¹, S. Overgaard¹, L.K. Hansen², U. Dunkhase-Hein³, V. Engell¹, N.W. Pedersen¹
¹Orthopaedic Research Unit, Department of Clinical Research- University of Southern Denmark, Odense, Denmark
²H.C. Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
³Department of Paediatrics, Lillebaelt Hospital, Kolding, Denmark

Introduction

In the Nordic countries the Cerebral Palsy follow-Up Program (CPUP) is used to ensure timely and consistent examinations of ambulatory children with cerebral palsy. However, the specific gait function or ‘how’ the child is walking is not evaluated within CPUP, which can be done by 3-dimensional instrumented gait analysis. Nonetheless, the potential added benefits of the use of instrumented gait analysis on gait function in the decision-making of interdisciplinary interventions towards impairments in gait have not been investigated.

Research Question

To test the hypothesis that improvements in gait and patient reported outcomes following interdisciplinary interventions consisting of orthopaedic surgery, spasticity management, physical therapy and/or orthotics using instrumented gait analysis in the decision-making are superior to those following ‘care as usual’ without gait analysis in young children with cerebral palsy.

Methods

A pragmatic single-centre, single blind, randomised (1:1) controlled trial. Primary outcome was gait function evaluated by Gait Deviation Index (GDI) and secondary outcomes were: walking (1-min walk test) and patient-reported outcome measures of function, disability and health-related quality of life. Follow-ups were done at 26 weeks (only questionnaires) and at 52 weeks (primary endpoint). The sample size was based on group-mean GDI of 79.3 (SD 12.0) using a minimum clinically important difference of 7.9 GDI-points, which is equivalent to an improvement of 10%. With alpha = 0.05, 80% power, and anticipating a dropout rate of 5% a total of 60 children were included. Main comparative analyses on between-groups change scores were performed by a multiple regression model with group and baseline values of the relevant variables as covariates. The statistical analysis plan was
registered at ClinicalTrials.gov (NCT02160457) and a detailed trial protocol paper was published ahead.

Results

Sixty children (median age 6y11m) with cerebral palsy (unilateral: n = 43, bilateral: n = 17) at Gross Motor Function Classification System levels I (n = 42) and II (n = 18), were randomised to interventions with or without gait analysis (Table 1) and complete assessment were available from 55 children at 52 weeks follow-up. The recommended categories of interventions were dominated by non-surgical interventions that were applied in 36 to 86% of the participants. No significant or clinically relevant between-group differences in change scores of the primary or secondary outcomes were found (Figure 1).

Discussion

Interdisciplinary interventions using gait analysis did not improve gait function or patient-reported outcomes in the present sample of relatively young and independently walking children with cerebral palsy. The present results on relatively well functioning children may not be generalizable and instrumented gait analysis may still be relevant in many situations, for example in children with higher levels of disability, at older age, and/or if a functional diagnosis or documentation of changes are needed.
Figure caption:

Figure 1 – Between-group change scores from baseline to 52 weeks follow-up.

Values: Between-group changes scores expressed as mean and 95% confidence intervals.

Abbreviations: Pediatric Evaluation of Disability Inventory (PEDI), The Pediatric Quality of Life Inventory (PedsQL), The Pediatric Outcomes Data Collection Instrument (PODCI)

Figure 1 – Between-group change scores from baseline to 52 weeks follow-up

- Gait Deviation Index (GDI)
- 1-minute walk test (metre)
- PEDI, Functional skills
- PEDI, Caregiver assistance
- PedsQL, Daily Activities
- PedsQL, School Activities
- PedsQL, Movement and Balance
- PedsQL, Pain and Hurt
- PedsQL, Fatigue
- PedsQL, Eating Activities
- PedsQL, Speech and Communication
- PODCI, Global functioning scale
- PODCI, Upper extremity function
- PODCI, Transfer and basic mobility
- PODCI, Sports and physical functioning
- PODCI, Pain/Comfort Scale
- PODCI, Happiness Scale

Values: Between-group change scores expressed as mean and 95% confidence intervals.

Abbreviations: Pediatric Evaluation of Disability Inventory (PEDI), The Pediatric Quality of Life Inventory (PedsQL), The Pediatric Outcomes Data Collection Instrument (PODCI)
Table 1 – Baseline characteristics

<table>
<thead>
<tr>
<th>Gender and classification</th>
<th>Experimental (n=30)</th>
<th>Control (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls / boys, n</td>
<td>9/21</td>
<td>12/18</td>
</tr>
<tr>
<td>CP spastic subtype, Unilateral / bilateral, n</td>
<td>21/9</td>
<td>22/8</td>
</tr>
<tr>
<td>GMFCS level I/II, n</td>
<td>20/10</td>
<td>22/8</td>
</tr>
</tbody>
</table>

Age and body mass index

<table>
<thead>
<tr>
<th>Age (Years, months), median (iqr)</th>
<th>6 y 6 m (2 y 8 m)</th>
<th>6 y 11 m (1y 10m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Mass Index, median (iqr)</td>
<td>15.40</td>
<td>14.88</td>
</tr>
</tbody>
</table>

Outcome measures

Gait Deviation Index	78.20	75.45
Gait speed (meters / sec)	1.13	1.17
1-min walk test, (meters / min)a	79.39 (13.87)	78.77 (15.21)

Pediatric Evaluation of Disability Inventory

| Functional skills | 79.65 (11.35) | 82.81 (12.25) |
| Caregiver assistance | 80.67 (14.00) | 82.65 (15.55) |

The Pediatric Quality of Life Inventory

Daily Activities	62.27 (23.29)	63.68 (23.43)
School Activities, median (iqr)	75.00 (31.25)	62.50 (31.25)
Movement and Balance	78.17 (16.27)	71.13 (21.80)
Pain and Hurtb	67.50 (23.06)	64.22 (21.77)
Fatigue	58.75 (21.12)	57.08 (25.47)
Eating Activities, median (iqr)	80.00 (15.00)	82.50 (25.00)
Speech and Communication, median (iqr)	87.50 (27.08)	81.25 (18.75)

The Pediatric Outcomes Data Collection Instrument

Global Functioning Scale	76.48 (11.90)	76.88 (12.84)
Upper Extremity and Physical Function, median (iqr)	79.17 (20.83)	80.95 (25.00)
Transfer and Basic Mobility, median (iqr)	91.67 (13.64)	93.94 (15.15)
Sports and Physical Functioning, median (iqr)	70.14 (36.11)	71.34 (27.95)
Pain/Comfort Scale	75.89 (20.97)	75.83 (20.04)
Happiness Scale, median (iqr)c	77.50 (35.00)	80.00 (35.00)

Values are presented as mean ± SD if not otherwise stated

\(a \) EXP group, n=28, CON group: n=29, \(c \) CON group, n= 29, and \(d \) EXP group, n=29.

Abbreviations: Cerebral palsy (CP), Gross Motor Function Classification System (GMFCS).