On endomorphisms of the Cuntz algebra which preserve the canonical UHF-subalgebra, II

Hayashi, Tomohiro; Hong, Jeong Hee; Szymanski, Wojciech

Published in:
Journal of Functional Analysis

DOI:
10.1016/j.jfa.2016.07.004

Publication date:
2017

Document version
Early version, also known as pre-print

Citation for published version (APA):
ON ENDOMORPHISMS OF THE CUNTZ ALGEBRA WHICH
PREERVE THE CANONICAL UHF-SUBALGEBRA, II

TOMOHIRO HAYASHI, JEONG HEE HONG, AND WOJCIECH SZYMANSKI

ABSTRACT. It was shown recently by Conti, Rørdam and Szymański that there exist endomorphisms \(\lambda_u \) of the Cuntz algebra \(\mathcal{O}_n \) such that \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n \) but \(u \notin \mathcal{F}_n \), and a question was raised if for such a \(u \) there must always exist a unitary \(v \in \mathcal{F}_n \) with \(\lambda_u|_{\mathcal{F}_n} = \lambda_v|_{\mathcal{F}_n} \). In the present paper, we answer this question to the negative. To this end, we analyze the structure of such endomorphisms \(\lambda_u \) for which the relative commutant \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n \) is finite dimensional.

1. INTRODUCTION AND PRELIMINARIES

This paper is devoted to continuation of the line of investigation of exotic endomorphisms of the Cuntz algebras initiated in [4]. Our main result is solution of a question raised therein, see below for details. Our strategy is based on a detailed analysis of such endomorphisms \(\lambda_u \) of \(\mathcal{O}_n \) that globally preserve the core UHF subalgebra \(\mathcal{F}_n \) and have finite dimensional relative commutant \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), and builds on the earlier results in this direction obtained in [10].

The Cuntz algebra \(\mathcal{O}_n \), \(n \geq 2 \), is the \(C^* \)-algebra generated by isometries \(S_1, \ldots, S_n \) satisfying \(\sum_{i=1}^n S_i S_i^* = 1 \). It is a purely infinite, simple \(C^* \)-algebra, independent of the choice of generating isometries, [7]. We denote by \(W_n^k \) the set of \(k \)-tuples \(\mu = (\mu_1, \ldots, \mu_k) \) with \(\mu_m \in \{1, \ldots, n\} \), and by \(W_n \) the union \(\bigcup_{k=0}^\infty W_n^k \), where \(W_n^0 = \{0\} \). If \(\mu \in W_n^k \) then \(|\mu| = k \) is the length of \(\mu \). If \(\mu = (\mu_1, \ldots, \mu_k) \in W_n \) then \(S_\mu = S_{\mu_k} \cdots S_{\mu_1} \) (\(S_0 = 1 \) by convention) is an isometry in \(\mathcal{O}_n \). Every word in \(\{S_i, S_i^* \mid i = 1, \ldots, n\} \) can be uniquely expressed as \(S_\mu S_\nu^* \), for \(\mu, \nu \in W_n \) [7, Lemma 1.3].

The gauge action \(\gamma \) of the circle group \(\mathbb{T} \) on \(\mathcal{O}_n \) is defined by \(\gamma_z(S_i) = zS_i, \ z \in \mathbb{T} \). Let \(\mathcal{F}_n \) be the fixed point algebra of \(\gamma \). Denote \(\mathcal{F}_n^{(k)} := \text{span}\{S_\mu S_\nu^* \mid \mu, \nu \in W_n^k\} \). Then \(\mathcal{F}_n \) is generated by \(\mathcal{F}_n^{(k)}, \ k = 1, 2, \ldots, \) and each \(\mathcal{F}_n^{(k)} \) is isomorphic to the matrix algebra \(M_{n^k}(\mathbb{C}) \). Thus \(\mathcal{F}_n \) is isomorphic to the UHF-algebra of type \(n^{\infty} \), and hence it has a

Date: March 30, 2016.

T. Hayashi was supported by JSPS KAKENHI Grant No. 25400109. J. H. Hong was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 2012R1A1A2039991). W. Szymański was partially supported by the FNU Research Project ‘Operator algebras, dynamical systems and quantum information theory’ (2013–2015), the Villum Fonden Research Grant ‘Local and global structures of groups and their algebras’ (2014–2018), and by the Mittag-Leffler Institute during his stay there in January-February, 2016.
unique tracial state τ. There exists a faithful conditional expectation $E : \mathcal{O}_n \to \mathcal{F}_n$, defined by integration with respect to the Haar measure on \mathbb{T} as

$$E(x) = \int_\mathbb{T} \gamma_z(x) dz.$$

For each $k \in \mathbb{Z}$ we denote by $\mathcal{O}_n^{(k)}$ the corresponding spectral subspace for γ in \mathcal{O}_n,

$$\mathcal{O}_n^{(k)} := \{ x \in \mathcal{O}_n | \gamma_z(x) = z^k, \, \forall z \in \mathbb{T} \}.$$

Thus, in particular, $\mathcal{O}_n^{(0)} = \mathcal{F}_n$.

The C^*-subalgebra of \mathcal{O}_n generated by projections $P_\mu := S_\mu S_\mu^*$, $\mu \in W_n$, is a MASA (maximal abelian subalgebra) in \mathcal{O}_n. We call it the diagonal and denote \mathcal{D}_n, also writing \mathcal{D}_n^k for $\mathcal{D}_n \cap \mathcal{F}_n^{(k)}$.

The canonical shift endomorphism $\varphi : \mathcal{O}_n \to \mathcal{O}_n$ is defined by

$$\varphi(x) = \sum_{i=1}^n S_i x S_i^*.$$

It is easy to see that $S_i x = \varphi(x) S_i$ and $x S_i^* = S_i^* \varphi(x)$ for all $x \in \mathcal{O}_n$.

As shown by Cuntz in [8], there exists a bijective correspondence between unitaries in \mathcal{O}_n (whose collection is denoted $\mathcal{U}(\mathcal{O}_n)$) and unital $*$-endomorphisms of \mathcal{O}_n, determined by

$$\lambda_u(S_i) = u S_i, \quad i = 1, \ldots, n.$$

We have $\text{Ad}(u) = \lambda_u(\varphi(u^*))$ for all $u \in \mathcal{U}(\mathcal{O}_n)$. If $u \in \mathcal{U}(\mathcal{O}_n)$ then for each positive integer k we denote

$$u_k = u \varphi(u) \cdots \varphi^{k-1}(u).$$

Here $\varphi^0 = \text{id}$, and we agree that u_k^* stands for $(u_k)^*$. If α and β are multi-indices of length k and m, respectively, then $\lambda_u(S_{\alpha} S_{\beta}^*) = u_k S_{\alpha} S_{\beta}^* u_m^*$.

The Cuntz correspondence between unitaries and endomorphisms of \mathcal{O}_n provides a very efficient tool for investigations of the latter. In this note, we continue the study (by several authors) of those unital endomorphisms which globally preserve the UHF-subalgebra \mathcal{F}_n. For example, such endomorphisms were analyzed from the point of view of the Jones-Kosaki-Watatani index theory in [12] and [3], and in connection with Hopf algebra actions in [9] and [13]. More recently, interesting combinatorial approaches to the study of permutative endomorphisms of this type have been found (e.g. see [6], [2], and a survey article [1]).

It was observed by Cuntz in his groundbreaking paper [8] that an automorphism λ_u globally preserves \mathcal{F}_n if and only if $u \in \mathcal{F}_n$. The situation is more complex with proper endomorphisms. Clearly, $u \in \mathcal{F}_n$ implies $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$, [8], but the question if the converse is true remained open until very recently. Indeed, it was shown in [4] that
there exist unitaries u in $\mathcal{O}_n \setminus \mathcal{F}_n$ such that $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$. All such examples found therein were of the form $u = wv$ with $w \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ and $v \in \mathcal{F}_n$. In such a case, we also have $\lambda_u(x) = \lambda_v(x)$ for all $x \in \mathcal{F}_n$. Thus a natural question arises if such a factorization of u is always possible whenever $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$ (cf. [11, Problem 5.3]).

Some progress towards answering this question has been made recently in [10] and [11]. The main purpose of the present paper is to develop definite methods for analyzing endomorphisms λ_u of \mathcal{O}_n satifying $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$ and an additional condition that the relative commutant $\lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n$ be finite dimensional. In particular, we give a verifiable criterion for determining if the aforementioned decomposition is possible, Corollary 3.4. Based on this criterion, in Section 3 we give an explicit example of a unitary $u \in \mathcal{O}_2$ such that $\lambda_u(\mathcal{F}_2) \subseteq \mathcal{F}_2$ and $\text{dim } \lambda_u(\mathcal{F}_2)' \cap \mathcal{F}_2 < \infty$ but there is no unitary $v \in \mathcal{F}_2$ such that $\lambda_u|_{\mathcal{F}_2} = \lambda_v|_{\mathcal{F}_2}$, see Example 3.6. In this way, we answer to the negative the question raised in [4] and [1].

2. THE RELATIVE COMMUTANTS

We begin by recording for future references a few simple facts, essentially contained in [4] and [10].

Proposition 2.1. Let $u \in \mathcal{U}(\mathcal{O}_n)$. Then the following conditions are equivalent.

1. $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$,
2. $\lambda_{\gamma_z(u)}|_{\mathcal{F}_n} = \lambda_u|_{\mathcal{F}_n}$ for all $z \in \mathbb{T}$,
3. $u\gamma_z(u^*) \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ for all $z \in \mathbb{T}$.

Proof. Clearly, $\gamma_z \lambda_u \gamma_z^{-1} = \lambda_{\gamma_z(u)}$ for all $z \in \mathbb{T}$. Thus condition (2) above is equivalent to $\gamma_z \lambda_u|_{\mathcal{F}_n} = \lambda_u|_{\mathcal{F}_n}$ for all $z \in \mathbb{T}$. Obviously, this holds if and only if $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$. That is, (1) is equivalent to (2).

It is an immediate consequence of Proposition 2.1 and Proposition 4.7 from [11] that $\lambda_u|_{\mathcal{F}_n} = \lambda_u|_{\mathcal{F}_n}$ if and only if $vu^* \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$. This gives (2) is equivalent to (3). □

Proposition 2.2. If $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$ and $\lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n = \mathbb{C}1$, then $u \in \mathcal{F}_n$.

Proof. If $\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n$ and $\lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n = \mathbb{C}1$, then $\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n = \mathbb{C}1$ as well, [10, Theorem 1.1]. As shown in [4], this implies that $u \in \mathcal{F}_n$. □

Proposition 2.3. Let u be a unitary in \mathcal{O}_n. Then $u = wv$ for some $w \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ and a unitary $v \in \mathcal{F}_n$ if and only if there exists a unitary $y \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ such that $u\gamma_z(u^*) = y\gamma_z(y^*)$ for all $z \in \mathbb{T}$.

Proof. If $u = wv$ for some $w \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n$ and $v \in \mathcal{U}(\mathcal{F}_n)$, then $u\gamma_z(u^*) = w\gamma_z(w^*)$, and it suffices to put $y = w$. □
Conversely, if there exists a unitary \(y \in \lambda_u(F_n)' \cap \mathcal{O}_n \) such that \(u \gamma_z(u^*) = y \gamma_z(y^*) \) for all \(z \in \mathbb{T} \) then \(y^*u \) is fixed by all \(\gamma_z \). Thus \(y^*u \in F_n \) and it suffices to put \(w = y \) and \(v = y^*u \).

From now on, we make a standing assumption that \(u \in \mathcal{U}(\mathcal{O}_n) \) is such that
\[
(2) \quad \lambda_u(F_n) \subseteq F_n \quad \text{and} \quad \dim \lambda_u(F_n)' \cap F_n < \infty.
\]

As shown in [10], assumption (2) above entails a number of important consequences, which we summarize as follows.

- We also have \(\dim \lambda_u(F_n)' \cap \mathcal{O}_n < \infty \).
- There exists a unitary group \(\{u_z\}_{z \in \mathbb{T}} \) in the center of \(\lambda_u(F_n)' \cap F_n \) such that \(\text{Ad} u_z(x) = \gamma_z(x) \) for all \(x \in \lambda_u(F_n)' \cap \mathcal{O}_n \).
- Minimal projections in \(\lambda_u(F_n)' \cap F_n \) are minimal in \(\lambda_u(F_n)' \cap \mathcal{O}_n \) as well. Thus \(\lambda_u(F_n)' \cap \mathcal{O}_n \) contains a MASA consisting of projections in \(\lambda_u(F_n)' \cap F_n \).

The proof of the following theorem is modelled after that of [10] Lemma 1.11.

Theorem 2.4. Let \(u \in \mathcal{U}(\mathcal{O}_n) \) be such that \(\lambda_u(F_n) \subseteq F_n \) and \(\dim \lambda_u(F_n)' \cap F_n < \infty \). Then there exist unitaries \(w \in \lambda_u(F_n)' \cap \mathcal{O}_n \) and \(v \in \mathcal{O}_n \), and a unitary group \(\{v_z\}_{z \in \mathbb{T}} \subseteq \lambda_u(F_n)' \cap F_n \) satisfying \(u = wv \) and \(\gamma_z(v) = v_zv \) for all \(z \in \mathbb{T} \).

Proof. At first we note that \(u \gamma_z(u^*)u_z \) is a unitary group in \(\lambda_u(F_n)' \cap \mathcal{O}_n \). Indeed,
\[
(u \gamma_z(u^*)u_z)(u \gamma_z(u^*)u_z^*) = u \gamma_z(u^*)(\text{Ad} u_z)(u)u_z \gamma_z(u^*)u_z^* = u \gamma_z(u^*)^* u_z \gamma_z(u^*) u_z^* = u \gamma_z^z(u^*) u_z^z.
\]

Since \(\dim \lambda_u(F_n)' \cap \mathcal{O}_n < \infty \), this unitary group may be diagonalized. On the other hand, \(\lambda_u(F_n)' \cap \mathcal{O}_n \) contains a MASA composed of projections in \(\lambda_u(F_n)' \cap F_n \). Thus, there exists a unitary \(w \in \lambda_u(F_n)' \cap \mathcal{O}_n \) such that \(y_z := w^*(u \gamma_z(u^*)u_z)w \) is a unitary group in \(\lambda_u(F_n)' \cap F_n \). Since each \(u_z \) is in the center of \(\lambda_u(F_n)' \cap F_n \), the unitary groups \(\{y_z\}_{z \in \mathbb{T}} \) and \(\{u_z\}_{z \in \mathbb{T}} \) commute.

Set \(v_z := u_z y_z^*, \ z \in \mathbb{T} \), and \(v := w^*u \). Then \(v_z \) is a unitary group in \(\lambda_u(F_n)' \cap F_n \) and
\[
\gamma_z(v) = \gamma_z(w^* u) = u_z (u_z^* \gamma_z(w^* u) u_z^*) w^* u = u_z w^* u = v_z v.
\]
for all \(z \in \mathbb{T} \). This completes the proof. \(\square \)

We keep the notation from Theorem 2.4 assuming that unitaries \(w, v \) and \(v_z \) have the properties described therein. Thus, in particular, \(\lambda_u|_{F_n} = \lambda_u|_{F_n} \) by [4] Proposition 2.1. Consequently, \(\text{Ad} v \circ \varphi \) is an automorphism of \(\lambda_u(F_n)' \cap \mathcal{O}_n \), by [4] Proposition 2.3 and Lemma 2.4.

Lemma 2.5. With unitaries \(u, v, v_z \) and \(u_z \) as above, put
\[
X_z := (\text{Ad} v \circ \varphi)(u_z)u_z^*v_z.
\]
Then \(\{X_z\}_{z \in T} \) is a unitary group in the center of \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), and we have
\[
\gamma_z(v) = X_z u_z (\text{Ad} v \circ \varphi)(u^*_z)v.
\]

Proof. For each \(x \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), we see that
\[
\begin{align*}
 u_z (\text{Ad} v \circ \varphi)(x) u_z^* &= \gamma_z(v \varphi(x) v^*) = \gamma_z(v) \gamma_z(\varphi(x)) \gamma_z(v)^* = \gamma_z(v) \varphi(\gamma_z(x)) \gamma_z(v)^* \\
 &= v_z v \varphi(u_z x u_z^*) v_z^* v_z^* = v_z v \varphi(u_z) v^* v \varphi(x) v^* v \varphi(u_z^*) v^* v_z^* \\
 &= v_z \text{Ad}(\varphi(u_z) v^*)((\text{Ad} v \circ \varphi)(x)) v_z^*.
\end{align*}
\]
Hence, we have
\[
\text{Ad}(v_z u_z)((\text{Ad} v \circ \varphi)(x)) = \text{Ad}((\text{Ad} v \circ \varphi)(u_z))((\text{Ad} v \circ \varphi)(x)).
\]
Since \(\text{Ad} v \circ \varphi \) is an automorphism of \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), this shows that
\[
\text{Ad}(v_z u_z) = \text{Ad}((\text{Ad} v \circ \varphi)(u_z)) \quad \text{on} \quad \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n.
\]
Consequently, \(X_z \) belongs to the center of \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \).

Now, \(\{u_z\}_{z \in T} \) and \(\{v_z\}_{z \in T} \) are commuting unitary groups, and both commute with \(X_z \), by the above argument. Therefore the unitary group \((\text{Ad} v \circ \varphi)(u_z) = X_z u_z v_z^* \) commutes with both of them. Consequently, \(X_z \) being a product of three mutually commuting unitary groups itself is a unitary group.

The final claim of the lemma now follows from the fact that \(\gamma_z(v) = v_z v \). \(\square \)

Before proceeding further, we introduce the following notation. For \(x \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) and \(k \in \mathbb{N} \), we set
\[
(4) \quad x^{(k)} := x(\text{Ad} v \circ \varphi)(x)(\text{Ad} v \circ \varphi)^2(x) \cdots (\text{Ad} v \circ \varphi)^{k-1}(x).
\]

Lemma 2.6. With unitaries \(u, v, v_z \) and \(u_z \) as above, and \(x \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \), for all \(g \in \mathcal{U}(\mathcal{O}_n) \), \(z \in T \) and \(k \in \mathbb{N} \) we have the following identities.

(i) \(\gamma_z(v_k) = v_z^{(k)} v_k \),

(ii) \((\text{Adg} \circ \varphi)(x) = g_k \varphi^k(x) g_k^* \),

(iii) \(v_z^{(k)} = X_z^{(k)} u_z (\text{Ad} \circ \varphi)^k(u_z^*) \),

(iv) \((gv)_k = g^{(k)} v_k \).

Proof. In all three cases, we proceed by induction on \(k \).

Ad (i). Case \(k = 1 \) is the identity \(\gamma_z(v_1) = \gamma_z(v) = v_z v = v_z^{(1)} v_1 \) from Theorem 2.4. For the inductive step, we calculate
\[
\gamma_z(v_{k+1}) = \gamma_z(v_k \varphi^k(v)) = \gamma_z(v_k) \varphi^k(\gamma_z(v)) = v_z^{(k)} v_k \varphi^k(v_z) v_k^* v_k \varphi^k(v) = v_z^{(k+1)} v_k v_k^* v_k \varphi^k(v) = v_z^{(k+1)} v_{k+1}.
\]
In this calculation we used identity (ii) of the present lemma, whose proof does not depend on (i).
Ad (ii). Case \(k = 1 \) is clear. For the inductive step, we have
\[
(\text{Ad } g \circ \varphi)^{k+1} = (\text{Ad } g \circ \varphi)(g_k \varphi^k(x)g_k^*) = g \varphi(g_k \varphi^k(x) \varphi(g_k^*)g_k^* = g_{k+1} \varphi^{k+1}(x)g_{k+1}^*.
\]

Ad (iii). Case \(k = 1 \) is clear. For the inductive step, we see that
\[
v_z^{(k+1)} = v_z^{(k)}(\text{Ad } v \circ \varphi)^k(v_z) = X_z^{(k)}u_z(\text{Ad } v \circ \varphi)^k(u_z^*) \text{Ad } v \circ \varphi)^k(v_z)
\]
\[
= X_z^{(k)}u_z(\text{Ad } v \circ \varphi)^k(u_z^* v_z) = X_z^{(k)}u_z(\text{Ad } v \circ \varphi)^k(X_z(\text{Ad } v \circ \varphi)(u_z^*)
\]
\[
= X_z^{(k)}u_z(\text{Ad } v \circ \varphi)^k(X_z(\text{Ad } v \circ \varphi)^{k+1}(u_z^*) = X_z^{(k+1)}u_z(\text{Ad } v \circ \varphi)^{k+1}(u_z^*).
\]

Ad (iv). Case \(k = 1 \) is clear. For the inductive step, we calculate using part (ii) above,
\[
(gv)^{k+1} = (gv)_k \varphi^{k+1}(gv) = g_k(v_k \varphi^k(g) v_k^*)v_k \varphi^k(v) = g^{(k+1)}u^{k+1},
\]
and this completes the proof.

The following lemma provides a key step in the proof of our second main result, Theorem 2.4 below. We continue keeping the notation of Theorem 2.4. Here we remark that since \(v = w^* v, w \in \lambda_n(F_n)' \cap \mathcal{O}_n \), and \(\text{Ad } v \circ \varphi \) is an automorphism of \(\lambda_n(F_n)' \cap \mathcal{O}_n \), we see that \(\text{Ad } v \circ \varphi = \text{Ad } w^* \circ (\text{Ad } u \circ \varphi) \) is an automorphism of \(\lambda_n(F_n)' \cap \mathcal{O}_n \) as well.

We also note that for each positive integer \(k \), \(\{X_z^{(k)}\}_{z \in T} \) is a unitary group in the center of \(\lambda_n(F_n)' \cap \mathcal{O}_n \).

Lemma 2.7. With unitaries \(u, v, v_z \) and \(u_z \) as above, there exist a positive integer \(k \) and a unitary \(U \in \lambda_n(F_n)' \cap \mathcal{O}_n \) such that
\[
(\text{Ad } v \circ \varphi)^k(x) = \text{Ad } U(x) \quad \text{for all } x \in \lambda_n(F_n)' \cap \mathcal{O}_n.
\]

Then \(X_z^{(k)} = 1 \). Furthermore, for such \(U \) and \(k \), we have \(U^* v_k \in F_n \).

Proof. Since \(\text{Ad } v \circ \varphi \) is an automorphism of a finite dimensional C*-algebra \(\lambda_n(F_n)' \cap \mathcal{O}_n \), its restricts to the center has finite order. Thus there exists a positive integer \(k \) and a unitary \(U \in \lambda_n(F_n)' \cap \mathcal{O}_n \) such that \((\text{Ad } v \circ \varphi)^k = \text{Ad } U \) on \(\lambda_n(F_n)' \cap \mathcal{O}_n \). We claim that \(U^* v_k \in F_n \).

Indeed, by Lemma 2.6 for all \(z \in T \) we have
\[
\gamma_z(v_k) = v_z^{(k)}v_k = X_z^{(k)}u_z(\text{Ad } v \circ \varphi)^k(u_z^* v_k = X_z^{(k)}u_z U u_z^* U^* v_k = X_z^{(k)} \gamma_z(U) U^* v_k,
\]
and this yields
\[
\gamma_z(U^* v_k) = X_z^{(k)} U^* v_k.
\]
Since \(\{X_z^{(k)}\}_{z \in T} \) is a unitary group in the center of \(\lambda_n(F_n)' \cap \mathcal{O}_n \), there exists a partition of unity \(1 = \sum_i p_i \) in \(Z(\lambda_n(F_n)' \cap \mathcal{O}_n) \) and integers \(k_i \) such that
\[
X_z^{(k_i)} = \sum_i z^{k_i} p_i.
\]
We have \((\text{Ad} \circ \varphi)^k(p_i) = U p_i U^* = p_i\) for all \(i\). Combining this with part (ii) of Lemma 2.6, we get

\[
(6) \quad v_k^* p_i v_k = \varphi^k(p_i).
\]

We want to show that \(k_i = 0\) for all \(i\). Suppose for a moment this is not the case and let \(k_i > 0\) for some \(i\). We set \(K := p_i U^* v_k(S_1^*)^{k_i}\). Since \(p_i\) being in \(\mathcal{Z}(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n)\) belongs to \(\mathcal{F}_n\) as well, it follows from identity (6) above that

\[
\gamma_z(K) = \gamma_z(p_i U^* v_k(S_1^*)^{k_i}) = p_i X_z^{(k)} U^* v_k \gamma_z((S_1^*)^{k_i}) = z^{k_i} p_i U^* v_k (z^{-k_i}(S_1^*)^{k_i}) = K.
\]

Hence \(K\) belongs to \(\mathcal{F}_n\). We have \(KK^* = p_i\). On the other hand, using identity (6) we get

\[
K^* K = S_1^{k_i} v_k^* p_i v_k (S_1^*)^{k_i} = S_1^{k_i} \varphi^k(p_i)(S_1^*)^{k_i} = \varphi^{k+k_i}(p_i) S_1^{k_i} (S_1^*)^{k_i}.
\]

It easily follows that \(\tau(K K^*) > \tau(K^* K)\), which is a contradiction. A similar argument applies in the case \(k_i < 0\). Hence \(k_i = 0\) for all \(i\) and thus \(X_z^{(k)} = 1\). Now, identity (5) implies that \(U^* v_k\) is fixed by the gauge action and hence belongs to \(\mathcal{F}_n\). \(\square\)

Now, we are ready to prove the second main result of this paper.

Theorem 2.8. Let \(u \in \mathcal{U}(\mathcal{O}_n)\) be such that \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n\) and \(\dim \lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n < \infty\). Then there exist a positive integer \(k\) and unitaries \(W \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\) and \(V \in \mathcal{F}_n\) such that \(u_k = WV\).

Proof. By Theorem 2.4 and Lemma 2.7, there exist unitaries \(w, U \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\), a unitary group \(\{v_z\}_{z \in \mathbb{T}}\) in \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n\) and a positive integer \(k\) satisfying \(u = wv\), \(\gamma_z(v) = v_z v\), \(U^* v_k \in \mathcal{F}_n\). By part (iv) of Lemma 2.6 we have \(w^{(k)} v_k = u_k\). Thus to complete the proof, it suffices to put \(W := w^{(k)} U\) and \(V := U^* v_k\). \(\square\)

It was observed in [1] (just above Remark 4.4) that if \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n\) and \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n = \mathbb{C}1\) then \(u \in \mathcal{F}_n\). The following corollary gives a sharp strengthening of that result.

Corollary 2.9. Let \(u\) be a unitary in \(\mathcal{O}_n\). If \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n\), \(\dim \lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n < \infty\) and the automorphism \(\text{Ad} u \circ \varphi\) of \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\) is inner, then there exist a unitary \(w \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\) and a unitary \(v \in \mathcal{F}_n\) such that \(u = wv\), and hence also \(\lambda_u|_{\mathcal{F}_n} = \lambda_v|_{\mathcal{F}_n}\). In particular, this is the case whenever \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\) is a factor.

Remark 2.10. The assumption in Corollary 2.9 above that the automorphism \(\text{Ad} u \circ \varphi\) of \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\) be inner, is equivalent to demanding existence of a unitary \(g\) in the relative commutant \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\) such that

\[
\lambda_{gu}(\mathcal{F}_n)' \cap \mathcal{O}_n = \lambda_{gu}(\mathcal{O}_n)' \cap \mathcal{O}_n.
\]

Indeed, if \(\text{Ad} u \circ \varphi\) is inner then \(\text{Ad} gu \circ \varphi = \text{id}\) for a suitable unitary \(g\) in \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\). Hence \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n = \lambda_{gu}(\mathcal{F}_n)' \cap \mathcal{O}_n = \lambda_{gu}(\mathcal{O}_n)' \cap \mathcal{O}_n\). Conversely, if \(\lambda_{gu}(\mathcal{F}_n)' \cap \mathcal{O}_n = \lambda_{gu}(\mathcal{O}_n)' \cap \mathcal{O}_n\), then \(\text{Ad} gu \circ \varphi = \text{id}\) in \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n\), and hence \(\text{Ad} u \circ \varphi = \text{id}\) as well.
Let
\begin{equation}
\lambda_{gu}(\mathcal{O}_n)' \cap \mathcal{O}_n \text{ then } \text{Ad } gu \circ \varphi = \text{id on } \lambda_u(F_n)' \cap \mathcal{O}_n = \lambda_{gu}(F_n)' \cap \mathcal{O}_n, \text{ and hence Ad } u \circ \varphi \text{ is inner.}
\end{equation}

Remark 2.11. We remark that the implication in Corollary 2.9 above cannot be reversed. In fact, there exist unitaries \(u \in F_n \) such that \(\lambda_u(F_n)' \cap \mathcal{O}_n \) is finite dimensional and the automorphism \(\text{Ad } u \circ \varphi \) is outer on \(\lambda_u(F_n)' \cap \mathcal{O}_n \). For example, take
\begin{equation}
u = S_{22}S_{11}^* + S_{12}S_{22}^* + S_{11}S_{12}^* + P_2,
\end{equation}
a permutative unitary in \(F_2 \). Then \(\text{Ad } u \circ \varphi \) is outer on \(\lambda_u(F_2)' \cap \mathcal{O}_2 \). For otherwise let \(h \) be a unitary in \(\lambda_u(F_2)' \cap \mathcal{O}_2 \) such that \(\text{Ad } u \circ \varphi = \text{Ad } h \) on \(\lambda_u(F_2)' \cap \mathcal{O}_2 \). Then \(\text{Ad } u \circ \varphi(h) = h \) and thus \(h \in \lambda_u(\mathcal{O}_2)' \cap \mathcal{O}_2 \). But it can be shown that \(\lambda_u \) is irreducible on \(\mathcal{O}_2 \) (e.g., see [3], where this endomorphism is denoted \(\rho_{1,2} \)), and hence \(\lambda_u(\mathcal{O}_2)' \cap \mathcal{O}_2 = \mathbb{C}1 \). Thus \(h \) is a scalar and consequently \(\text{Ad } u \circ \varphi \) is identity on \(\lambda_u(F_2)' \cap \mathcal{O}_2 \). This however is not the case, since one can calculate directly that \(\text{Ad } u \circ \varphi \) permutes \(P_1 \) and \(P_2 \), and both these projections are in \(\lambda_u(F_2)' \cap \mathcal{O}_2 \).

We want to elaborate a little bit the statement of Theorem 2.8 above. We continue keeping our standing assumption (2).

Lemma 2.12. Let \(\alpha \) be an automorphism of \(\lambda_u(F_n)' \cap \mathcal{O}_n \) and let \(k \in \mathbb{N} \) be such that \(\alpha^k \) acts trivially on \(Z(\lambda_u(F_n)' \cap \mathcal{O}_n) \). Then there exists a MASA \(D \) of \(\lambda_u(F_n)' \cap F_n \) and a unitary \(g \in \lambda_u(F_n)' \cap \mathcal{O}_n \) such that
\begin{enumerate}
\item \((\text{Ad } g \circ \alpha)^k = \text{id, and} \\
\item \((\text{Ad } g \circ \alpha)(D) = D. \)
\end{enumerate}

Proof. Automorphism \(\alpha \) permutes the finitely many minimal central projections of \(\lambda_u(F_n)' \cap \mathcal{O}_n \). Write this permutation as a product of disjoint cycles. Clearly, it suffices to prove the lemma for each cycle separately. Thus we may simply assume that \(\alpha \) acts transitively on minimal projections \(p_1, p_2, \ldots, p_l \) in \(Z(\lambda_u(F_n)' \cap \mathcal{O}_n) \), so that \(\alpha(p_i) = p_{i+1} \), with \(p_{l+1} = p_1 \). Let \(\{ e^{(i)}_{r,s} \} \) be matrix units of the full matrix algebra \(p_i(\lambda_u(F_n)' \cap \mathcal{O}_n) \), such that all \(e^{(i)}_{r,s} \) are in \(\lambda_u(F_n)' \cap F_n \). Then \(D := \text{span}\{ e^{(i)}_{r,s} \} \) is a MASA in \(\lambda_u(F_n)' \cap F_n \). Since \(p_i(\lambda_u(F_n)' \cap \mathcal{O}_n) \cong p_{i+1}(\lambda_u(F_n)' \cap \mathcal{O}_n) \), we can find a unitary \(g_i \in p_{i+1}(\lambda_u(F_n)' \cap \mathcal{O}_n) \) such that \((\text{Ad } g_i \circ \alpha)(e^{(i)}_{r,s}) = e^{(i+1)}_{r,s} \). Setting \(g := \sum_{i=1}^l g_i \), we obtain the desired result.

Lemma 2.13. Let \(u \in U(\mathcal{O}_n) \) be such that \(\lambda_u(F_n) \subseteq F_n \) and \(\text{dim} \lambda_u(F_n)' \cap F_n < \infty \). Then there exist a positive integer \(k \), a unitary \(g \in \lambda_u(F_n)' \cap \mathcal{O}_n \), and a unitary group \(\{ d_z \}_{z \in \mathbb{T}} \subseteq \lambda_u(F_n)' \cap F_n \) such that \((\text{Ad } g \circ \varphi)(d_z) = d_z g v \).

Proof. Put \(\alpha := \text{Ad } v \circ \varphi \), and let \(g \) and \(k \) be as in Lemma 2.12. Then we have
\begin{equation}
(\text{Ad } g v \circ \varphi)^k = \text{id}.
\end{equation}
and thus
\[\text{Ad } v_k \circ \varphi^k = (\text{Ad } v \circ \varphi)^k = \text{Ad}(g^{(k)})^* \]
by parts (ii) and (iv) of Lemma 2.6. Then arguing as in the proof of Lemma 2.7 (with \(g^{(k)} \) playing the role of \(U \)), we get
\[(gv)_k = g^{(k)}v_k \in \mathcal{F}_n. \]
Now, let \(D \) be a MASA as in Lemma 2.12. For all \(x \in D \) and \(z \in \mathbb{T} \), we see that
\[gv\varphi(x)v^*g^* = \gamma_z(gv\varphi(x)v^*g^*) = \gamma_z(g)v_zv\varphi(x)v^*v_z^*\gamma_z(g^*) \]
\[= (\gamma_z(g)v_zg^*)(gv\varphi(x)v^*g^*)(\gamma_z(g)v_zg)^* \]
which implies that \(\gamma_z(g)v_zg^* \) is in the commutant of MASA \(D \), and hence in \(D \) itself. Set \(d_z = \gamma_z(g)v_zg^* \), a unitary in \(D \). Now, \(d_z = u_zgu_z^*v_zg^* \) implies \(u_zd_z = g(u_z^*v_z)g^* \). Since \(\{u_z\}_{z \in \mathbb{T}} \) and \(\{v_z\}_{z \in \mathbb{T}} \) are commuting unitary groups, so is \(\{u_z^*d_z\}_{z \in \mathbb{T}} \), and consequently also is \(\{d_z\}_{z \in \mathbb{T}} \). Finally, we see that \(\gamma_z(gv) = \gamma_z(g)v_zv = d_zgv. \)

Now, we are ready to prove the following result.

Theorem 2.14. Let \(u \in \mathcal{U}(\mathcal{O}_n) \). If \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n \) and \(\dim \lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n < \infty \), then there exists a unitary \(W \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) satisfying the following.

(i) There exists a unitary group \(\{d_z\}_{z \in \mathbb{T}} \subseteq \lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n \) such that \(\gamma_z(Wu) = d_zWu \) for all \(z \in \mathbb{T} \).

(ii) There exists a positive integer \(k \) such that \((Wu)_k \in \mathcal{F}_n \).

Proof. Let \(u = wv \) be a factorization as in Theorem 2.4 and let \(k \in \mathbb{N} \) and \(g \in \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) be as in Lemma 2.13 above. Then setting \(W := gw^* \) gives the claim. \(\square \)

3. The criterion and examples

In this section, we give a dynamic characterization of those unitaries \(u \in \mathcal{O}_n \) satisfying our standing assumptions which either belong to \(\mathcal{F}_n \) (Theorem 3.2) or admit a unitary \(v \in \mathcal{F}_n \) such that \(\lambda_u|_{\mathcal{F}_n} = \lambda_u|_{\mathcal{F}_n} \) (Corollary 3.4). Before proving these results, we still need one technical lemma about the structure of the relative commutants. We keep our standing assumptions (2).

Lemma 3.1. There exist a unitary group \(\{q_z\}_{z \in \mathbb{T}} \) in \(\mathcal{Z}(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n) \) such that
\[X_z = q_z(\text{Ad } v \circ \varphi)(q_z^*). \]

Proof. Since \(\text{Ad } v \circ \varphi \) restricts to an automorphism of \(\mathcal{Z}(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n) \), there exist minimal projections \(p_i^{(j)}, j = 1, \ldots, N, i = 1, \ldots, n_j \), in \(\mathcal{Z}(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n) \) such that
\[\mathcal{Z}(\lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n) = \bigoplus_{j=1}^N \bigoplus_{i=1}^{n_j} p_i^{(j)} \]
and
\[(\text{Ad} v \circ \varphi)(p_i^{(j)}) = p_{i+1}^{(j)} \text{ for } i < n_j, \quad \text{and} \quad (\text{Ad} v \circ \varphi)(p_{n_i}^{(j)}) = p_1^{(j)}.
\]
Then \(X_z\) from Lemma 2.5 can be written as
\[X_z = \sum_{j=1}^{N_n} \sum_{i=1}^{n_j} z^{m_i^{(j)}} p_i^{(j)},
\]
for some \(m_i^{(j)} \in \mathbb{N}\). Now, let \(k \in \mathbb{N}\) be such that \(\text{Ad} v \circ \varphi\) is an inner automorphism of \(\lambda_u(F_n)' \cap O_n\). Then
\[X_z^{(k)} = X_z(\text{Ad} v \circ \varphi)(X_z)(\text{Ad} v \circ \varphi)^2(X_z) \ldots (\text{Ad} v \circ \varphi)^{k-1}(X_z) = 1
\]
by Lemma 2.7 Since each \(n_j\) divides \(k\), this implies that
\[\sum_{i=1}^{n_j} m_i^{(j)} = 0
\]
for each \(j = 1, \ldots, N\). Now, we want to define \(q_z\) as follows,
\[q_z = \sum_{j=1}^{N_n} \sum_{i=1}^{n_j} z^{r_i^{(j)}} p_i^{(j)},
\]
for suitable chosen integers \(r_i^{(j)}\), so that \(X_z = q_z(\text{Ad} v \circ \varphi)(q_z^*)\). To this end, it suffices to put
\[r_1^{(j)} := 0, \quad j = 1, \ldots, N,
\]
\[r_k^{(j)} := \sum_{r=2}^{k} m_r^{(j)}, \quad j = 1, \ldots, N, \quad k = 2, \ldots, n_j.
\]
\[\square\]

Theorem 3.2. Let \(u \in U(O_n)\) be such that \(\lambda_u(F_n) \subseteq F_n\) and \(\dim \lambda_u(F_n)' \cap F_n < \infty\). Put \(\alpha := \text{Ad} u \circ \varphi\). If \(\alpha\) satisfies the following two conditions:

(i) \(\alpha(\lambda_u(F_n)' \cap F_n) = \lambda_u(F_n)' \cap F_n\), and

(ii) \(\alpha|_{\lambda_u(F_n) \cap F_n}\) preserves the \(\tau\)-trace,

then \(u \in F_n\).

Proof. At first, we observe that there exists a unitary group \(\{u_z^*\}_{z \in \mathbb{T}}\) in \(Z(\lambda_u(F_n)' \cap F_n)\) such that \(\text{Ad} u_z^*(x) = \gamma_z(x)\) for all \(x \in \lambda_u(F_n)' \cap O_n\) and \(\gamma_z(u) = u_z^* \alpha(u_z^{*\star}) u\). Indeed, it suffices to put \(u_z^* := q_z u_z\), with \(q_z\) as in Lemma 3.1 above. Then \(\alpha(u_z^*) \in Z(\lambda_u(F_n)' \cap F_n)\) by condition (i) of the theorem, and hence \(\{u_z^* \alpha(u_z^{*\star})\}_{z \in \mathbb{T}}\) is a unitary group. Thus, \(u_z^* \alpha(u_z^{*\star}) = \sum z^{k_j} p_j\) for some integers \(k_j\) and a partition of unity by projections \(p_j\) from \(Z(\lambda_u(F_n)' \cap F_n)\).

Now, we claim that \(p_j = 0\) whenever \(k_j \neq 0\). To this end, suppose first that \(k_j > 0\) for some index \(j\), and put \(R := p_{k_j} u(S_{1})^{k_j}\). We have \(\gamma_z(R) = R\) for all
\[z \in \mathbb{T}, \text{ and thus } R \in \mathcal{F}_n. \text{ However, an easy calculation shows that } RR^* = pk_j \text{ and } R^*R = \varphi^{k+1}(\alpha^1(p_k))S_1^kS_1^{k+1}. \text{ In view of condition (ii) of the theorem, this would imply } \tau(RR^*) \neq \tau(R^*R) \text{ if } p_j \neq 0, \text{ a contradiction. Therefore } p_j = 0 \text{ for all } k_j > 0. \text{ A similar argument shows that } p_j = 0 \text{ if } k_j < 0.

Consequently, \(z \in \mathbb{T} \), and the theorem is proved. \(\square \)

We note that Theorem 3.2 gives a necessary and sufficient condition for \(u \in \mathcal{F}_n \), since the reverse implication is trivial. Likewise, Corollary 3.3 below, gives a necessary and sufficient condition for \(u_k \in \mathcal{F}_n \).

Corollary 3.3. Let \(u \in \mathcal{U}(\mathcal{O}_n) \) be such that \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n \) and \(\dim \lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{F}_n < \infty \). Put \(\alpha := (\operatorname{Ad} u \circ \varphi)^k \), for some positive integer \(k \). If \(\alpha \) satisfies the following two conditions:

(i) \(\alpha(\lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{F}_n) = \lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{F}_n \), and

(ii) \(\alpha|_{\lambda_u(\mathcal{F}_n) \cap \mathcal{F}_n} \) preserves the \(\tau \)-trace,

then \(u_k \in \mathcal{F}_n \).

Now, we are ready to give the following decomposability criterion.

Corollary 3.4. Let \(u \in \mathcal{U}(\mathcal{O}_n) \) be such that \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n \) and \(\dim \lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{F}_n < \infty \). Put \(\alpha := \operatorname{Ad} u \circ \varphi \). Then the following two conditions are equivalent:

1. There exist unitaries \(w \in \lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{O}_n \) and \(v \in \mathcal{F}_n \) such that \(u = wv \).
2. For each minimal projection \(p \in \mathcal{Z}(\lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{O}_n) \) there exists a \(\tau \)-preserving isomorphism

\[p(\lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{F}_n) \cong \alpha(p)(\lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{F}_n). \]

Now, we show how to construct examples of endomorphisms \(\lambda_u \) of \(\mathcal{O}_n \) globally preserving the core UHF-subalgebra \(\mathcal{F}_n \) but such that no unitary \(v \in \mathcal{F}_n \) exists for which \(\lambda_u|_{\mathcal{F}_n} = \lambda_v|_{\mathcal{F}_n} \).

To begin with, take two non-zero, orthogonal projections \(q_1, q_2 \) in \(\mathcal{F}_n \) such that \(\tau(q_2)/\tau(q_1) = n^r \) for some non-zero integer \(r \). Let \(A_1 \) be a partial isometry in \(\mathcal{O}_n^{(r)} \) with domain projection \(\varphi(q_1) \) and range projection \(q_2 \). Likewise, let \(A_2 \) be a partial isometry in \(\mathcal{O}_n^{(r)} \) with domain projection \(\varphi(q_2) \) and range projection \(q_1 \). Finally, let \(A_3 \) be a partial isometry in \(\mathcal{F}_n \) with domain projection \(1 - \varphi(q_1) - \varphi(q_2) \) and range projection \(1 - q_1 - q_2 \). Put \(u := A_1 + A_2 + A_3 \). Then \(u \) is a unitary in \(\mathcal{O}_n \) such that

\[\operatorname{Ad} u \circ \varphi(q_1) = q_2 \quad \text{and} \quad \operatorname{Ad} u \circ \varphi(q_2) = q_1. \]

Now, \(u^{\gamma_z}(u^*) = z^r q_1 + z^{-r} q_2 + 1 - q_1 - q_2 \) belongs to \(\text{span}\{1, q_1, q_2\} \), and \(\text{span}\{1, q_1, q_2\} \subseteq \lambda_u(\mathcal{F}_n)^\prime \cap \mathcal{O}_n \) by [4, Proposition 2.3] and [7] above. Thus \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n \) by Proposition 2.1 above.
More generally, Let \(1 = \sum q_j \) be a partition of unity by projections in \(\mathcal{O}_n \). Let \(u \) be any unitary in \(\mathcal{O}_n \) such that \(\text{Ad} \, u \circ \varphi \) permutes projections \(\{q_j\} \) and for each \(j \) there is a \(k_j \in \mathbb{Z} \) such that \(q_j u \in \mathcal{O}_n^{(k_j)} \). Then \(u \gamma_z(u^*) \in \text{span}\{q_j\} \subseteq \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \) for all \(z \in \mathbb{T} \). This simple construction gives a large class of examples of unitaries \(u \in \mathcal{O}_n \setminus \mathcal{F}_n \) such that \(\lambda_u(\mathcal{F}_n) \subseteq \mathcal{F}_n \). However, to verify the conditions of Corollary 3.4 one needs more detailed information on the relative commutants \(\lambda_u(\mathcal{F}_n)' \cap \mathcal{F}_n \subseteq \lambda_u(\mathcal{F}_n)' \cap \mathcal{O}_n \). Exact determination of these relative commutants is rather difficult and does not seem possible in general, despite the identity from [4, Proposition 2.3]. However, it is quite doable in concrete cases.

Now, we illustrate the above discussion with two concrete examples in \(\mathcal{O}_2 \). In these examples, along with the main algebra \(C^*(S_1, S_2) \cong \mathcal{O}_2 \), we consider its other subalgebras, also isomorphic to \(\mathcal{O}_2 \). For example, if \(T_1, T_2 \) are isometries in \(C^*(S_1, S_2) \) generating a copy of \(\mathcal{O}_2 \), then we use subscript \(T \) along with the standard notation to indicate that the object comes from \(C^*(T_1, T_2) \) and its generators. Thus \(\varphi_T \) denotes the usual shift on \(C^*(T_1, T_2) \), that is a map \(\varphi : C^*(T_1, T_2) \to C^*(T_1, T_2) \) such that \(\varphi(x) = T_1 x T_1^* + T_2 x T_2^* \). Similarly, \(\mathcal{D}_T \) denotes the diagonal MASA of \(C^*(T_1, T_2) \), and so on. The proof of one technical lemma needed in Example 3.6 is given afterwards.

Example 3.5. Take \(q_1 = P_{11}, q_2 = P_{222} \), and set
\[
A_1 = S_{2221}S_{111}^* + S_{2222}S_{211}^*
\]
\[
A_2 = S_{11}S_{122}^* + S_{112}S_{222}^*
\]
\[
A_3 = S_{1222}S_{2221}^* + S_{211}S_{112}^* + P_{121} + P_{1221} + P_{212} + P_{221}
\]

We note that unitary \(u := A_1 + A_2 + A_3 \) falls within the class of polynomial unitaries considered in [4, Section 5]. In particular, its graph \(E_u \), as defined therein, admits the \(\{-1, 0, +1\} \) labelling:

![Graph](image)

This labelled graph satisfies the path condition defined in [4, p. 616], and this is an alternative way of showing that \(\lambda_u(\mathcal{F}_2) \subseteq \mathcal{F}_2 \).
Now, we have $P_{11}O_2P_{11} \cong O_2 = C^*(T_1, T_2)$, under the isomorphism sending T_1 to $S_{111}S_{11}$ and T_2 to $S_{112}S_{11}$. Similarly, $P_{222}O_2P_{222} \cong O_2 = C^*(R_1, R_2)$, under the isomorphism sending R_1 to $S_{2221}S_{222}$ and R_2 to $S_{2222}S_{222}^*$. Then an easy calculation shows that

$$\text{Ad } u \circ \varphi(T_j) = \varphi_R(R_j),$$

$$\text{Ad } u \circ \varphi(R_j) = \varphi_T(T_j),$$

for $j = 1, 2$. Consequently, the restriction of $(\text{Ad } u \circ \varphi)^2$ to $P_{11}O_2P_{11}$ is conjugate to φ_R^2. Likewise, the restriction of $(\text{Ad } u \circ \varphi)^2$ to $P_{222}O_2P_{222}$ is conjugate to φ_T^2. This immediately implies

$$\lambda_u(F_2)' \cap P_{11}O_2P_{11} \subseteq \bigcap_{k=1}^{\infty} (\text{Ad } u \circ \varphi)^{2k}(P_{11}O_2P_{11}) = CP_{11},$$

$$\lambda_u(F_2)' \cap P_{222}O_2P_{222} \subseteq \bigcap_{k=1}^{\infty} (\text{Ad } u \circ \varphi)^{2k}(P_{222}O_2P_{222}) = CP_{222}.$$

That is, both P_{11} and P_{222} are minimal projections in $\lambda_u(F_2)' \cap O_2$. One easily checks that $\text{Ad } u \circ \varphi(S_{11}S_{222}^*) = S_{222}S_{11}^*$. Thus $S_{11}S_{222}^*$ is in $\lambda_u(F_2)' \cap O_2$, and we see that $(P_{11} + P_{222})\lambda_u(F_2)' \cap O_2(P_{11} + P_{222}) \cong \mathbb{M}_2(\mathbb{C})$. We remark that the restriction of $\text{Ad } u \circ \varphi$ to $(P_{11} + P_{222})O_2(P_{11} + P_{222})$ is conjugate to endomorphism ρ_{1342} from $[5]$. Let

$$w := S_{11}S_{222}^* + S_{222}S_{11}^* + 1 - P_{11} - P_{222}.$$

Then w is a unitary in $\lambda_u(F_2)' \cap O_2$ such that $w^*u \in F_2$. \hfill \Box

Example 3.6. Take $q_1 = P_1$, $q_2 = P_{21}$, and set

$$A_1 = S_{211}S_{21}^* + S_{2121}S_{112}^* + S_{2122}S_{111}^*,$$

$$A_2 = S_{11}S_{221}^* + S_{11}S_{222}^*,$$

$$A_3 = S_{221}S_{222}^*.$$

We put $u := A_1 + A_2 + A_3$. By construction, $\text{Ad } u \circ \varphi(P_1) = P_{21}$ and also $\text{Ad } u \circ \varphi(P_{21}) = P_1$. Hence $\text{Ad } u \circ \varphi(P_{22}) = P_{22}$ as well.

We have $P_{22}C^*(S_1, S_2)P_{22} \cong O_2 = C^*(R_1, R_2)$, under the identification of $S_{221}S_{222}^*$ with R_1 and $S_{222}S_{221}^*$ with R_2. This isomorphism yields a conjugation between the restriction of $\text{Ad } u \circ \varphi$ to $P_{22}C^*(S_1, S_2)P_{22}$ and the shift φ_R. Consequently,

$$\lambda_u(F_2)' \cap P_{22}C^*(S_1, S_2)P_{22} = \bigcap_{k=1}^{\infty} (\text{Ad } u \circ \varphi)^k(P_{22}C^*(S_1, S_2)P_{22}) = CP_{22}.$$

We have $P_1C^*(S_1, S_2)P_1 \cong O_2 = C^*(T_1, T_2)$, under the identification of $S_{11}S_{11}^*$ with T_1 and $S_{12}S_{12}^*$ with T_2. This isomorphism carries the restriction of $(\text{Ad } u \circ \varphi)^2$ to $P_1C^*(S_1, S_2)P_1$ to the endomorphism of $C^*(T_1, T_2)$ given as composition $\varphi_T \circ \psi_T$, where ψ_T is an endomorphism of $C^*(T_1, T_2)$ such that

$$\psi_T(x) = T_1xT_1^* + T_2(\text{Ad } F_T(x))T_2^*,$$
where \(F_T := T_2T_1^* + T_1T_2^* \). By Lemma \ref{lem:iso}, we have

\[
\lambda_u(\mathcal{F}_2)' \cap P_1 C^*(S_1, S_2) P_1 \subseteq \bigcap_{k=1}^{\infty} (\Ad u \circ \varphi)^{2k}(P_1 C^*(S_1, S_2) P_1) = \mathbb{C} P_1.
\]

We have \(P_1 C^*(S_1, S_2) P_2 \cong \mathcal{O}_2 = C^*(V_1, V_2) \), under the identification of \(S_{211}S_{21} \) with \(V_1 \) and \(S_{212}S_{21} \) with \(V_2 \). This isomorphism carries the restriction of \((\Ad u \circ \varphi)^2 \) to \(P_1 C^*(S_1, S_2) P_2 \) to \(\psi_V \circ \varphi_V \). An argument similar to that from Lemma \ref{lem:iso} shows that \(\lambda_u(\mathcal{F}_2)' \cap P_2 C^*(S_1, S_2) P_2 = \mathbb{C} P_2 \). Alternatively, this also easily follows from the preceding argument and the fact that \(\Ad u \circ \varphi(P_21) = P_1 \).

In view of the above, either \(\lambda_u(\mathcal{F}_2)' \cap \mathcal{O}_2 = \text{span}\{P_1, P_21, P_22\} \cong \mathbb{C}^3 \), or \(P_1 \) and \(P_21 \) are equivalent in \(\lambda_u(\mathcal{F}_2)' \cap \mathcal{O}_2 \). In the latter case, \(\lambda_u(\mathcal{F}_2)' \cap \mathcal{O}_2 \) contains a subalgebra isomorphic to \(M_2(\mathbb{C}) \) which is invariant under \(\Ad u \circ \varphi \) and has \(P_1 \) and \(P_21 \) as its minimal projections. Suppose for a moment that this is the case. Then \(\Ad u \circ \varphi \) restricts to a non-trivial automorphism of \(M_2(\mathbb{C}) \), by necessity inner. The implementing unitary matrix \(g \) is fixed by \(\Ad u \circ \varphi \) and thus belongs to \(\lambda_u(\mathcal{O}_2)' \cap \mathcal{O}_2 \). Matrix \(g \) has both diagonal entries equal to 0. Multiplying \(g \) by a suitable scalar of modulus 1, we can find such \(g \) that is self-adjoint. Now we see that there is a unitary element \(x \) of \(\mathcal{O}_2 \) such that

\[
g = S_{21} x^* S_1^* + S_1 x S_{21}^* \in \lambda_u(\mathcal{O}_2)' \cap \mathcal{O}_2.
\]

Now, writing \(F := S_1 S_2^* + S_2 S_1^* \), we compute

\[
\Ad u \circ \varphi(g) = u(S_{11}x S_{12}^* + S_{12}x^* S_{11}^* + S_{21}x S_{21}^* + S_{21}x^* S_{21}^*) u^*
\]

\[
= S_{212} F x S_{12}^* + S_{12} x^* F S_{212}^* + S_{211} x S_{11}^* + S_{11} x^* S_{211}^*.
\]

and hence we get

\[
S_1 x S_{21}^* + S_{21} x^* S_1^* = S_{212} F x S_{12}^* + S_{12} x^* F S_{212}^* + S_{211} x S_{11}^* + S_{11} x^* S_{211}^*.
\]

Multiplying by \(S_1^* \) from the left-side and by \(S_{21} \) from the right-side, we obtain

\[
x = S_2 x^* F S_{21}^* + S_1 x^* S_1^*.
\]

Equation (8) implies \(x S_1 = S_1 x^* \) and \(S_1^* x = x^* S_1^* \). These two combined then yield \((x + x^*) S_1 = S_1 (x + x^*) \) and \((x - x^*) S_1 = -S_1 (x - x^*) \). By \cite[Proposition 4]{14}, both \(x + x^* \) and \(x - x^* \) are scalars, and thus so is \(x \). This however contradicts (8).

Thus \(\lambda_u(\mathcal{F}_2)' \cap \mathcal{O}_2 = \text{span}\{P_1, P_21, P_22\} \) and since \(\tau(P_1) \neq \tau(P_21) \), we conclude from Corollary \ref{cor:no-unitaries} that there are no unitaries \(w \in \lambda_u(\mathcal{F}_2)' \cap \mathcal{O}_2 \) and \(v \in \mathcal{F}_2 \) such that \(u = wv \).

\end{proof}

\begin{lemma}
Let \(\psi_T \) be an endomorphism of \(C^*(T_1, T_2) \cong \mathcal{O}_2 \) such that

\[
\psi_T(x) = T_1 x T_1^* + T_2 (\Ad F_T(x)) T_2^*.
\]

\end{lemma}
where \(F_T := T_2 T_1^* + T_1 T_2^* \). Then we have

\[
\bigcap_{k=1}^{\infty} (\varphi_T \psi_T)^k(C^*(T_1, T_2)) = \mathbb{C}1.
\]

Proof. We note that

\[
\varphi_T \psi_T(x) = T_{11} x T_{11}^* + T_{21} x T_{21}^* + T_{12} (\text{Ad } F_T(x)) T_{12}^* + T_{22} (\text{Ad } F_T(x)) T_{22}^*.
\]

Also, we clearly have \(F_T T_1 = T_2 \) and \(F_T T_2 = T_1 \). Thus \((\varphi_T \psi_T)^k(x) \) may be written as a finite sum of elements of the form \(T_\mu X T_\mu^* \) with \(|\mu| = 2k \). This gives

\[
\bigcap_{k=1}^{\infty} (\varphi_T \psi_T)^k(C^*(T_1, T_2)) \subseteq D_T' \cap C^*(T_1, T_2) = D_T.
\]

For a positive integer \(k \), let

\[
Q_k := \sum_{|\mu|=k-1} T_\mu T_\mu^*.
\]

Then a straightforward induction on \(k \) shows that

\[
Q_{2k} (\varphi_T \psi_T)^k(x) = Q_{2k} \varphi_T^{2k}(x)
\]

for all \(x \in C^*(T_1, T_2) \). Take a \(d = d^* \in D_T \) that belongs to \(\bigcap_{k=1}^{\infty} (\varphi_T \psi_T)^k(C^*(T_1, T_2)) \).

Suppose \(d \) is not a constant multiple of 1. Then there exist \(k \in \mathbb{N}, t \in \mathbb{R}, \epsilon > 0 \) and \(\mu, \nu \in W_2^{2k-1} \) such that

\[
T_\mu T_\mu^* d \geq (t + \epsilon) T_\mu T_\mu^* \quad \text{and} \quad T_\nu T_\nu^* d \leq (t - \epsilon) T_\nu T_\nu^*.
\]

Let \(x = x^* \in D_2 \) be such that \(d = (\varphi_T \psi_T)^k(x) \). Then \(Q_{2k} d = Q_{2k} \varphi_T^{2k}(x) \). Since \(T_\mu T_\mu^* \leq Q_{2k} \) and \(T_\nu T_\nu^* \leq Q_{2k} \), we get

\[
T_\mu T_\mu^* = T_\mu T_\mu^* Q_{2k} \varphi_T^{2k}(x) \geq (t + \epsilon) T_\mu T_\mu^*, \quad \text{and}
\]

\[
T_\nu T_\nu^* = T_\nu T_\nu^* Q_{2k} \varphi_T^{2k}(x) \leq (t - \epsilon) T_\nu T_\nu^*.
\]

This, however, is a contradiction. Indeed, since \(T_\mu \) and \(T_\nu \) are isometries, the above two inequalities would imply that both \(x \geq (t + \epsilon) \) and \(x \leq (t - \epsilon) \). Consequently,

\[
\bigcap_{k=1}^{\infty} (\varphi_T \psi_T)^k(C^*(T_1, T_2)) = \mathbb{C}1,
\]

as required. \(\square \)

References

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466–8555, Japan

E-mail address: hayashi.tomohiro@nitech.ac.jp

Department of Data Information, Korea Maritime and Ocean University, Busan 606–791, South Korea

E-mail address: hongjh@hhu.ac.kr

Department of Mathematics and Computer Science, The University of Southern Denmark, Campusvej 55, DK–5230 Odense M, Denmark

E-mail address: szymanski@imada.sdu.dk