Full-thickness rectal biopsy in children suspicious for Hirschsprung's disease is safe and yields a low number of insufficient biopsies

Bjørn, Niels; Rasmussen, Lars; Qvist, Niels; Detlefsen, Sönke; Ellebæk, Mark Bremholm

Published in:
Journal of Pediatric Surgery

DOI:
10.1016/j.jpedsurg.2018.01.005

Publication date:
2018

Document version
Accepted manuscript

Document license
CC BY-NC-ND

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Full-thickness rectal biopsy in children suspicious for Hirschsprung's disease is safe and yields a low number of insufficient biopsies

Niels Bjørn, Lars Rasmussen, Niels Qvist, Sönke Detlefsen, Mark Bremholm Ellebæk

PII: S0022-3468(18)30011-3
DOI: https://doi.org/10.1016/j.jpedsurg.2018.01.005
Reference: YJPSU 58493

To appear in:
Received date: 17 August 2017
Revised date: 4 January 2018
Accepted date: 5 January 2018

Please cite this article as: Niels Bjørn, Lars Rasmussen, Niels Qvist, Sönke Detlefsen, Mark Bremholm Ellebæk, Full-thickness rectal biopsy in children suspicious for Hirschsprung's disease is safe and yields a low number of insufficient biopsies. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Yjpsu(2018), https://doi.org/10.1016/j.jpedsurg.2018.01.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Full-thickness rectal biopsy in children suspicious for Hirschsprung’s disease is safe and yields a low number of insufficient biopsies

Niels Bjørna,c, Lars Rasmussena, Niels Qvista, Sönke Detlefsenb, Mark Bremholm Ellebæka

aDepartment of Surgery A, Section of Pediatric Surgery, Odense University Hospital, Odense, Denmark
bDepartment of Pathology, Odense University Hospital, Odense, Denmark
cOPEN, Odense Patient data Explorative Network

Corresponding author: Niels Bjørn, Department of Surgery A, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark, Phone: +4522358596, niels.bjorn@rsyd.dk.

1Abbreviations: HD (Hirschprung’s Disease), FTB (full thickness excision biopsy), RSB (rectal suction biopsy), CDC (Clavien-Dindo Classification), OUH (Odense University Hospital), REDCap (Research Electronic Data Capture), Odense Patient data Explorative Network (OPEN), FTBs (full-thickness rectal biopsies)
Abstract

Introduction

The diagnosis of Hirschsprung's disease (HD) relies on the histological demonstration of aganglionosis in the bowel wall. Biopsies may be obtained by rectal suction biopsy (RSB) or by transanal full-thickness excision biopsy (FTB). The objective of the present study was to evaluate the frequency of complications and inconclusive biopsies after FTB in children referred with suspicion of HD. The secondary objective was to calculate the frequency of proven aganglionosis.

Methods

A retrospective chart review was performed of all patients under the age of 16 years who underwent transanal FTB during the time period of 2008–2014.

Results

A total of 555 patients were included in the review. Inconclusive biopsies were found at the primary biopsy in 35 patients (5.9%). Aganglionosis was found in 12% of the cases. The complication rate was 6.6% (39 patients), 85% of which were classified as a Clavien-Dindo I-II and 15% were classified as Clavien-Dindo III.

Conclusions

In this retrospective evaluation of FTB for the diagnosis of HD, the frequency of inconclusive biopsies at primary attempt was low and the complication rate was relatively high. However, most were minor complications.

Level of evidence: III
1.0 Introduction

The diagnosis of Hirschsprung's disease (HD) relies on histological confirmation of complete absence of ganglion cells in the myenteric and submucosal plexus of the affected segment of the large bowel, together with hypertrophy of nerves. As the rectum always is involved in the disease, transanal biopsy of the distal rectum is considered the gold standard for primary diagnosis.

The biopsies can be obtained either by transanal full-thickness excision biopsy (FTB) or rectal suction biopsy (RSB). In Europe, 39% of surgeons perform FTB (1), but worldwide, over 80% of centers are using RSB for diagnostic workup (2).

In the original paper from 1955 by Swenson et al (3), only one complication (postoperative bleeding) in 40 patients undergoing FTB was reported. In a recent paper with only 13 patients, no serious complications were reported (4). In a recent systematic review, the reported complication rate of RSB was 0.65% (5), but when taking all the available literature into account, it varies from 0 to 15% (4, 6-8).

The number of inconclusive biopsies at RSB varies in the literature. A recent systematic review showed 10.1% diagnostically insufficient biopsies at initial biopsy (4). Regarding FTB, the frequency of diagnostically insufficient biopsies varies between 0–13% in relatively small series of 72 included patients at maximum (4, 7, 9).

The objective of the present study was to evaluate the frequency of inconclusive biopsies and complications after FTB in children referred with suspicion of HD. The secondary objective was to calculate the frequency of proven aganglionosis.

2.0 Methods

We performed a retrospective chart review of all patients (<16 years) who had a FTB in the period from 2008-01-01 to 2014-12-31 at Odense University Hospital (OUH), Denmark, which is a tertiary referral center for pediatric surgery of western Denmark serving approximately 2.6 million inhabitants. All patients referred with suspicion for HD had a FTB without other preoperative screening modalities or clinical evaluation. FTB was the standard method during the entire study period and was performed under general anesthesia without perioperative
prophylactic antibiotics, except for children with an impaired immune system or under immune suppressive treatment.

For FTB, a full-thickness suture was placed in the posterior wall of the rectum, approximately 2–3 cm above the dentate line. The rectal wall was raised by traction on the suture and a 3–5 mm FTB was cut with scissors. Hemostasis was secured by bipolar electrocoagulation, and the defect was sutured. Postoperative complications were defined as any contact to the department either by phone or admittance, and classified according to the Clavien-Dindo Classification (CDC).

Inconclusive biopsies were defined as: 1) specimens without identifiable ganglion cells and without the representation of submucosa and/or the interface between the internal and external muscle layers of the muscularis propria, or 2) specimens where the pathologist deemed the biopsy inconclusive due to poor quality or size. An electronic search was conducted in the Pathology Data Base of the Department of Pathology, Odense University Hospital, which is a subunit of the Danish Pathology Data Base (DPDB). The following diagnostic codes: “T68*” (“rectal mucosa”) and “TX9600” (“rectum”), combined with M21000 (“aganglionosis”) or M01000 (“normal tissue”) or M09011/M09010 (“material not suitable for a conclusive diagnosis”) were used. Study data were managed using the REDCap (Research Electronic Data Capture) tools hosted by Odense Patient Data Explorative Network (OPEN).

Stata software version 14.1 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP®) was used for statistical analysis. Continuous data were calculated as medians and ranges. Categorical data were tested by Pearson’s chi-squared test. To compare the frequency of positive biopsies for HD under with above 1 year of age the Fischer’s exact test was used.

The study was approved by the Danish Patient Safety Authority, case number 3-3013-1110/1, and the Danish Data Protection Agency, file number 15/19986. No financial funding was received.
3.0 Results

Initially we retrieved a total of 682 biopsies. We found 38 specimens from resected colonic segments coded as rectal biopsies. Eighteen biopsies from 14 patients (seven with age > 15 years, seven with wrong coding) were erroneously registered and excluded, and thus 626 biopsies were included in the study. Thirty-three patients were biopsied in duplicates, 35 patients had re-biopsy and three patients had two re-biopsies. Thus, in total 593 FTB procedures was performed in 555 patients. For a short time period, it was common at our department to perform FTB in duplicates. All calculations were based on the number of patients, without paying attention to the number of biopsies performed at each procedure. Median age at time of biopsy was 20 months (range 0–191). There were 322 boys (58%) and 233 girls (42%) (Table 1).

Place table 1 near here

In children below one year compared to above one year, 19.2% and 7.3% were positive for HD (p= 0.001). Forty percent of all biopsies and 64% of all positive biopsies were taken from patients below one year of age (Table 2). Figure 1 shows the cumulative number of positive biopsies in relation to age.

Place figure 1 near here.

Place table 2 near here.

We registered a total of 39 complications (6.6%) and four of these patients had HD (10%) Thirty-three patients experienced complications rated as CDC I-II (Table 3). None of the four patients with bleeding needed transfusion, and seven of the 22 patients with fever received antibiotic treatment.

Place Table 3 near here.
Six patients experienced complications that were classified as CDC III-B with re-operation or anal examination in GA. In two patients, the sutures were removed but no pathology was found, and the course was otherwise uneventful. Two patients had a rectal abscess that was drained and treated for three days with intravenous antibiotics (Table 3).

Two patients needed a diverting stoma. The first was a two-year-old boy diagnosed with a perirectal abscess two days after FTB. The abscess was primarily drained, but due to recurrent pain and fever a diverting colostomy was placed. The stoma was reversed one month later followed by an uncomplicated course. The patient was later diagnosed with hereditary sensory and autonomic neuropathy (HSAN) type 3, and is still treated with laxatives for severe constipation five years later. The other patient was a 15-year-old boy with lifelong constipation. He underwent re-biopsy because of an inconclusive biopsy at first attempt. One week after the re-biopsy, he presented with rectal bleeding and severe morphine resistant pain at defecation. Abdominal plain X-ray showed colonic ileus due to fecal impaction. A diverting colostomy was placed and the re-biopsy was positive for HD.

In 35 patients, the primary biopsy was inconclusive (6.3%), one specimen was lost during shipment from the operation room to the department of pathology, and one was inconclusive for technical reasons in the lab. Hence, there were 33 truly inconclusive, primary biopsies (5.9%) (Table 1). At re-biopsy, we found aganglionosis in 40% of the biopsies, and at second re-biopsy, aganglionosis was found in 66% (Table 1).

Overall, a total of 67 biopsies (12%) were confirmative for HD. No significant difference was found concerning age or rate of complications.

In 32 patients, relative anal stenosis were found and treated by dilation. All were negative for HD.

4.0 Discussion

Our series includes the largest number of FTBs for the diagnosis of HD published in the literature. We found a low frequency of inconclusive biopsies with an acceptable complication rate.
The rate of inconclusive biopsies represents one of the most important criteria when evaluating the quality of rectal biopsies as a diagnostic tool in HD. In one study, no inconclusive biopsies were found in either the RSB or the FTB group (10). In another study, 8% of FTBs were inconclusive (9). In some studies based on RSBs, the rate of inconclusive biopsies was as high as 24%, but in the latest and largest meta-analysis, the rate was 10% (8). A systematic review reported a mean sensitivity of 98% for RSB (5), which indicates a risk of missed diagnoses of 2%. In our study, the rate of inconclusive biopsies was 5.9%, and none of the patients with a normal biopsy was later diagnosed with HD. Whether this is a significant difference is not possible to evaluate but the clinical consequence of a missed HD diagnosis may be serious.

In the present study, we found a total complication rate after FTB of 6.6%, but only 1% with CDC IIIb. In only two cases, major surgery with placement of a stoma was necessary, and in one patient, this could not be ascribed to the biopsy procedure. The rate of complications after rectal biopsy for HD varies in the literature. In the largest series of FTBs, the complication rate was not reported (10). The overall complication rate in RSB ranged 0–15% (4-8, 11-16). In all of the referred studies, the type of complications was not described in detail regarding severity or necessity of treatment. In a recent study, the rate of complications was lower when RSB was performed under GA (0% vs. 2%) compared to non-GA biopsies (17). Fever was the most common complication in our series, opposed to studies using RSB, where bleeding was the most common complication (2). Bowel perforation rate of 0.06% at RSB was reported in the review from Friedmacher et al. (2). Post-biopsy stoma formation was necessary in two of our cases (0.36%), and in one case this was because of HD and not directly related to the FTB procedure. No necessity of stoma placement has been reported after RSB.

The advantage of RSB over FTB is the avoidance of general anesthesia (GA) especially in children below one year. The minor, not patient related disadvantage is a more complex, time-consuming histological preparation and examination of RSB compared to FTB, because the RSB is more superficial, typically only involving the mucosal and submucosal layer (17). It may be necessary to cut numerous (up to 75 or more) sections from RSBs for conclusive examination in case ganglion cells are not identified after initial step sectioning (4). Moreover, a higher number of biopsies have to be obtained when RSB is used, ranging 1–5 biopsies per intervention (7, 13, 18).
FTB yields deeper and larger tissue samples, allowing the evaluation of the submucosal as well as the myenteric plexus, while RSB produces more superficial biopsies without representation of the myenteric plexus (4). The presence of ganglion cells effectively rules out HD, and if these are identified in the first few step sections, no further sectioning is needed. A further limitation of RSB is that it is not able to detect diseases of the muscularis propria (i.e., myopathies or certain types of ganglionitis). The disadvantage of FTB is the requirement of GA. Recent studies have shown that it seems unlikely that anesthetic drug exposure in young children will influence long-term cognitive outcome (19). It has also been demonstrated that parents willingly consented on GA when this could facilitate the diagnosis (20).

The surgical procedure of choice at our department is the pull-through technique, and we have not experienced any complications or difficulties that could be related to a previous FTB.

No screening with contrast enema (CE) or ano-rectal manometry (ARM) was performed after referral due to the relative poor sensitivity / specificity of 91% / 94% and 70% / 83%, respectively. Our department serves as a tertiary referral center for rectal biopsy on the suspicion for HD. The children may have undergone other diagnostic procedures previously, but that was not the aim of the present study to investigate. With a HD-positivity of 12%, the number of positive biopsies was comparable to other series, although it varies from 5% - 42% [6, 8, 9, 16, 17, 19].

We found only one other disease during FTB (anal stenosis), none of the patients had positive biopsies, and no complications where seen after dilation, the clinical importance of this has not been investigated.

A strength of the present study is its size and that there were no procedural changes during the inclusion period. A limitation of this study is its retrospective nature, and we can therefore not totally exclude that a few minor complications may not have been reported. Reporting of major complications requiring treatment, on the other hand, was complete.

5.0 Conclusion
We found that FTB performed in patients suspected of HD had a relatively high rate of complications (6.6%), but most complications were of minor severity and only one out of 555 patients had a serious complication directly related to the FTB procedure. Our data show that FTB yields a high rate of conclusive biopsies at primary attempt.

6.0 Conflicts of interest

None
References

Table 1

Frequency of negative, confirmative, and inconclusive biopsies at first, second, and third attempt of full-thickness excision biopsy (FTB). HD = Hirschsprung’s disease. Mean age is given in months.

Table 2

Negative and positive biopsies in children below and above one year of age.

Table 3

Complications according to Clavien-Dindo Classification (CD), after full-thickness biopsies (FTBs) in 555 patients.

Figure 1

Cumulative number of positive biopsies in relation to age.
<table>
<thead>
<tr>
<th></th>
<th>First biopsy (n = 555)</th>
<th>Second biopsy (n = 35)</th>
<th>Third biopsy (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative for HD</td>
<td>464 (37.1)</td>
<td>23 (39.5)</td>
<td>1 (59)</td>
</tr>
<tr>
<td>Positive for HD</td>
<td>56 (24.3)</td>
<td>9 (27.0)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>35 (34.7)</td>
<td>3 (21)</td>
<td>0 (-)</td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th></th>
<th>Negative biopsy</th>
<th>Positive biopsy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 year</td>
<td>180</td>
<td>43</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>(80.72 %)</td>
<td>(19.28 %)</td>
<td>(100 %)</td>
</tr>
<tr>
<td>> 1 year</td>
<td>308</td>
<td>24</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>(92.77 %)</td>
<td>(7.23%)</td>
<td>(100 %)</td>
</tr>
<tr>
<td>Total</td>
<td>488</td>
<td>67</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>(87.93%)</td>
<td>(12.07%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

Table 2
<table>
<thead>
<tr>
<th>Symptoms</th>
<th>CD-1</th>
<th>CD-2</th>
<th>CD-3b</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td>4</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Fever</td>
<td>15</td>
<td>7</td>
<td></td>
<td>Antibiotics in CD-2</td>
</tr>
<tr>
<td>Abscess</td>
<td></td>
<td>2</td>
<td></td>
<td>Surgical drainage</td>
</tr>
<tr>
<td>Perforation</td>
<td>1</td>
<td></td>
<td></td>
<td>Laparotomy and stoma</td>
</tr>
<tr>
<td>Faecal impaction</td>
<td></td>
<td>1</td>
<td></td>
<td>Stoma</td>
</tr>
<tr>
<td>Pain</td>
<td></td>
<td>7</td>
<td></td>
<td>Paracetamol</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>2</td>
<td></td>
<td>Anal examination in general anaesthesia</td>
</tr>
</tbody>
</table>
Figure 1