On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

Publication date:
2018

Document version
Final published version

Document license
Unspecified

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to pureresupport@bib.sdu.dk

Download date: 22. May. 2020
On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

Hamidreza Siampour, Shailesh Kumar, and Sergey I. Bozhevolnyi

Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
* E-mail: hasa@mci.sdu.dk

Highly confined surface plasmon polariton (SPP) modes can be utilized to enhance light-matter interaction at the single emitter level of quantum optical systems [1-4]. Dielectric-loaded SPP waveguides (DLSPPWs) confine SPPs laterally with relatively low propagation loss, enabling to benefit both from a large Purcell factor and from a large radiative efficiency (low quenching rates) [1, 2]. In this work, we present a DLSPPW-based Bragg cavity resonator to direct emission from a single diamond nitrogen vacancy (NV) center into the zero-phonon line (Fig. 1). A quality factor of ~70 for the cavity and an up to 42-fold spontaneous emission rate enhancement at the zero-phonon line (a ~7-fold resonance enhancement in addition to a ~6-fold broadband enhancement) is achieved, revealing the potential of our approach for on-chip realization of quantum-optical networks.

Fig. 1 (a) Scanning electron micrograph of the waveguide-integrated plasmonic cavity. (b) Schematic of a nanodiamond coupled to a cavity. The cavity resonator consists of two distributed Bragg mirrors that are built at opposite sides of the incorporated NV emitter using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist deposited on silver-coated silicon substrates. (c) Plasmon-coupled emission from single NV-center recorded in the out-of-cavity (dark green line) compared to the fluorescence spectrum coupled to a straight DLSPP waveguide (no Bragg gratings, cyan line).

References