Erratum to

Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: a randomized, placebo-controlled trial

Ebdrup, Bjørn H; Broberg, Brian V; Ishøj, Pelle L; Bak, Nikolaj; Andersen, Ulrik B; Jørgensen, Niklas R; Holst, Jens J; Knop, Filip K; Glenthøj, Birte Y

Published in:
Diabetes, Obesity and Metabolism

DOI:
10.1111/dom.13204

Publication date:
2018

Document version
Accepted manuscript

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Erratum to: Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: a randomized, placebo-controlled trial

Bjørn H. Ebdrup MD, PhD1,2 | Brian V. Broberg PhD1 | Pelle L. Ishøy MD, PhD1 | Nikolaj Bak PhD1 | Ulrik B. Andersen MD5 | Niklas R. Jørgensen MD DMSc6,7 | Jens J. Holst MD, DMSc4 | Filip K. Knop MD, PhD2,3,4 | Birte Y. Glenthøj MD DMSc1,2

Affiliations

1 Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark

2 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

3 Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

4 The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

5 Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Glostrup, Denmark

6 Research Center for Ageing and Osteoporosis, Departments of Clinical Biochemistry and Medicine, Rigshospitalet, University of Copenhagen, Glostrup, Denmark

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/dom.13204
7 OPEN, Odense Patient Data Explorative Network, Odense University Hospital/ Institute of Clinical Research, University of Southern Denmark, Odense, Denmark

Corresponding Author

Dr Bjørn H. Ebdrup, MD, PhD, Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Copenhagen University Hospital, Mental Health Centre Glostrup, Nordre Ringvej 29-69, DK-2600, Glostrup, Denmark (bebdrup@cnsr.dk).

Funding information

This work was generously supported by grants from the University of Copenhagen to Dr. Ishøy (211-0649/11-3012), and from the University of Copenhagen/Mental Health Services, Capital Region of Denmark to Dr. Ebdrup. A Lundbeck Foundation grant supported Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS (R25-A2701).

The TAO study is investigator-initiated and not sponsored by pharmaceutical industry.
Dear Editor,

“Treatment of antipsychotic-associated obesity with a GLP-1 receptor agonist (GLP-1RA): The TAO trial” is the first clinical investigation of GLP-1RA treatment (exenatide 2 mg once-weekly or placebo) in antipsychotic-treated schizophrenia patients with obesity.1 Recently, we published the main results from the TAO trial as an original article in Diabetes, Obesity and Metabolism.2

We regret to report, that further analyses of the TAO dataset have revealed an error in our secondary analyses presented in the original publication. Importantly, the error did not influence the result of the primary endpoint (change in body weight) showing that both patients treated with exenatide as well as the placebo group experienced significant (P = .004), but similar weight losses of 2.24 ± 3.3 and 2.23 ± 4.4 kg (P = .98).

The error specifically relates to our secondary analyses of the metabolic blood parameters. In these analyses, the coding of ‘visit type’ had been shuffled, and in turn, the data and statistical tests of the metabolic blood parameters in Section 2.6.4 and Table 3 were based on incorrect visit types.2 Reductions in body weight are typically associated with improvement in metabolic blood parameters, and our unexpected report of a post-intervention worsening of blood metabolic parameters after 3 months, was therefore incorrect and misleading. Below, we present a corrected version of Table 3, and we present a modified Results section. Finally, we briefly discuss implications of these corrected secondary analyses.

[Insert Corrected Table 3]
Corrected Results (corresponding to the second paragraph Section 3.2 in. Changes are shown in italic font).

Plasma exenatide significantly increased in the exenatide group compared to the placebo group (P = .002) (Table 3). Exenatide treatment compared to placebo (Time × Group interaction) significantly reduced central 24-hour systolic blood pressure (P = .004) and pulse wave velocity (P = .007). A trend level Time × Group interaction was found for HbA1c (P = .063), indicating that exenatide tended to lower HbA1c compared to placebo.

Significant effects of Time were found on central 24-hour systolic blood pressure (P = .048), peripheral 24-hour systolic blood pressure (P = .03), fasting plasma glucose (P = .006), plasma exenatide (P = .002), triglyceride (P = .044), total cholesterol (P = .009), and high-density lipoprotein cholesterol (P = .006). No significant effect of Time was found on low-density lipoprotein (P = 0.289), and a trend level significant effect of Time was found for very low-density lipoprotein (P = .054). Regarding plasma exenatide, we found an effect of Group (P < .001), but no effect of Group was found for any other secondary outcomes. Post hoc correction for smoking status did not significantly change results concerning any secondary outcomes.

Implications

Regardless of treatment arm, the moderate weight loss of 2.3 kg over three months in the TAO study was associated with small reductions in fasting plasma glucose, triglyceride, total cholesterol, and high-density lipoprotein cholesterol. At trend-level significance, we observed an indication of an HbA1c lowering effect of exenatide. Interestingly, two recently published studies in antipsychotic-treated schizophrenia patients showed that GLP-1RA treatment improved blood metabolic parameters and promoted weight loss. Since one study investigated exenatide 2 mg
once-weekly in clozapine-treated patient for 24 weeks,³ and the other study used liraglutide 1.8 mg daily in pre-diabetic patients in olanzapine- or clozapine-treated patients ⁴, further research is needed to determine a potential role of GLP-1RA treatment in antipsychotic treated patients with obesity.

Comment

The reported error had minor overall impact on our study. However, the premise for progress of research is availability of accurate data, and our originally reported blood metabolic parameters were misleading. We have meticulously checked all analyses related to this study, and we confidently claim that no other mistakes are present. Please accept our sincere apologies of this unfortunate inaccuracy. May this attempt to provide transparency not compromise confidence in the presented data.
References

Corrected Table 3. Biochemical fasting blood values

<table>
<thead>
<tr>
<th></th>
<th>Exenatide (n=20)</th>
<th>Placebo (n=20)</th>
<th>Time p-value</th>
<th>Group p-value</th>
<th>Time x Group p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (mmol/mol)</td>
<td>Baseline</td>
<td>End-of-trial</td>
<td>Baseline</td>
<td>End-of-trial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.95 ± 3.60</td>
<td>34.00 ± 3.39</td>
<td>35.75 ± 4.96</td>
<td>38.3 ± 13.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[29-42]</td>
<td>[29-42]</td>
<td>[28-47]</td>
<td>[27-93]</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose (mM)</td>
<td>5.46 ± 0.55</td>
<td>5.26 ± 0.36</td>
<td>5.71 ± 0.86</td>
<td>5.39 ± 0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4.2-6.5]</td>
<td>[4.3-5.9]</td>
<td>[4.8-8.3]</td>
<td>[4.8-6.4]</td>
<td></td>
</tr>
<tr>
<td>Plasma exenatide (pmol/L)</td>
<td>3.4 ± 10.5</td>
<td>84.9 ± 29.6</td>
<td>0.0 ± 0</td>
<td>1.1 ± 3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0-40]</td>
<td>[65-147]</td>
<td>[0-0]</td>
<td>[0-11]</td>
<td></td>
</tr>
<tr>
<td>Plasma glucagon (pmol/L)</td>
<td>3.75 ± 13.1</td>
<td>17.8 ± 19.1</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0-58]</td>
<td>[0-50]</td>
<td>[0-0]</td>
<td>[0-0]</td>
<td></td>
</tr>
<tr>
<td>Triglyceride (mmol/L)</td>
<td>2.12 ± 1.07</td>
<td>1.86 ± 0.93</td>
<td>1.76 ± 0.97</td>
<td>1.63 ± 0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.65-4.47]</td>
<td>[0.57-3.66]</td>
<td>[0.52-4.31]</td>
<td>[0.44-3.51]</td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.04 ± 1.06</td>
<td>4.84 ± 1.16</td>
<td>4.86 ± 0.95</td>
<td>4.57 ± 0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.0-7.0]</td>
<td>[2.8-7.7]</td>
<td>[2.5-6.9]</td>
<td>[3.2-6.7]</td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>3.06 ± 0.86</td>
<td>3.03 ± 0.98</td>
<td>2.96 ± 0.76</td>
<td>2.82 ± 0.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.1-4.4]</td>
<td>[0.9-5.2]</td>
<td>[1.0-4.7]</td>
<td>[1.2-4.4]</td>
<td></td>
</tr>
<tr>
<td>VLDL cholesterol (mmol/L)</td>
<td>0.96 ± 0.48</td>
<td>0.83 ± 0.42</td>
<td>0.79 ± 0.44</td>
<td>0.75 ± 0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.3-2.0]</td>
<td>[0.3-1.6]</td>
<td>[0.2-1.9]</td>
<td>[0.2-1.6]</td>
<td></td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>1.03 ± 0.22</td>
<td>0.98 ± 0.22</td>
<td>1.10 ± 0.31</td>
<td>1.01 ± 0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.56-1.39]</td>
<td>[0.61-1.60]</td>
<td>[0.66-1.82]</td>
<td>[0.58-1.51]</td>
<td></td>
</tr>
</tbody>
</table>

Mean, standard deviation (SD) and range (in square brackets) are presented as: mean ± SD. P-values were analysed using repeated measures analysis of variance, and significant group differences are indicated by asterisks (*).

Abbreviations: HbA1c, hemoglobin A1c (<42 mmol/mol indicates normoglycemia; 42-47 mmol/mol indicates prediabetes and >48 mmol/mol indicates diabetes); HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein.