**EAACI Guidelines on Allergen Immunotherapy: Allergic Rhinoconjunctivitis**


*Denotes equal contribution

**Affiliations:**

1. The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight, UK
2. NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
3. Clinical and Experimental Sciences and Human Development in Health Academic Units, Faculty of Medicine, University of Southampton, Southampton, UK
4. Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;
5. Center for Rhinology and Allergology, Wiesbaden, Germany
6. Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos Switzerland. Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
7. Department of Allergy and Immunology, Hospital QuironSalud Bizkaia, Erandio – Bilbao, Spain
8. Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, UK.
9. Section of Allergology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
10. Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
11. Center of Excellence in Asthma and Allergy, Hospital Médica Sur, Mexicocity, Mexico
12. Dept. of Pediatrics, Nippon Medical School, Tokyo, Japan
13. Medical School, University of Cyprus, Nicosia, Cyprus

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/all.13317

This article is protected by copyright. All rights reserved.
15. Department of Dermatology and Allergy, Charité Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
16. Department of Pediatrics, Allergy Unit, University of Messina, Messina, Italy; Molecular Allergology and Immunomodulation-Department of Pediatric Pneumology and Immunology, Charité Medical University, Berlin, Germany
17. Medical Faculty, Dept of Otorhinolaryngology, Eskisehir Osmangazi University, Eskisehir, Turkey
18. Evidence Based Health care Ltd, Edinburgh, UK
19. CHU Clermont-Ferrand University Hospital (CHU Estaing), Unité d’allergologie de l’enfant, INSERM, Clermont-Ferrand, France.
20. Children’s Hospital Bethel, EvKB, University Bielefeld, Germany
22. Allergy Learning and Consulting, Copenhagen, Denmark
23. Depts. Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
24. Johns Hopkins Dept of Otolaryngology-Head & Neck Surgery, Baltimore, USA
25. Allergy & Clinical Immunology Unit, 2nd dpt of Pediatrics, NKUA Athens University, Athens, Greece
26. Clinical Research International Ltd., Mühlenberg 64, 22587 Hamburg, Germany
27. University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
28. Department of Pediatrics, Allergy Unit, University of Messina, Messina, Italy
29. University of Milano, Department of Allergy and Immunology, Asst Grande Ospedale Metropolitano Niguarda, Milano, Italy
30. Department of Allergy and Medical Rhinology, The Royal National Throat Nose and Ear Hospital, University College Hospital, London, UK
31. Center of Allergy and Environment (ZAUM) & Institute of Allergy Research, Helmholtz Center Munich, Munich, Germany
32. European Anaphylaxis Taskforce - Nederlands Anafylaxis Netwerk, Dordrecht, The Netherlands
33. Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy, Children’s Allergy Service, King’s College London & Guy’s and St. Thomas’ National Health Service Foundation Trust, London, UK
34. Dept. of Paediatric and Adolescent Medicine, Respiratory and Allergic Disease Division, Medical University of Graz, Graz, Austria
35. Pharmaceutical Group of the European Union, Brussels, Belgium
36. Allergy Department Guys & St Thomas’ NHS Foundation Trust, London, UK
37. Department of Otolaryngology Head & Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China

This article is protected by copyright. All rights reserved.
38. Transylvania University Brasov, Faculty of Medicine, Department of Allergy and Clinical Immunology, Brasov, Romania
39. Department of Clinical Immunology and Allergy, Northern General Hospital, Herries Road, Sheffield, UK
40. Allergy Department, Hospital Clinico San Carlos, IDISSC, Madrid, Spain
41. ALL-MED Medical Research Institute, Wroclaw Medical University, Poland
42. Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin, Berlin, Germany
43. Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
44. Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School, Edinburgh, UK
45. Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria; Outpatient Allergy Clinic Reumannplaz, Vienna, Austria
46. Department of Women and Child Health, Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, University of Padua, Padua, Italy

Correspondence: Antonella Muraro, Department of Women and Child Health, Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, University of Padua, Via Giustiniani 3, 35128 Padua, Italy Tel.: +39-049-821-2538 Fax: +39-049-8218091 E-mail: muraro@centroallergiealimentari.eu

Short title: EAACI Guideline: AIT for Rhinoconjunctivitis

Key words: allergen immunotherapy, allergy, allergic conjunctivitis, allergic rhinitis, rhinoconjunctivitis

Abbreviations:
AR, allergic rhinoconjunctivitis; AIT, allergen immunotherapy; AGREE II, Appraisal of Guidelines for Research & Evaluation; ARIA, Allergic Rhinitis and its Impact on Asthma; EPIT, epicutaneous immunotherapy; EAACI, European Academy of Allergy and Clinical Immunology; EMA, European Medicines Agency; HDM, house dust mite; ICER, incremental cost-effectiveness ratio; NARES, non-allergic rhinitis with eosinophilia syndrome; QALY, quality-adjusted life years; RCT, randomized controlled trial; SPT, skin prick test; SMD, standardized mean difference; SCIT, subcutaneous immunotherapy; SLIT, sublingual immunotherapy; SmPC, summary or product characteristics.
ABSTRACT

Allergic rhinoconjunctivitis (AR) is an allergic disorder of the nose and eyes affecting about a fifth of the general population. Symptoms of AR can be controlled with allergen avoidance measures and pharmacotherapy. However, many patients continue to have ongoing symptoms and an impaired quality of life; pharmacotherapy may also induce some side-effects. Allergen immunotherapy (AIT) represents the only currently available treatment that targets the underlying pathophysiology and it may have a disease modifying effect. Either the subcutaneous (SCIT) or sublingual (SLIT) routes may be used. This Guideline has been prepared by the European Academy of Allergy and Clinical Immunology’s (EAACI) Taskforce on AIT for AR and is part of the EAACI presidential project “EAACI Guidelines on Allergy Immunotherapy”. It aims to provide evidence-based clinical recommendations and has been informed by a formal systematic review and meta-analysis. Its generation has followed the Appraisal of Guidelines for Research and Evaluation (AGREE II) approach. The process included involvement of the full range of stakeholders. In general, broad evidence for the clinical efficacy of AIT for AR exists but a product-specific evaluation of evidence is recommended. In general, SCIT and SLIT are recommended for both seasonal and perennial AR for its short term benefit. The strongest evidence for long-term benefit is documented for grass AIT (especially for the grass-tablets) where long-term benefit is seen. To achieve long-term efficacy, it is recommended that a minimum of 3 years of therapy is used. Many gaps in the evidence base exist, particularly around long-term benefit and use in children.

INTRODUCTION

Allergic rhinoconjunctivitis (AR) is an allergic disorder of the nose and eyes, resulting in a chronic, mostly eosinophilic, inflammation of the nasal mucosa and conjunctiva [1,2]. Allergic rhinitis, with or without conjunctivitis, is one of the most prevalent allergic diseases affecting around a fifth of the general population [3,4,5]. It is associated with considerable loss of productivity and impaired school performance [6].

AR can usually be diagnosed from its typical presentation (Figure 1). Symptoms include itching, sneezing, watery nasal discharge and nasal congestion [2]. Commonly, there are associated ocular symptoms (watery, red and/or itchy eyes). Symptoms may be described as seasonal and/or perennial; as intermittent or persistent; or mild, moderate or severe according to their impact on the quality of life [8]. Symptoms are related to exposure to the offending allergen as well as to non-specific triggers such as smoke, dust, viral infections, strong odors and cold air [2]. Symptoms on exposure to one or more aeroallergens
supported by evidence of allergen-specific IgE sensitisation to the relevant allergens confirms the diagnosis. AR may co-exist with other forms of rhinitis (Figure 1). Additionally, AR may be associated with symptoms of sinusitis, hearing problems and asthma [2].

The aims of AR management are to control symptoms and reduce inflammation. Where possible, allergen avoidance can be recommended. Effective allergen avoidance is however often not feasible [9,10]. Many patients rely on pharmacotherapy with, for example, oral or topical antihistamines, intranasal corticosteroids, topical cromoglycate or leukotriene receptor antagonists [2]. However, these therapies do not alter the natural history of AR and may also induce side-effects. Additionally, despite medication, a significant number of patients continue to experience symptoms that impair their quality of life. Allergen immunotherapy (AIT) with the subcutaneous (SCIT) or sublingual (SLIT) administration of the culprit allergen(s) may not only desensitize a patient, thereby ameliorating symptoms, but also deliver long-term clinical benefits that may persist for years after discontinuation of treatment [11,12,13].

This Guideline has been prepared by the European Academy of Allergy and Clinical Immunology’s (EAACI) Guideline on Allergen Immunotherapy: Allergic Rhinoconjunctivitis Taskforce and is part of the EAACI Guidelines on Allergy Immunotherapy. This Guideline aims to provide evidence-based recommendations for the use of AIT for patients with allergic rhinitis with or without conjunctivitis. The term AR will henceforth be used to denote either allergic rhinitis or allergic rhinoconjunctivitis (see Box 1 for definitions of key terms). The primary audience are clinical allergists (specialist and subspecialists); the document may also provide guidance to other healthcare professionals (e.g. physicians from other disciplines, nurses and pharmacists working across a range of primary, secondary and tertiary care settings) dealing with AR. The development of the Guideline has been informed by a formal systematic review (SR) and meta-analysis of AIT for AR [14], with systematic review principles being used to identify additional evidence, where necessary.
Figure 1. Differential diagnosis of allergic rhinoconjunctivitis
Adapted from Roberts 2013 [7]. Local allergic rhinitis may be seen where there is only evidence of local nasal allergic sensitization [15,16,26]. There are numerous other causes of non-allergic, non-infectious rhinitis, an example is non-allergic rhinitis with eosinophilia syndrome (NARES) [7]. In individual patients, symptoms may be driven by more than one trigger. Rhinosinusitis is not included in the scope of this Guideline.
### Box 1. Key terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Allergen immunotherapy (AIT)</strong></td>
<td>Repeated allergen administration at regular intervals to modulate immune response in order to reduce symptoms and the need of medication for clinical allergies and to prevent the development of new allergies and asthma. This is also sometimes known as allergen specific immunotherapy, desensitization, hypo-sensitization or allergy vaccination.</td>
</tr>
<tr>
<td><strong>Conjunctivitis</strong></td>
<td>Inflammation of the conjunctiva characterized by watery, itchy, red eyes.</td>
</tr>
<tr>
<td><strong>Efficacy</strong></td>
<td><strong>Short-term treatment efficacy</strong>: clinical benefit to the patient while they are receiving AIT.</td>
</tr>
<tr>
<td></td>
<td><strong>Long-term treatment efficacy</strong>: clinical benefit to the patient for at least one year after cessation of the AIT course [14].</td>
</tr>
<tr>
<td><strong>Rhinitis</strong></td>
<td>Inflammation of the nasal mucosa resulting in at least two nasal symptoms: rhinorrhea, blockage, sneezing or itching.</td>
</tr>
<tr>
<td><strong>Sensitization</strong></td>
<td>Detectable allergen specific-IgE antibodies, either by means of skin prick test (SPT) and/or specific-IgE antibodies in a serum sample.</td>
</tr>
<tr>
<td><strong>Subcutaneous immunotherapy (SCIT)</strong></td>
<td>Form of AIT where the allergen is administered as subcutaneous injections.</td>
</tr>
<tr>
<td><strong>Sublingual immunotherapy (SLIT)</strong></td>
<td>Form of AIT where the allergen is administered under the tongue with formulation as drops or fast dissolving tablets which are administered through the sublingual route.</td>
</tr>
</tbody>
</table>
METHODOLOGY

This Guideline was produced using the Appraisal of Guidelines for Research & Evaluation (AGREE II) approach [17,18], a structured approach to guideline production. This is designed to ensure appropriate representation of the full range of stakeholders, a careful search for and critical appraisal of the relevant literature, a systematic approach to the formulation and presentation of recommendations and steps to ensure that the risk of bias is minimized at each step of the process. The process started on April 2015 beginning with detailed face-to-face discussions agreeing on the process and the key clinical areas to address, followed by face-to-face meetings and regular web-conferences in which professional and lay representatives participated.

Clarifying the scope and purpose of the guidelines

The scope of this EAACI Guideline is multifaceted, providing statements that assist clinicians in the optimal use of AIT in the management of patients with AR and identifying gaps for further research.

Ensuring appropriate stakeholder involvement

Members of the EAACI Taskforce on AIT for AR represented a range of 18 countries and disciplinary and clinical backgrounds, including allergists (specialist and subspecialists), pediatricians, primary care specialists, ophthalmologists, otolaryngologists, pharmacists, immunologists, nurses and patient representatives. Methodologists took the lead in undertaking the underpinning SR while clinical academics took the lead in formulating recommendations for clinical care. Representatives of immunotherapy product manufactures were given the opportunity to review and comment on the draft guidelines as part of the peer review and public comment process at the final stage. These comments were considered by Taskforce members and, where appropriate, revisions were made.

Systematic reviews of the evidence

The initial full range of clinical questions that were considered important were rationalized through several rounds of iteration to agree on one key question: What is the effectiveness, cost-effectiveness and safety of AIT in patients with AR? This was then pursued through a formal SR of the evidence by independent methodologists as previously published [19,14]; only double-blind RCTs were included in the effectiveness analyses. We continued to track evidence published after our SR cut-off date of October 31, 2015 and, where relevant, studies were considered by the Taskforce chairs. This evidence will formally be considered

This article is protected by copyright. All rights reserved.
in the systematic review update that will precede the update of this Guideline (discussed below).

**Formulating recommendations**

We graded the strength and consistency of key findings from the SR and performed meta-analyses, using a random-effects model to take into account the heterogeneity of findings [14]. These were used to formulate evidence-based recommendations for clinical care [20] (Box 2). This involved formulating clear recommendations with the strength of evidence underpinning each recommendation. Where the systematic review did not cover the clinical area, we took a hierarchical approach reviewing other evidence until we could formulate a recommendation, i.e.: (i) other systematic reviews on the subject to see if these provided any clarity on the topic; (ii) RCTs within these systematic reviews; (iii) other RCTs known to Taskforce members; and (iv) a consensus-based approach within the Taskforce. This evidence was graded as described in Box 2 using the SR results [14] and clearly labelled in the recommendation tables. Recommendations apply to all ages unless otherwise indicated in the tables. When there were insufficient pediatric data, we extrapolated from the adult recommendation where it was biologically likely that the intervention would also be effective in children, but downgraded the recommendation by at least one level. Taskforce members identified the resource implications of implementing the recommendations, barriers, and facilitators to the implementation of each recommendation, advised on approaches to implementing the recommendations and suggested audit criteria that can help with assessing organizational compliance with each recommendation.

**Peer review and public comment**

A draft of these guidelines was externally peer-reviewed by invited experts from a range of organizations, countries, and professional backgrounds. Additionally, the draft guideline was made available on public domain on the EAACI Website for a three week period in May 2017 to allow a broader array of stakeholders to comment. All feedback was considered by the Taskforce members and, where appropriate, final revisions were made in the light of the feedback received. We will be pleased to continue to receive feedback on this guideline, which should be addressed to the corresponding author.

**Identification of evidence gaps**

The process of developing this Guideline has identified a number of evidence gaps which are prioritized (Table 10).
Editorial independence and managing conflict of interests

This Guideline was funded and supported by EAACI. The funder did not have any influence on the guideline production process, on its contents or on the decision to publish. Taskforce members’ conflicts of interest were declared at the start of the process and taken into account by the taskforce chairs as recommendations were formulated. Final decisions about strength of evidence for recommendations were checked by the methodologists who had no conflict of interests in this area.
Updating the guidelines

EAACI plans to update this guideline in 2022 unless there are important advances before then.

Box 2: Assigning levels of evidence and strength of recommendations

Level of evidence

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Systematic reviews, meta-analysis, randomized controlled trials</td>
</tr>
<tr>
<td>Level II</td>
<td>Two groups, non-randomized studies (e.g., cohort, case–control)</td>
</tr>
<tr>
<td>Level III</td>
<td>One group, non-randomized (e.g., before and after, pretest, and post-test)</td>
</tr>
<tr>
<td>Level IV</td>
<td>Descriptive studies that include analysis of outcomes (single-subject design, case series)</td>
</tr>
<tr>
<td>Level V</td>
<td>Case reports and expert opinion that include narrative literature, reviews, and consensus statements</td>
</tr>
</tbody>
</table>

Grades of recommendation

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade A</td>
<td>Consistent level I studies</td>
</tr>
<tr>
<td>Grade B</td>
<td>Consistent level II or III studies or extrapolations from level I studies</td>
</tr>
<tr>
<td>Grade C</td>
<td>Level IV studies or extrapolations from level II or III studies</td>
</tr>
<tr>
<td>Grade D</td>
<td>Level V evidence or troublingly inconsistent or inconclusive studies at any level</td>
</tr>
</tbody>
</table>

Strength of recommendations

<table>
<thead>
<tr>
<th>Strength</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Evidence from studies at low risk of bias</td>
</tr>
<tr>
<td>Moderate</td>
<td>Evidence from studies at moderate risk of bias</td>
</tr>
<tr>
<td>Weak</td>
<td>Evidence from studies at high risk of bias</td>
</tr>
</tbody>
</table>

Recommendations are phrased according to the strength of recommendation: strong: “is recommended”; moderate: “can be recommended”; weak: “may be recommended in specific circumstances”; negative: “cannot be recommended”.

Approach adapted from Oxford Centre for Evidence-based Medicine – Levels of Evidence and Grades of Recommendations [20]. The adaptation involved providing an assessment of the risk of bias, based on the Cochrane risk of bias tool, of the underpinning evidence and highlighting other potentially relevant contextual information.
GENERAL CONSIDERATIONS BEFORE INITIATING AIT FOR AR

General considerations
AIT is only indicated in the presence of symptoms strongly suggestive of AR, with or without conjunctivitis (Table 1) [14,21]. Many patients will also have co-existing asthma. There should be symptoms on aeroallergen exposure with evidence of allergen specific IgE-sensitzation (positive SPT or serum specific-IgE) [14]. Identification of the allergen(s) driving symptoms is the first level of patient stratification ensuring that the correct allergen is used for AIT. Occasionally, SPT or specific-IgE results may not clearly identify the key allergen(s) causing the AR symptoms in polysensitized patients. Component resolved diagnostics may have a role in deciding which aeroallergen(s) should be chosen but definitive trials are awaited. An alternative approach is to use nasal or conjunctival provocation testing to prove the clinical relevance of the allergic sensitization in the relevant (target) organs before initiation of AIT but again definitive evidence is awaited.

AIT is indicated in those patients with moderate-to-severe symptoms (e.g. Allergic Rhinitis and its Impact on Asthma (ARIA) categories moderate-to-severe intermittent or persistent [22]), despite avoidance measures and pharmacotherapy, that interfere with their usual daily activities or sleep. AIT may also be considered in cases with less severe AR where the patient wishes to have the benefit of its long-term effect on rhinitis and a potential disease modifying effect to prevent asthma [23]. AIT products with evidence of efficacy for AR should be used when available [11,24].

Absolute and relative contraindications
Even when AIT is suitable for a patient with AR, clinicians must consider if there are any specific patient-related absolute or relative contraindications (Table 2), where the risk from AIT may outweigh the expected benefits. The summary of product characteristics (SmPC) should be reviewed for specific contraindications for individual preparations.
### Table 1. General considerations for AIT for allergic rhinoconjunctivitis*

<table>
<thead>
<tr>
<th>General indications</th>
<th>Key references</th>
<th>Contextual considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIT should be considered when all of these criteria are met:</td>
<td>Dhami 2017 [14]</td>
<td>A diagnosis of AR and evidence of IgE-sensitization were entry criteria for RCTs in the systematic review.</td>
</tr>
<tr>
<td>- symptoms strongly suggestive of AR, with or without conjunctivitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- there is evidence of IgE-sensitization (positive SPT and / or serum specific-IgE) to one or more clinically relevant allergen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- experience moderate-to-severe symptoms which interfere with usual daily activities or sleep despite regular and appropriate pharmacotherapy and/or avoidance strategies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIT may also be considered in less severe AR where a patient wishes to take advantage of its long-term effect on AR and potential to prevent asthma with grass pollen AIT</td>
<td>Kristiansen 2017 [25] Halken 2017 [23]</td>
<td>AIT has the potential to alter the natural history of disease reducing AR symptoms after completing an adequate period of immunotherapy and preventing the development of asthma in the short term, up to 2 years post AIT.</td>
</tr>
<tr>
<td>Standardized AIT products with evidence of efficacy in the clinical documentation should be used</td>
<td>Dhami 2017 [14]</td>
<td>These products have consistent formulations and so different batches are likely to have similar effects. The meta-analysis [14] reveals a considerable heterogeneity in effectiveness between products and therefore a product-specific evaluation</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
The Summary of Product Characteristics (SmPC) should be checked for licensed indications which may differ between preparations.

Table 2. General contraindications for AIT for allergic rhinoconjunctivitis*

<table>
<thead>
<tr>
<th>Key references</th>
<th>Contextual considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The following are considered to be contraindications:</strong></td>
<td></td>
</tr>
<tr>
<td>Uncontrolled or severe asthma</td>
<td>Bernstein 2004 [31]; Bousquet 1989 [29]; Calderon 2012 [34]; Cox 2011 [28]; CSM 1986 [32]; Lockey 2001 [30]; Normansell 2015 [33]; Pfaar 2014 [11]; Pitsios 2015 [27]</td>
</tr>
<tr>
<td>Active, systemic autoimmune disorders (unresponsive to treatment)</td>
<td>Cabrera 1993 [35]; Fiorillo 2006 [37]; Pfaar 2014 [11]; Sánchez-Morillas 2005 [36]; Pitsios 2015 [27]</td>
</tr>
<tr>
<td>Active malignant neoplasia</td>
<td>Larenas-Linnemann 2016 [39]; Pfaar 2014 [11]; Wöhrl 2011 [38]</td>
</tr>
</tbody>
</table>
With the following, AIT should only be used with caution when benefits outweigh potential risks in an individual patient:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reference(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partially controlled asthma</td>
<td>Virchow 2016 [41]</td>
<td>One trial with SLIT tablet [41] included some subjects with partially controlled asthma without compromising safety; it is important that confirmatory evidence is acquired.</td>
</tr>
<tr>
<td>Beta-blocker therapy (local or systemic)</td>
<td>Cleaveland 1972 [44]; Hiatt 1985 [42]; Lang 1995 [45]; Pfaar 2014 [11].</td>
<td>Weak evidence of risk. May compromise a patient’s ability to tolerate an episode of anaphylaxis. This must be considered when deciding whether AIT is appropriate.</td>
</tr>
<tr>
<td>Severe cardiovascular diseases, e.g. coronary artery disease</td>
<td>Larenas-Linnemann 2016 [39]; Linneberg 2012 [46]</td>
<td>Weak evidence of risk from case reports, case series of adverse events with AIT or expert opinion based on clinical experience. Taskforce considered that careful consideration on a case-by-case basis with discussion between patient and the treating physician is required before deciding whether or not to commence AIT.</td>
</tr>
<tr>
<td>Systemic autoimmune disorders in remission or organ specific</td>
<td>Larenas-Linnemann 2016 [39], Pitsios 2015 [27].</td>
<td></td>
</tr>
<tr>
<td>Severe psychiatric disorders</td>
<td>Pitsios 2015 [27].</td>
<td></td>
</tr>
<tr>
<td>Primary and secondary Immunodeficiencies</td>
<td>Larenas-Linnemann 2016, [39], Pitsios 2015 [27]</td>
<td></td>
</tr>
<tr>
<td>History of serious systemic reactions to AIT</td>
<td>Calderon 2012 [34]</td>
<td></td>
</tr>
</tbody>
</table>

*The Summary of Product Characteristics (SmPC) should also be checked for product specific contraindications which may differ between preparations.*
ALLERGEN IMMUNOTHERAPY FOR AR: EVIDENCE-BASED, CLINICAL RECOMMENDATIONS

To underpin this guideline, a SR of the AIT literature was undertaken [14]. In general, the meta-analysis suggested that both SCIT and SLIT are effective for AR. They were associated with reductions in symptoms and with medication use. There were insufficient data to determine which of SCIT and SLIT are most effective.

Moderate to substantial heterogeneity was observed in some outcomes evaluated in the meta-analysis [14]. This heterogeneity can be explained by the study design (particularly the different outcomes used), study population and the products evaluated. There are data to indicate which preparations are most likely to be effective; so an individual product-based evaluation of the evidence for efficacy is strongly recommended before treatment with a specific product is initiated. Not all AIT products provide sufficient data to support their efficacy in clinical practice [14]. As a result of this, the recent German, Austrian and Swiss guideline has followed a product specific approach [11]. This approach is more difficult across Europe with differing local regulations [47] and availability of products [48]. The specific recommendations in this guideline need to be seen in this context with only standardized AIT products with evidence of efficacy in the clinical documentation prescribed. The only exception should be orphan allergens where only a few patients are affected; these are discussed below in the specific allergen section.

SCIT immunotherapy is in general recommended for the treatment of AR in children and adults with moderate-to-severe disease that is sub-optimally controlled despite pharmacotherapy [14](Table 3). The evidence for short-term benefit for continuous SCIT is stronger for seasonal rhinitis (Grade A for adults) than for perennial rhinitis (Grade B for adults), where fewer studies have been performed and results are more heterogeneous (Table 3). SCIT is recommended for seasonal disease whether pre- or pre/co-seasonally (Table 3, Grades A for adults). Pre/co-seasonal therapy benefits from a shorter course of treatment but the one head-to-head trial suggests that continuous therapy may be more effective [49].

SCIT may be administered in aqueous formulation (rarely in Europe) or as a depot adsorbed on aluminum hydroxide or tyrosine. SCIT using either unmodified or modified allergen extracts is recommended for treatment of AR and provides short-term benefit (Table 3, Grade A for adults). This is based on evidence from the meta-analysis [14] that showed both unmodified allergen extracts (SMD [95%CI] -0.65 [-0.93, -
and allergoids/polymerized extracts (-0.60 [-0.89, -0.31]) to be effective in reducing symptoms compared to placebo, with additional support from reduced medication requirements and combined symptom-medicaiton scores. Although clinical trials of modified allergens involved shorter courses of treatment, there have been no head-to-head comparisons with unmodified preparations evaluating efficacy or adverse events using a placebo-controlled, randomized design.

In general, SLIT can be recommended for the treatment of seasonal AR in adults and children. SLIT has been shown to provide short term benefit during therapy with moderate-to-severe disease that is sub-optimally controlled despite pharmacotherapy (Table 3) [14]. SLIT is recommended to be taken either continuously or pre-/co-seasonally commencing a minimum of two months and ideally four months prior to the start of the pollen season (Grade A for adults).

SLIT may be taken daily either as fast-dissolving tablets or drops that are retained under the tongue for at least one minute and then swallowed. Both are recommended (Grade A and B respectively for adults) based on short-term reductions in symptoms and rescue medication for sublingual tablets for seasonal AR (Table 3). There are only convincing evidence for effectiveness of SLIT tablet in perennial AR (Grade A)(Table 3).

Sublingual grass pollen tablet immunotherapy for at least three years is recommended (Grade A) for the short-term treatment of grass pollen driven AR in adults [86,87,108,109]. Sublingual house dust mite (HDM) tablet immunotherapy for at least one year is recommended (Grade A) for the short-term treatment of perennial HDM AR in adults [50,51,52,53,54,55].

While higher doses and/or increased cumulative doses may be more effective, they may be associated with more side-effects [56,57,58]; decisions on dose must be made balancing efficacy and side-effects [59].
Table 3. Recommendations: AIT for treatment of allergic rhinoconjunctivitis: schedules, products, formulations

For each recommendation, an individual product-based evaluation of the evidence for efficacy is recommended before treatment with a specific product is initiated given the heterogeneity in the meta-analysis results.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Adults</th>
<th>Children and adolescents</th>
<th>Strength of recommendation</th>
<th>Other considerations</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evidence level</td>
<td>Grade of recommendation</td>
<td>Evidence level</td>
<td>Grade of recommendation</td>
<td></td>
</tr>
<tr>
<td><strong>SCIT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Seasonal allergic rhinitis</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous SCIT is recommended for seasonal AR for short-term benefit in those with moderate-to severe disease</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>B</td>
<td>Strong recommendations for adults based on low risk of bias studies [60,61,62]. Moderate recommendation for children as just one one open RCT with risk of bias reporting solely pediatric data [63].</td>
</tr>
<tr>
<td>Pre- and pre-/co-seasonal SCIT is recommended for seasonal AR for short-term benefit</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>B</td>
<td>Strong recommendation for adults based on low risk of bias studies [69,70,71,72]. Moderate recommendation for children as only combined adult/pediatric data, one study with low risk of bias [73] and with one with unclear risk of bias RCTs [74] available.</td>
</tr>
</tbody>
</table>
Continuous grass pollen SCIT is recommended for seasonal AR for short and long-term benefit

<table>
<thead>
<tr>
<th>Type of Allergy</th>
<th>Class</th>
<th>Grade</th>
<th>Level</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>Strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>recommendation for adults based on above evidence plus two low risk of bias long-term studies [83,84]. Moderate recommendation for children as one long-term open RCT with risk of bias [63].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A few adult studies and one pediatric study (designed to assess whether SCIT prevents asthma) demonstrating long-term effectiveness.</td>
</tr>
</tbody>
</table>

Perennial allergic rhinitis

Continuous SCIT is recommended for perennial AR due to HDM for short-term benefit

<table>
<thead>
<tr>
<th>Type of Allergy</th>
<th>Class</th>
<th>Grade</th>
<th>Level</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>B</td>
<td>I</td>
<td>Strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>recommendation for adults based on one study with low risk of bias [67] plus one with high risk of bias [68]. No exclusive pediatric data. Moderate recommendation for children, based on extrapolation from adult studies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Few small adult studies, considerable heterogeneity [66] and risk of systemic allergic side-effects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Allergy</th>
<th>Class</th>
<th>Grade</th>
<th>Level</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistent results, low risk of severe systemic allergic side-effects. No exclusive pediatric randomized, placebo-controlled data.</td>
</tr>
</tbody>
</table>

All

Modified (allergoids) and unmodified allergen extracts for pollens and HDM SCIT are recommended for AR for short-term benefit

<table>
<thead>
<tr>
<th>Type of Allergy</th>
<th>Class</th>
<th>Grade</th>
<th>Level</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>Strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>recommendation for adults based on high quality studies for both modified [61,67,76,77,78] and non-modified [60,61,69,70,71,72,73,76,79,80] allergen extracts. Weak recommendation for children as no exclusive pediatric randomized, placebo-controlled data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistent results, low risk of severe systemic allergic side-effects. No exclusive pediatric randomized, placebo-controlled data.</td>
</tr>
</tbody>
</table>


Modified and non-modified: Bousquet 1990 [74].

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>SLIT</th>
<th>Seasonal allergic rhinitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Level</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td><strong>Perennial allergic rhinitis</strong></td>
<td></td>
</tr>
<tr>
<td>SLIT with aqueous solutions may not be recommended for perennial AR for short-term benefit.</td>
<td>I</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>SLIT with HDM tablets is recommended for AR for short-term benefit.</td>
<td>I</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Continuous: year round therapy. Pre-seasonal: before a pollen season. Co-seasonal: during a pollen season. Not all AIT preparations are licensed for children and adolescents. Long-term is defined as at least one year after cessation of the AIT course. See allergen factors section for other specific allergens.

Other approaches of AIT for AR

Other approaches aim to improve patient convenience and adherence with shorter courses, whilst improving or maintaining efficacy and reducing the risk of systemic side effects (Table 4). As such, adjuvants to AIT extracts are possible candidates [112]. For example, TLR-4 agonists (Th1-inducing adjuvant monophosphoryl lipid A) in combination with a grass allergoid has demonstrated effectiveness [113], although in a phase three trial efficacy was modest [114] (Grade A for adults, B for children) and there are no head-to-head comparisons with conventional preparations. There is also one trial demonstrating efficacy for this approach with ragweed pollen [172]. The TLR-9 agonist (Bacterial DNA oligonucleotides containing a CpG motif) fused to Amb a 1, the major allergen of ragweed showed efficacy in a phase two trial [115] although this was not observed in a subsequent phase three trial. The combination of anti-IgE injections with conventional and rush AIT with non-modified extracts has been proven to be effective with a marked reduction in systemic side-effects in studies of children [116] and adults [117] (Grade A recommendation). This is an expensive approach and there is concern as to when and how to discontinue the anti-IgE when AIT maintenance therapy is achieved [118].

Recombinant AIT is attractive as it allows accurate standardization of allergen products, has potential for personalized therapy based on individual allergen sensitivities and a hypothetical lower risk of inducing new sensitizations. Subcutaneous recombinant birch (Bet v 1) [119] and a five-recombinant grass allergen mix [75] have been shown to be efficacious with no safety concerns (Grade A for adults, B for children). However, there are no commercially products available at present. A recombinant B cell epitope-based vaccine, comprising a recombinant hybrid grass allergen mix combined with a hepatitis B domain surface Pre-S protein as an immunologic carrier has shown efficacy in a phase two trial [120]. T cell peptide immunotherapy for cat allergy using mixtures of short T cell epitopes via the intradermal route, had promising
results in environmental chamber phase two studies [121]; however, it has been reported that a subsequent phase three study did not demonstrate effectiveness [122]. Studies with other allergen peptide approaches are in progress [124].

There has been recent interest in the use of alternative modalities of delivery including the epicutaneous, intradermal and intra-lymphatic routes. In RCTs, epicutaneous grass pollen immunotherapy (EPIT) has shown modest benefit [125] although accompanied by local eczematous reactions at the patch application site. Intradermal grass pollen immunotherapy inhibited allergen-induced cutaneous late responses although in a subsequent RCT it was ineffective and there was evidence of exacerbation of seasonal outcomes and Th2 inflammation in the skin [126]. The intra-lymphatic route, using a grass pollen extract and a modified cat allergen extract, showed efficacy in some trials [127,128] but not in others [129].
Table 4. Recommendations: other approaches for AIT for treatment of allergic rhinoconjunctivitis

For each recommendation, an individual product-based evaluation of the evidence for efficacy is recommended before treatment with a specific product is initiated given the heterogeneity in the meta-analysis results.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Adults</th>
<th>Children and adolescents</th>
<th>Strength of recommendation</th>
<th>Other considerations</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>A combination of the TLR-4 agonist monophosphoryl lipid A with pollen allergoid is recommended for AR</td>
<td>I</td>
<td>III</td>
<td>B</td>
<td>Strong recommendation for adults based on four low risk of bias studies [113,114,131,172]. Weak recommendation for children [130].</td>
<td>Consistent randomized controlled data; only one ragweed pollen study, others grass pollen. Only one uncontrolled before and after study pediatric study [130].</td>
</tr>
<tr>
<td>Combining anti-IgE injections with AIT for AR is recommended for reducing side-effects</td>
<td>I</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation based on one low risk of bias adult [117] and one low risk of bias pediatric [116] study.</td>
<td>Consistent evidence but the required length of co-therapy unclear.</td>
</tr>
<tr>
<td>Recombinant AIT can be recommended for birch and grass pollen allergy</td>
<td>I</td>
<td>-</td>
<td>B</td>
<td>Moderate recommendation based on 2 double-blind placebo-controlled RCTs of unclear risk of bias [75,119].</td>
<td>Some evidence of benefit for adults, no pediatric data.</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
ALLERGEN FACTORS THAT MAY AFFECT THE EFFICACY OF AIT for AR

Standardization of allergen extracts

For the common allergens, many companies now provide characterized, standardized, stable preparation for AIT as recommended by EMA [47,132]. For others, such as molds, there are problems with the complexity, variability and stability of the allergens [133]. The lack of standardized extracts may hamper the diagnosis of eligible patients for AIT and may impede the effectiveness of AIT [133,134]. Additionally, non-standardized preparations may vary between batches increasing the potential for side effects. Further purification and characterization of such allergens [134,135,136] may result in better extracts for the future. Where possible, standardized allergen products should be used for AIT. Further discussion is available in a position paper on regulatory aspects of AIT [47].

Formulation of SLIT preparations

In deciding on the appropriate preparation to use for AIT, the formulation should be taken into account. For example, three large studies have shown efficacy for HDM SLIT tablets [52,53,137] whereas three HDM SLIT studies with sublingual drops were negative [107,140,146], and another only demonstrated efficacy in the first and not the second year [50]. However, many factors such as differences in allergen content [141], administered volume, number of participants and statistical power of the study may explain the differences between tablets and drop trials. We recommend that AIT products with evidence of efficacy in the clinical documentation should be used when they are available.

Allergen mixtures

Both mixtures of grass pollen and mixtures of tree pollen are frequently used in AIT and such an approach is effective [14]. The use of different, non-taxonomically related allergens mixed in one AIT product has been evaluated in a very limited number of studies. One SCIT study showed that a depigmented-polymerized mixed grass/birch pollen extract was effective over placebo [142]. A small study in children demonstrated efficacy using a mixture of grass pollen and HDM SLIT [143]. SLIT drops that employed a momomeric *Phleum pratense* grass pollen extract
was more effective when given alone compared to when given in an equivalent dose as part of a combination with a nine-pollen, multi-allergen, sublingual extract [100].

There are a number of potential drawbacks of mixing allergens including a dilutional effect, potential allergen degradation due to enzymatic activity of some allergens and the difficulties of adequately demonstrating efficacy of a high number of allergen combinations and/or different products. The EMA has recommended that only homologous allergens (usually ones that are taxonomically related, for example a mixture of grass pollen extracts [56]) should be mixed and that allergens with enzymatic activity (e.g. HDM) should be never used in a mixture. We therefore recommend only homologous allergens to be mixed in AIT preparations until further evidence is available substantiating the efficacy of other mixtures (Grade A) (see online supplement, Table S1). Alternatively, extracts should be given separately.

Specific allergens

In the recent meta-analysis, there were sufficient SCIT and SLIT studies for subgroup analyses by specific allergens [14]. Short-term effectiveness was demonstrated for HDM (symptoms score SMD -0.73; 95%CI -1.37, -0.10), grass pollen (-0.45; -0.54,-0.36); tree pollen (-0.57; -0.92, -0.21) and weed pollen (-0.68; -1.06, -0.30). However, there was substantial heterogeneity for all allergens, particularly molds (-0.56; -2.29, 1.18), suggesting that different preparations may be more or less effective. Before a product is used, an individual product-based evaluation of the evidence for efficacy is recommended.

There are some orphan allergens where robust data from RCTs are sparse or non-existent. Where there is a clinical need, the available evidence of efficacy and safety needs to be weighed against the needs of the individual patient. Where therapy is considered in the patient’s best interest, an early evaluation of its impact on the patient’s clinical symptoms is required to determine whether or not therapy should be continued. The generation of controlled clinical trial data to assess efficacy and safety of these orphan products should be encouraged. There will always be rare allergens where such studies are uneconomic and have to be regulated as named patient products [47].
Table 5. Recommendations: allergen factors that affect the efficacy of AIT for allergic rhinoconjunctivitis

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Adults</th>
<th>Children and Adolescents</th>
<th>Strength of recommendation</th>
<th>Other considerations</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evidence</td>
<td>Grade of recommendation</td>
<td>Evidence</td>
<td>Grade of recommendation</td>
<td></td>
</tr>
<tr>
<td>Either a single allergen species or a mixture of well-documented homologous allergens from the same biological family are recommended for patients with AR who are allergic to grass pollens, tree pollens or HDM</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>A</td>
<td>Strong recommendations on basis of low risk of bias grass pollen (single grass, e.g. [85,98,99]); mixture of grasses, e.g. [56, 145]), tree pollen (single tree, e.g. [70, 61]); mixture of trees, e.g. [69]); and house dust mite (single, e.g. [66]; mixture, e.g. [147]) studies.</td>
</tr>
<tr>
<td>Mixtures of allergens from non-related biological families are not recommended for AIT.</td>
<td>I</td>
<td>B</td>
<td>-</td>
<td>C</td>
<td>Strong recommendation against use of allergen mixtures is based on the little available evidence.</td>
</tr>
</tbody>
</table>

Examples of homologous, taxonomically related allergens from the same biological family are the grasses or tree pollens. Also see Table 3.
PATIENT FACTORS THAT MAY IMPACT ON THE EFFICACY OF AIT FOR AR

The approach to immunotherapy is a good example of patient stratification. Immunotherapy will only work when directed to the specific allergen(s) driving symptoms. So identifying the driving allergen(s) with a thorough history and assessment of allergic sensitization is an essential example of patient stratification. Not all patients benefit from AIT [14] and further stratification approaches to indentify the responders would be useful.

**Polysensitized patients**

Epidemiological data indicate that most patients with AR are polysensitized [148]. Consequently, consideration needs to be given as to whether patients are: (i) clinically mono-allergic (where only one allergen is driving symptoms) and polysensitised; or (ii) poly-allergic (symptoms with overlapping exposure to multiple different allergens) and polysensitized. Immunotherapy with a single allergen extract is effective in the first [149] while immunotherapy has been shown to be ineffective [150] or less effective in the last situation [151]. This may be apparent from the history or may need investigation with component resolved diagnostics or assessment with nasal or conjunctival provocation challenges where the clinician is experience in these diagnostic procedures [137]. Polysensitized patients who are mono-allergic are recommended to receive AIT for the specific allergen that is driving their AR symptoms (Grade A).

For a polysensitized patient who is poly-allergic for homologous (biologically related) allergens (e.g. two grass pollens), a single allergen preparation or a mixture of two homologous allergens is recommended (Grade B)[137]. For poly-allergic patients where allergens are not homologous, separate AIT preparations for one or two of the clinically most important allergens might be recommended with doses given 30-60 minutes apart at separate locations when two are selected (Grade C)[137,32]. This represents a trade-off between efficacy and safety as both seem to be dose-dependent. More studies are needed to further address this important clinical challenge.
Co-existing asthma

Co-existing asthma is seen in many participants in the published AR AIT studies [14]. Co-existing asthma has no impact on the efficacy of AIT for AR [103] and may also lead to improvement in asthma [43]. When controlled, mild-to-moderate asthma does not seem to be a safety issue with AIT (Grade A recommendation) [41,43]. In one large recent asthma SLIT trial, participants with not well controlled asthma based on an Asthma Control Questionnaire (ACQ-6) were included safely in the study [41]. We await confirmatory evidence and emphasize that efforts should be taken to control asthma before commencing AIT. Uncontrolled or severe asthma are definitely considered to be an absolute contraindication to AIT [25,26,27,28,29,30,31].

Specific pediatric issues

Similarly to adults, AIT should be considered in pediatric patients with AR with evidence of IgE-sensitization to clinically relevant allergens (Grade A)(Tables 1, 3).

The evidence for the efficacy of AIT for AR is limited in children younger than five years of age. Some clinical studies have shown the efficacy and safety of both SCIT and SLIT in preschool children [88,152,153,154,155], and children were included from five years onward in several of the well-powered SLIT tablet trials [98,156]. Experience suggests that repeated injections of SCIT may be stressful in pre-school children. It is recommended that the decision to start the treatment has to be taken on a case by case basis together with the patients and their family (Grade D). The decision should depends on several factors, such as the severity of the allergic disease, the clear exposure-symptoms pattern supported by allergic sensitization testing, the impairment of the health-related quality of life and the expected acceptance and adherence to the AIT.

There are more data to drive recommendations for school age children and adolescents although major gaps still exist (Table 3). Many of the SCIT trials are now relatively old, many enrolled only a few children and/or did not present pediatric only analyses. Continuous and pre-
and pre/co-seasonal SCIT can be recommended (Grade B) for children with seasonal AR (Table 3). Continuous SCIT is also recommended for perennial AR but with a weaker grade due to the lack of exclusive pediatric data (Grade C) (Table 3). There are no exclusive pediatric, placebo-controlled data for allergoid preparations but one controlled trial with a pre-seasonal treatment regimen has indicated long-term efficacy of pre-seasonal grass pollen immunotherapy in this age group [157]. Two further open RCTs also suggest that SCIT for grass pollen driven AR does have a long-term benefit [63,158].

For SLIT, there are more recent pediatric trial data to support this approach. In general, pre/co-seasonal and continuous SLIT is recommended for seasonal AR (Grade A) (Table 3). Both tablet and aqueous formulations are recommended (Grade A) (Table 3). There is now one recently published trial supporting the long-term effectiveness for a grass pollen tablet and reduction in asthma symptoms [110,111] (Grade A). For perennial allergic rhinitis, the evidence is not as good. There are no consistent data to recommend SLIT with aqueous solutions for perennial allergic rhinitis but the SLIT tablet approach has been demonstrated to be effective in the short term in mixed adult/pediatric studies [51,55] (grade A).

**Elderly**
A detailed allergy history is especially important when evaluating older adults suffering with rhinitis as other types of rhinitis may mimic AR symptoms. There are very few studies specifically evaluating the use of AIT in the elderly (defined here as >65 years as this is usually an exclusion criteria in AIT trials) but SLIT with grass pollen and HDM has been demonstrated to be effective and safe in two studies [159,175]. AIT elicits clinical responses comparable to studies with younger patients. Another important consideration in this age group, when contemplating treatment with AIT, is the higher prevalence of comorbidities. Examples are hypertension, coronary artery disease, cerebrovascular disease, malignancy and/or cardiac arrhythmias. Also, treatment with medication such as beta-blockers that may impair the treatment of anaphylaxis with adrenaline (epinephrine) (see Table 2). AIT can be recommended in otherwise healthy elderly patients with AR whose symptoms cannot be adequately controlled by pharmacotherapy (Grade A for SLIT, B for SCIT).

This article is protected by copyright. All rights reserved.
Pregnancy
There is one prospective study investigating the safety of AIT in pregnancy [161] and several retrospective studies that suggest that there is no greater risk of prematurity, fetal abnormality, or other adverse pregnancy outcome in women who receive AIT during pregnancy [39]. Observations about anaphylaxis in pregnant and breastfeeding women are largely derived from case reports and are generally reassuring [162]. However, the balance between benefits and potential risks in pregnant patients needs to be discussed with the patient. Systemic reactions and their resultant treatment can potentially harm the baby and/or mother. It is therefore recommended that AIT is not initiated during pregnancy (Grade D) but, if already initiated, AIT may be continued during pregnancy or breastfeeding in agreement with the patient’s general practitioner (GP) and obstetrician if former AIT treatment has previously been tolerated well (Grade C).

Adherence
There is a great variance between studies (both real life studies and clinical trials) in the criteria used for evaluating adherence and in the rates of adherence [163,164,165,166,167,168,169]. The range of reported adherence varied from 18% to over 90%, higher in clinical studies than real-life surveys with overlapping ranges for SCIT and SLIT. The main causes for poor adherence are reported to be side effects, inconvenience, lack of efficacy or forgetting to use [163,164,165,167,168,170]. A few other factors have been associated with poor adherence, for example age and patient’s educational level. Potential ways to improve adherence are the use of reminder mechanisms (e.g. alarm on mobile phone, internet-based tools, short message service (SMS) electronic reminders, social networks, mobile applications (apps) and monitoring systems – this approach should be tailored to the patient) (Grade C). Patient education and good communication between physician and patient are key (Grade C)[169,137]. One randomized study suggests that adherence is much better with three monthly follow up appointments compared to six or 12 monthly follow-up (Grade B)[171]. Recommendations are summarized in Table 6.

This article is protected by copyright. All rights reserved.
Table 6: Recommendations: patient factors that affect the efficacy of AIT for allergic rhinoconjunctivitis

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Evidence level</th>
<th>Grade of recommendation</th>
<th>Strength of recommendation</th>
<th>Other considerations</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Polysensitized patients</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysensitized patients who are mono-allergic are recommended to receive AIT for the specific allergen that is driving their AR symptoms</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation, based on RCTs with low risk of bias [56, 109]</td>
<td>Expert review of RCTs [137,149]</td>
<td>Didier 2007 [56], Demoly 2016 [137], Durham 2012 [109], Nelson 2013 [149]</td>
</tr>
<tr>
<td>Polysensitized patients who are poly-allergic for taxonomically related homologous allergens can be recommended to receive either a single allergen or a mixture of homologous allergens from that biological family that covers all the major allergens</td>
<td>II</td>
<td>B</td>
<td></td>
<td>Expert review of RCT data</td>
<td>Demoly 2016 [137], EMA advice [132]</td>
</tr>
<tr>
<td>Patients who are poly-allergic for non-homologous allergens may be recommended to start AIT with either the allergen responsible for most of their allergic rhinoconjunctivitis symptoms or separate treatment with the two clinically most important allergens</td>
<td>II</td>
<td>C</td>
<td></td>
<td>Expert review of RCT data</td>
<td>Demoly 2016 [137], EMA advice [132]; Pfaar 2013 [142]</td>
</tr>
<tr>
<td><strong>Co-existing asthma</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled asthma is not a contraindication to AIT</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation based on low risk of bias studies [43]</td>
<td>Evidence described in asthma AIT systematic review [43].</td>
<td>Dhami 2017 [14], Virchow 2016 [41], Dhami 2017 [43]</td>
</tr>
<tr>
<td><strong>Specific pediatric issues</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consideration of AIT is recommended in pediatric patients with AR with evidence of IgE-sensitization to clinically relevant allergens</td>
<td>I</td>
<td>A</td>
<td>Strong recommendations from low risk of bias studies [eg 90,91,92,98]</td>
<td>See Table 3 for detailed review.</td>
<td>Bufe 2009 [98], Caffarelli 2000 [90], Pajno 2003 [91], Steimach 2012 [92]</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>In children aged 2-5 years of age, it may be recommended that consideration should be given to likely benefits and risks associated with AIT for AR</td>
<td>IV</td>
<td>D</td>
<td>Weak recommendation based on little available evidence</td>
<td>May be more difficult to make a definitive diagnosis of AR in pre-school children. Safety seems to be similar in this age group as per older patients.</td>
<td>Rienzo 2005 [173], Rodriguez-Santos 2008 [174]</td>
</tr>
<tr>
<td>Elderly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIT can be recommended in otherwise healthy elderly patients (&gt;65 years) with AR</td>
<td>I</td>
<td>A (SLIT), B (SCIT)</td>
<td>Moderate recommendation for SLIT based on two consistent RCT studies of unclear risk of bias [159, 175]. Moderate recommendation for SCIT based on only one relatively small, low risk of bias study [160].</td>
<td>Detailed clinical assessment is recommended to exclude other types of rhinitis in elderly patients.</td>
<td>Bozek 2012 [175], 2014 [159], 2016 [160]</td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunotherapy is not recommended to be initiated during pregnancy</td>
<td>V</td>
<td>D</td>
<td>Based on balance of additional risk versus benefits.</td>
<td>Expert opinion</td>
<td></td>
</tr>
<tr>
<td>Maintenance immunotherapy may be recommended to be continued (at the achieved dose) during pregnancy</td>
<td>III</td>
<td>C</td>
<td>Weak recommendation based one cohort study [161] and one case series [40]</td>
<td>Shaikh 2012 [161], Metzger 1978 [40]</td>
<td></td>
</tr>
<tr>
<td>Adherence</td>
<td>Level</td>
<td>Recommendation</td>
<td>Evidence</td>
<td>Method of randomization</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>It is recommended that patients should be informed about how immunotherapy works and the need to take regular doses and complete the course of treatment. Reminders are recommended for patients on immunotherapy to improve treatment adherence. Patients receiving SLIT can be recommended to be followed up every 3 months to improve treatment adherence.</td>
<td>IV</td>
<td>C</td>
<td>Based on a survey of allergists.</td>
<td>Based on observational data</td>
<td>Scurati 2010 [164]</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>C</td>
<td>One interventional study (educational session, phone calls, emails)</td>
<td>Consider mobile phone texts, social media and applications (apps)</td>
<td>Savi 2013 [169]</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>B</td>
<td>Moderate recommendation based on one quasi-randomized study [171].</td>
<td>Method of randomization unclear.</td>
<td>Vita 2010 [171]</td>
</tr>
</tbody>
</table>
HOW LONG AIT SHOULD BE CONTINUED FOR IN AR?

Most clinical studies evaluating the efficacy of AIT follow participants for one or two years on therapy. The EMA currently recommends an experimental, randomized, controlled design involving three years of therapy with a two year follow-up period off treatment. These studies demonstrate a sustained benefit for three years of SLIT-tablet grass pollen therapy for two years off therapy [94,109,111,176]. There are some data to suggest that HDM SLIT tablets give sustained benefit for at least one year after one year of therapy in one RCT [108] and also after three years of therapy in a SLIT drop RCT [177]. More data are required for HDM and evidence is required on the optimal duration of therapy. Grass pollen SCIT for three to four years has been shown to result in long-term efficacy for three years after discontinuation [83]. In a recent study, either SCIT or SLIT tablets were effective compared to placebo over two years but two years was insufficient for long-term efficacy as measured one year off treatment (65). In another adult study, participants randomized to three years of ragweed continued to benefit after two years post SCIT [178]. Similarly, children randomized to three or five years HDM SCIT had similar outcomes at five years [179]. So, in summary, for patients with AR a minimum of three years of AIT is recommended in order to achieve long-term efficacy after treatment discontinuation (Grade A)(Table 7).
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Evidence level</th>
<th>Grade of recommendation</th>
<th>Strength of recommendation</th>
<th>Contextual comments</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIT is recommended as benefit is seen from the first year of therapy</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation based on low risk of bias studies (e.g., [53,56,58,69,72,74,85,94])</td>
<td>Generally consistent data</td>
<td>Dhami 2017 [14], Bergmann 2014 [53], Bousquet 1990 [74], Didier 2015 [94], Dahl 2006 [85], Frew 2006 [58]</td>
</tr>
<tr>
<td>It is recommended that in order to achieve long-term benefits, immunotherapy should be continued for a minimum of 3 years.</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation based on low risk of bias long-term adult studies [56,83,84,94,108,56,109,145], one high risk of bias pediatric study (due to its open design although it was randomized) [63] plus one recently published low risk of bias pediatric study [111].</td>
<td>Consistent data</td>
<td>Adult: Arroabarren 2015 [179], Didier 2007 [56], Didier 2013 [108], Didier 2015 [94], Durham 1999 [83], Durham 2012 [109], James 2011 [84], Lin 2016 [177], Naclerio 1997 [178], Ott 2009 [145], Scadding 2017 [65] Pediatric: Jacobsen 2007 [63], Stelmach 2012 [223], Valovirta 2017 [111]</td>
</tr>
</tbody>
</table>
ADVERSE EVENTS WITH AIT FOR AR

SCIT

SCIT is a safe and well-tolerated treatment when the injections are given in a medical setting by experienced personnel trained in the early recognition of systemic reactions and how to manage them [11,180,181,182]. There must be immediate access to resuscitation equipment and a physician trained in the management of anaphylaxis (Grade C).

Systemic allergic adverse reactions to SCIT can range between mild to severe adverse reactions of the skin, upper and lower airways, gastrointestinal tract, or the cardiovascular system (see Table S2 in online supplement for details of classification [123]. In a three year real life US survey study that included over 20 million injection visits, systemic reactions were reported in 0.1% of injections; there were no fatalities [182] although four were reported in a follow-up survey by the same group [183]. Fatal allergic adverse reactions have though been reported in earlier surveys [30,31]. Over 80% of reactions occurred within 30 minutes after injection; very few of the delayed ones were severe. It is therefore recommended that patients stay in clinic for at least 30 minutes after an injection (Grade C).

A European real life, prospective, survey performed by members of the Immunotherapy Interest Group of EAACI on 4316 patients in France, Germany and Spain was published after our SR was completed [184,185]. It demonstrated that SCIT and SLIT for respiratory allergy are safe in general in the pediatric and adult population and found only a low number of systematic reactions (SRs). For SCIT, SRs were found in 2.1% of all SCIT treated patients. Independent risk factors for SRs during SCIT were the use of natural extracts, the absence of symptomatic allergy medications, asthma diagnosis, sensitization to animal dander or pollen, cluster regimens (versus rush) and a previous episode of anaphylaxis. Further possible risk factors for systemic adverse reactions have been described (Table 9, [11]). When one or more severe adverse reactions occur, the allergist (specialist and subspecialists) should re-evaluate the benefits and risks of SCIT therapy with the patient and decide whether or not treatment should be continued (Grade D). In any case, cessation of treatment or adaptation of the dosing-schemes for the next injection should follow the summary of product characteristics (SmPC).

This article is protected by copyright. All rights reserved.
Redness, itching or swelling represent local reactions at the injection site and occur frequently after around half of injections [14]. Local measures (e.g., cooling or topical glucocorticoids) or oral antihistamines may be helpful for these reactions. Increased local adverse reactions do not predict an increased individual risk of a systemic adverse reaction [186]. In case of enlarged local adverse reactions (redness and/or swelling >10 cm in diameter) occur at the injection site, the SmPC provides adaptation of the dosing-schemes for the next injection. When local adverse effects occur, pre-medication with an H1-antihistamine can be used to reduce the frequency and severity of adverse reactions (Grade A recommendation) but this prophylactic treatment does not prevent the onset of SRs or anaphylaxis [187,188]. Also, case series indicate that modified allergen extracts are associated with less adverse effects [189,190,191,192]. For aluminum hydroxide containing SCIT products, granulomas have been described from a foreign body reaction mainly caused by incorrect intradermal administration as well as contact allergic reactions, new onset of protein contact dermatitis or a vasculitic inflammatory reactions have been reported [193,194,195]. If these reactions to SCIT occur, treatment with another aluminum hydroxide-free product is preferred (Grade D)[11].

SLIT

SLIT is regarded to be a safe and well-tolerated treatment [11,14,196,197]. Severe SRs with SLIT appear to be much less likely than with SCIT although the overall rate of any adverse reactions is similar in both SCIT and SLIT [184, 14] (see Table S2 and S3 in online supplement for details of classification [198,199]). In a review of 66 SLIT studies (over 4000 patients who received over a million doses), there was one SR for approximately every four years of treatment and only one severe SR per 384 treatment years [198]. There are no new safety concerns in more recent studies [14]. Several severe reactions - in some cases with anaphylaxis - are described in the literature occurring within 30 minutes of sublingual administration of allergens in droplet or tablet form [34]. In these cases, SLIT was not administered according to the standards (non-standardized extracts, rush protocols, excessive allergen dose, patients in whom SCIT had previously been interrupted due to severe reactions). Patients should be observed for at least 30 minutes after the first dose (Grade C) and supervised by staff able to manage anaphylaxis (Grade C). As in SCIT, concomitant, uncontrolled asthma has been

This article is protected by copyright. All rights reserved.
reported to be associated with severe systemic reactions after SLIT [34]. In the recently published European Survey [185] the rate of SRs under SLIT was also reported to be low (1.1% of all SLIT-treated patients) [184,185].

The majority of adverse events in SLIT develop at home without any medical observations. Patients should therefore be thoroughly informed about how to recognize and manage reactions, particularly severe ones (Grade D). Patients also need education on what to do if a dose is forgotten and when SLIT should be temporarily interrupted (e.g. oropharyngeal lesions) (Grade D)[11]. When one or more severe adverse reactions occur, the allergist (specialist and subspecialists) should re-discuss the benefits and risks of SLIT with the patient and decide whether or not treatment should be continued (Grade D). As for SCIT, cessation of treatment or adaptation of the dosage should follow the summary of product characteristics (SmPC).

The frequency of local adverse events during SLIT correlates with the dosage and has been reported to be 40-75%, for example temporary local mucosal reactions (oral pruritus or dysesthesia, swelling of the oral mucosa, throat irritation) or abdominal pain [34,197,198,199]. Most of these reactions occur during the initial phase of the treatment course (commonly in the first three weeks). They are commonly considered to be of mild intensity and self-limiting [34,97]. Nevertheless, these reactions may lead to cessation of treatment, as observed in 4-8% of cases reported in recent trials of SLIT tablets [56,85,99,138].(see section “adherence”). As in SCIT, local adverse reactions may be diminished by the intake of oral antihistamines (Grade A).

For SLIT, temporary cessation of therapy may be advised in a number of situations to reduce the potential for adverse effects. For example, for seven days following dental extraction or oral surgery or following shedding of a deciduous tooth; while an oral ulcer or open wound in the mouth heals; or during an upper respiratory tract infection in patients with asthma. Individual product SmPCs may list additional advice.
Box 3. Risk factors for systemic reactions during AIT

- Current allergy symptoms and potential allergen exposure
- Current infections
- Mast cell disease
- Previous systemic reaction to SCIT or SLIT
- Uncontrolled or severe asthma
- A high degree of sensitization
- Excess dose escalation during initiation
- Beta-blockers use
- Poor injection technique
- Overdose of allergen extract
- Failure to follow manufacturer's recommendation for dose reduction when change to new production batch
- High-intensity physical exercise

Adapted from Pfaar et al., [11]
Table 8. Recommendations: adverse events with AIT for allergic rhinoconjunctivitis

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Evidence level</th>
<th>Grade of recommendation</th>
<th>Strength of recommendation</th>
<th>Contextual comments</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SCIT or SLIT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For correctly selected patients, SCIT or SLIT is recommended as, appropriately administered, it is safe and well tolerated</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation based on low risk of bias RCT studies and observational studies [14]</td>
<td>Consistent evidence</td>
<td>Dhami 2017 [14]</td>
</tr>
<tr>
<td>It is recommended that asthma should be controlled before commencing AIT as insufficiently controlled asthma is a risk factor for both SCIT and SLIT</td>
<td>III</td>
<td>C</td>
<td></td>
<td>Expert opinion from observational studies</td>
<td>Bernstein 2004 [31], Amin 2006 [200], Calderon 2012 [34]</td>
</tr>
<tr>
<td>Premedication with an antihistamine is recommended as it reduces the frequency and severity of local and systemic cutaneous reactions but does not eliminate the risk of other systemic adverse reactions including anaphylaxis</td>
<td>I</td>
<td>A</td>
<td>Strong recommendation based on low risk of bias RCTs [187,188].</td>
<td>Consistent strong evidence from RCT studies</td>
<td>Nielsen 1996 [187], Reimers 2000 [188]</td>
</tr>
<tr>
<td>When one or more severe adverse reactions occur, it may be recommended that the allergist (specialist and subspecialists) should re-discuss the benefits and risks of AIT therapy with the patient and decide whether or not treatment should be continued. This decision and continuation of treatment should be in line with the Summary of Product Characteristics (SmPC).</td>
<td>V</td>
<td>D</td>
<td></td>
<td>Expert opinion from clinical experience</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level</th>
<th>Grade</th>
<th>Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is recommended that patients should remain under observation for at least 30 minutes after a SCIT injection</td>
<td>III</td>
<td>C</td>
<td>Consistent observational data</td>
<td>Epstein 2011 [182]</td>
</tr>
<tr>
<td>If subcutaneous granulomas develop with aluminum hydroxide containing SCIT products, it may be recommended that a replacement allergen extract that does not contain aluminum hydroxide should be used.</td>
<td>V</td>
<td>D</td>
<td></td>
<td>Expert opinion</td>
</tr>
<tr>
<td>It is recommended that SCIT should be administered by competent staff with immediate access to resuscitation equipment and a doctor trained in managing anaphylaxis.</td>
<td>III</td>
<td>C</td>
<td>Consistent observational data on adverse effects reported in SR</td>
<td>Dhami 2017 [14]</td>
</tr>
<tr>
<td><strong>SLIT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is recommended that patients should remain under observation for at least 30 minutes after an initial SLIT dosage</td>
<td>III</td>
<td>C</td>
<td>Expert opinion based on consistent observational data</td>
<td>Calderon 2012 [34]</td>
</tr>
<tr>
<td>It is recommended that initial SLIT dosage should be administered by competent staff with immediate access to resuscitation equipment and a doctor trained in managing anaphylaxis.</td>
<td>I</td>
<td>C</td>
<td>Consistent observational data on adverse effects reported in SR</td>
<td>Dhami 2017 [14]</td>
</tr>
<tr>
<td>It is recommended that patients receiving SLIT should be informed about how to recognize and manage reactions, particularly severe ones. Patients also need to know what to do if a SLIT preparation is forgotten and when SLIT should be temporarily interrupted (e.g. oropharyngeal lesions).</td>
<td>V</td>
<td>D</td>
<td>Expert opinion from clinical experience</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
PREVENTIVE EFFECTS OF AIT FOR AR

A three years course of AIT reduces the likelihood that children and adolescents with allergic rhinitis driven by pollen allergy go on to develop asthma up to two years post-AIT [23]. There is currently no convincing evidence for a preventive effect of HDM AIT or for prevention of new sensitivities [23]. This is further discussed in the EAACI AIT Prevention Guidelines [23].

PHARMACOECONOMIC ASPECTS OF AIT VERSUS PHARMACOTHERAPY FOR AR

Pharmacoeconomic studies that only analyze costs in monetary units have reported beneficial health care expenditure of AIT in the long-run although savings are not expected in the first year. The majority of pharmacoeconomics studies support the viewpoint that AIT gives value for money, with cost-effectiveness within six years of treatment initiation [201]. Retrospective and prospective observational studies have shown that SCIT and SLIT positively affects health care expenditure in pharmacotherapy with a reduction in expenditure of 12% to 80% [202,203,204,205,206]. A reduction in medical costs in the AIT versus placebo groups have been repeatedly reported but these savings did not compensate the costs of AIT [202,207,208].

In contrast to cost-only studies, cost-effectiveness and cost-utility analysis evaluates the effects of treatment in terms of clinical benefits or health-related quality of life (i.e., quality-adjusted life years [QALYs]). An incremental cost-effectiveness ratio (ICER), which is defined as costs divided by benefits, can be calculated to estimate the costs of a certain gain. Several health economics studies that include cost-effectiveness and cost utility calculations have demonstrated that SCIT and SLIT are economically advantageous to pharmacotherapy [209,210,211,212].

Seven studies based on RCT data conducted from a health system perspective and using QALYS as their outcome measure suggest that SLIT and SCIT would be considered cost-effective in this patient population in England at the standard National Institute for Health and Care Excellence (NICE) cost-effectiveness threshold of £20,000 (€24616) per QALY [213,214,215,216,217,218,219]. The studies comparing SCIT and SLIT have given mixed results and do not allow us to conclude whether either treatment is more cost-effective [220]. ICERs for cost

This article is protected by copyright. All rights reserved.
evaluations of AIT seem to vary substantially between different health systems suggesting that straightforward conclusions may not be generalizable even across seemingly similar countries [215]. Finally, the quality of the studies and the general lack of attention to characterizing uncertainty and handling missing data should be taken into account when interpreting these results.

**SUMMARY, GAPS IN THE EVIDENCE AND FUTURE PERSPECTIVES**

The EAACI Taskforce on AIT for AR has developed this guideline as part of the EAACI AIT Guidelines Project. This guideline has been informed by a formal SR and meta-analysis of AIT for AR [14]. The guidelines provide evidence-based recommendations for the use of AIT for patients with AR with or without allergic conjunctivitis (Figure 2). Practical guidance is provided in Box 4 and a summary of the guidelines is provided in Box 5. An approach to the use of AIT for AR across the healthcare system is summarized in Figure 3. The recommendations should be of value to all healthcare professionals involved in the management of patients with AR. There are barriers to the wider use of AIT but equally there are facilitators that could be put into place to widen access to AIT (Table 9).

The key limitation of this guideline is the considerable heterogeneity seen in elements of the underpinning meta-analysis. For newer products, such as the SLIT grass pollen and house dust mite tablets, we have consistent low risk of bias data and very secure recommendations. For older products, such as house dust mite SCIT products, there is considerable heterogeneity in the meta-analysis weakening the strength of recommendations around those products. Many of these older studies were poorly designed and reported; for example it is often not clear whether intention-to-treat or per-protocol analyses were being reported making it impossible to combine similar analyses in the meta-analysis. Indirect comparisons within the meta-analysis strongly suggests that some products are more effective than others. A network analysis approach, which allows indirect comparisons across trials based on a common comparator (usually the placebo group), would allow us to improve our comparative estimates between products [221]. This would allow product specific recommendations to be made. The different local regulations [47] and availability of products [48] makes this difficult at a European level. So before treatment with a specific product is initiated, clinicians need to undertake an individual product-based evaluation of the evidence for efficacy, focusing on low risk of bias studies which are generally the larger, more recent ones [11].

This article is protected by copyright. All rights reserved.
There are a number of areas in this guideline where there is no low risk of bias evidence, these signify the gaps in the current evidence base. The key ones are highlighted here and in Table 10. There is a major gap in the evidence base for the clinical effectiveness of AIT in children and adolescents with recommendations at least one grade lower than for adults in most areas. As AR usually starts in childhood and AIT has the potential to change the natural course of the disease and prevent the development of asthma, this age group has most to benefit. Once safety is established in adult studies, pediatric studies need to be commenced using validated, common outcome measures [11, 34]. There are also little data in the elderly particularly for patients with multi-morbidity. Additionally, more RCTs need to follow participants post-cessation of therapy to establish long-term clinically effectiveness, especially for HDM respiratory allergy. Dose-finding studies are needed. Agreement about the clinically meaningful effect size of AIT treatment would assist in the interpretation of clinical trial data and help facilitate stratification studies to help predict which patients will respond best to which forms of AIT. The collection of patent reported outcomes in studies would ensure the patient experience is captured. Additionally we need data from randomized cost-effectiveness and cost-utility studies to use in discussions with healthcare funders. We need biomarkers to predict and quantify the effectiveness of AIT to assist in patient selection [222]. Suboptimal adherence with AIT is likely to impact on its effectiveness; novel approaches to improve effectiveness should be developed in partnership with patients. Also, to allow better comparison of safety between approaches, studies need to use a unified approach to classifying side effects is required. A common and international recognized language should be use when reporting severe adverse reactions, such as the MedDRA classification and AIT related local and systemic reactions should be reported in line with internationally standardized classification such as the WAO-grading system [198,199]. Filling these gaps would allow the generation of much clearer guidelines for clinicians allowing them to stratify patients to the best therapy. It may not be possible to achieve this with only randomized, controlled prospective data; large, real-life, controlled data needs to be examined although the potential for bias and confounding needs to be acknowledged.

Despite all these gaps we have clear evidence for the clinical effectiveness of AIT, for SCIT, SLIT-tablets and SLIT-drops, for adults and children with moderate-to-severe AR that is otherwise uncontrolled despite pharmacotherapy. We have evidence-based recommendations for specific patient groups and specific approaches. There is now a need to ensure that primary care healthcare professionals know which patients might benefit from AIT (Box 6), that national healthcare providers understand that AIT is cost-effective and that patients and patient support groups are aware of this approach. This will be supported by the implementation strategy for this guideline with efforts being put into...
disseminating the guideline. This will be supported with materials such as schedules and country specific product evaluations as exemplified by the German, Austrian and Swiss guideline [11]. Finally as new evidence is published these guidelines will need to be updated with revision of specific recommendations to reflect the new data.

<table>
<thead>
<tr>
<th>Pros and cons of the various options need to be considered when choosing the best approach for each patient:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pro</strong></td>
</tr>
<tr>
<td>Pre- or co-seasonal and continuous SCIT are effective in short term for seasonal and perennial AR</td>
</tr>
<tr>
<td>Pre- or co-seasonal SCIT therapy are shorter but continuous SCIT may be more effective</td>
</tr>
<tr>
<td>3 years continuous SCIT is effective in long-term for grass pollen driven AR</td>
</tr>
<tr>
<td>Frequent minor, local adverse effects</td>
</tr>
<tr>
<td>Pro, pre- or co-seasonal and continuous SLIT tablets or drops are effective in short term for seasonal AR</td>
</tr>
<tr>
<td>Continuous SLIT tablet is effective in short term for perennial AR</td>
</tr>
<tr>
<td>3 years continuous SLIT is effective in long-term for grass pollen (tablets or drops) and HDM (tablets only)</td>
</tr>
<tr>
<td>No injections</td>
</tr>
<tr>
<td>Able to take at home after first dose</td>
</tr>
</tbody>
</table>

**Clinicians should:**
- Consider availability of products with documented clinical effectiveness
- Ensure availability of staff to undertake SCIT injections and maintain regular contact with patients on SLIT
- Ensure good communication and relationship with patient to facilitate good decisions making on starting correct therapy and maintaining adherence

**Discuss with patient:**
- Efficacy of each approach
- Safety of each approach
- Cost of each approach
- Need for adherence
- Frequency of clinic visits including travel
- Which approach patients feels is best for them

**Figure 2. Schematic approach to deciding which approach to AIT is best to use in individual patients**

For details to specific recommendations, see table 3. For details about local and systematic adverse reactions, see adverse event section above.
<table>
<thead>
<tr>
<th><strong>Patient with allergic rhinoconjunctivitis self-medicates with over-the-counter or primary antihistamines and nasal corticosteroids</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Review by primary care physician</strong></td>
</tr>
<tr>
<td><strong>Clinical diagnosis</strong> based on symptoms and identification of multiple allergies (SPT, RAST, nasal corticosteroid or antihistamines)</td>
</tr>
<tr>
<td><em>Consider differentials diagnoses</em></td>
</tr>
<tr>
<td><em>Optimize therapy: non-hydrophilic antihistamines and nasal corticosteroids, or nasal corticosteroids or nasal decongestants</em></td>
</tr>
<tr>
<td><strong>Referral for review by clinician with clinical allergy training</strong></td>
</tr>
<tr>
<td><strong>Clinical diagnosis based on symptoms, examination and identification of multiple allergies (SPT, RAST, nasal corticosteroid or antihistamines)</strong></td>
</tr>
<tr>
<td><em>Consider differentials diagnoses</em></td>
</tr>
<tr>
<td><em>Optimize therapy: non-hydrophilic antihistamines and nasal corticosteroids, or nasal corticosteroids or nasal decongestants</em></td>
</tr>
<tr>
<td><strong>Poor symptom control</strong></td>
</tr>
<tr>
<td><strong>Poor symptom control</strong></td>
</tr>
<tr>
<td><strong>Referral for review by clinician with clinical allergy training</strong></td>
</tr>
<tr>
<td><strong>Clinical diagnosis based on symptoms, examination and identification of multiple allergies (SPT, RAST, nasal corticosteroid or antihistamines)</strong></td>
</tr>
<tr>
<td><em>Consider differentials diagnoses</em></td>
</tr>
<tr>
<td><em>Optimize therapy: non-hydrophilic antihistamines and nasal corticosteroids, or nasal corticosteroids or nasal decongestants</em></td>
</tr>
</tbody>
</table>

**Regular assessment**

- **Cessation of therapy?**
  - Is the patient adhering to therapy?
  - Are any modifications to therapy required?
  - Have any relevant complications occurred?
  - Consideration of an alternative treatment plan?

**Initiation of AIT**

- Selection of appropriate allergen(s) to use in AIT based on symptoms, allergic sensitization, provocation testing, and patient factors.
- Consideration of optimal approach (e.g., SLIT, SCIT) based on patient characteristics.
- Experience of clinician and patient preference and availability of product of proven effectiveness.

---

**Accepted Article**

This article is protected by copyright. All rights reserved.
Figure 3. Approach to using AIT for allergic rhinoconjunctivitis
Schematic illustration of the approach to using AIT for AR starting with self-medication and management in primary care moving to assessment by a clinician trained in clinical allergy for consideration and initiation of AIT in suitable patients. Structure of healthcare systems differ between countries.
Table 9. Implementation considerations: AIT for treatment of allergic rhinoconjunctivitis

<table>
<thead>
<tr>
<th>Recommendation areas</th>
<th>Barriers to implementation</th>
<th>Facilitators to implementation</th>
<th>Audit criteria</th>
<th>Resource implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIT or SLIT therapy</td>
<td>Lack of awareness of how to assess severity of AR</td>
<td>Development of integrated care pathways for AR incorporating primary and secondary care</td>
<td>Proportion of patients with moderate-to-severe seasonal AR who are offered and use SCIT or SLIT</td>
<td>The resource implications include professional time to develop and agree integrated care pathways</td>
</tr>
<tr>
<td></td>
<td>Appreciation of SCIT and SLIT as treatment options</td>
<td>Increase in number of specialists able and willing to provide SCIT and/or SLIT</td>
<td></td>
<td>The costs of training and upskilling allergist (specialist and subspecialists) to deliver SCIT and/or SLIT</td>
</tr>
<tr>
<td></td>
<td>Access to providers offering SCIT and/or SLIT at convenient locations and/or affordable cost</td>
<td>Subsidised provision of SCIT and SLIT</td>
<td></td>
<td>Training of primary care nurses and doctors to deliver immunotherapy as shared care agreements where appropriate</td>
</tr>
<tr>
<td></td>
<td>Lack of knowledge about the relative efficacies and safety of different products</td>
<td>Document detailing and training about the efficacy and safety of individual products</td>
<td></td>
<td>Financial costs of subsidizing access to SCIT and SLIT</td>
</tr>
<tr>
<td>Selecting the appropriate AIT in patients with polysensitisation +/- polyallergy</td>
<td>Lack of documentation for individual AIT products</td>
<td>Information to clinicians and patients about the better efficacy of single allergen or a mixture of well documented homologous allergens</td>
<td>Proportion of patients receiving either a single allergen or a mixture of well documented homologous allergens</td>
<td>Training for clinicians</td>
</tr>
<tr>
<td></td>
<td>Effective identification of the key allergen(s) driving symptoms</td>
<td>Use of component resolved diagnosis and provocation testing</td>
<td>Proportion of patients where additional measures are taken to identify the driving allergen(s)</td>
<td>Availability of appropriate AIT products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Access to component resolved diagnostics and provocation testing</td>
</tr>
<tr>
<td>Using AIT in patients with controlled, co-existing asthma</td>
<td>Lack of education of clinicians and patients</td>
<td>Information to clinicians and patients about safety of AIT with co-existing asthma</td>
<td>Proportion of patients with co-existing asthma receiving AIT.</td>
<td>Available AIT service</td>
</tr>
<tr>
<td>Consideration of AIT in pediatric patients with AR</td>
<td>Available AIT clinical service for children</td>
<td>Information about the place of AIT in managing AR in children for health purchases, primary care clinicians and patients.</td>
<td>Proportion of pediatric patients with moderate to severe seasonal AR who use continuous SCIT.</td>
<td>Availability of a clinical service for children able to deliver AIT for AR.</td>
</tr>
<tr>
<td>Consideration of AIT in otherwise healthy elderly patients with AR</td>
<td>Lack of access to AIT for AR in general or specific products.</td>
<td>Information about the place of AIT in managing AR in the elderly for health purchases, primary care clinicians and patients.</td>
<td>Proportion of elderly patients with moderate to severe seasonal AR who use AIT.</td>
<td>Availability of a clinical service able to deliver AIT for AR.</td>
</tr>
<tr>
<td>Adherence to AIT</td>
<td>Lack of patient education about AIT</td>
<td>Information for patients and use of simple reminders</td>
<td>Assessment of understanding of patients on AIT</td>
<td>Resources to educate patients</td>
</tr>
<tr>
<td>Use of premedication with an antihistamine to reduce adverse effects</td>
<td>Lack of knowledge by clinicians and patients</td>
<td>Three monthly follow up for SLIT patients</td>
<td>Assessment of adherence and use of reminders by patients on AIT</td>
<td>Investment in written communication and regular follow up with access to advice regarding side effects if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Good physician patient relationship and communication regarding side effects and time course of treatments</td>
<td>Resources for training clinical staff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training of clinicians using AIT</td>
<td>Availability of medication</td>
<td></td>
</tr>
<tr>
<td>Observation for at least 30 minutes after a SCIT injection or initial SLIT dosage by trained staff</td>
<td>Lack of understanding by clinicians of delayed effects</td>
<td>Training of clinicians using SCIT and SLIT</td>
<td>Proportion of patients who wait 30 minutes after receiving SCIT or initial SLIT dosage</td>
<td>Resources for training clinical staff</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Information for patients receiving SLIT about how to recognize and manage reactions and when therapy should be temporarily interrupted</td>
<td>Lack of trained staff and workforce time pressures</td>
<td>Staff availability and rotas for administration and observations</td>
<td>Proportion of staff trained in management of severe adverse reactions</td>
<td>Time set aside for observation</td>
</tr>
<tr>
<td>Lack of understanding by patients receiving SLIT and clinicians administering</td>
<td>Training of patients and clinicians</td>
<td>Proportion of patients receiving SLIT trained in the self-management of severe adverse reactions</td>
<td>Resources for training patients and clinicians</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 10. Gaps in the evidence for AIT for allergic rhinoconjunctivitis

<table>
<thead>
<tr>
<th>Gaps</th>
<th>Plan to address</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of biomarkers to predict and quantify the effectiveness of AIT</td>
<td>Prospective observational studies to validate potential predictive biomarkers</td>
<td>High</td>
</tr>
<tr>
<td>Agreement about the clinically meaningful effect size of AIT treatment (active versus placebo treated patients)</td>
<td>Consensus discussion</td>
<td>High</td>
</tr>
<tr>
<td>Low risk of bias randomized controlled data for children and adolescents</td>
<td>More prospective controlled trials using standardized products</td>
<td>High</td>
</tr>
<tr>
<td>Evidence for long-term clinical effectiveness after treatment cessation</td>
<td>More prospective controlled trials with follow up post treatment cessation in adults and children</td>
<td>High</td>
</tr>
<tr>
<td>Standardization of grading of adverse effects of AIT</td>
<td>Future clinical trials should use the WAO systemic reaction grading system</td>
<td>High</td>
</tr>
<tr>
<td>Approaches to improve adherence with AIT</td>
<td>Working with patients to develop novel approaches that can be tested in prospective controlled trials and real life settings</td>
<td>High</td>
</tr>
<tr>
<td>Randomized cost-effectiveness and cost utility studies adjusted to socioeconomic differences within and between countries</td>
<td>Additional multinational studies with a health economics focus</td>
<td>High</td>
</tr>
<tr>
<td>For some AIT products there is little or no evidence for clinical effectiveness</td>
<td>Dose ranging studies to optimize dose for efficacy and safety; prospective controlled trials; use of patient reported outcomes; use of products with proven effectiveness</td>
<td>High</td>
</tr>
<tr>
<td>Approaches to minimize adverse effects</td>
<td>More prospective observation and controlled trials. A sub-analysis of different phenotypes populations in current RCTs and real life settings</td>
<td>Moderate</td>
</tr>
<tr>
<td>Effectiveness of mixtures of homologous allergens from the same, related or different biological families</td>
<td>More prospective controlled trials using the commonest allergens</td>
<td>Moderate</td>
</tr>
<tr>
<td>Good evidence base for contraindications to AIT</td>
<td>Registries recording patient details, AIT, outcome and adverse effects</td>
<td>Moderate</td>
</tr>
<tr>
<td>Value of provocation tests in identifying the most appropriate allergen to use in AIT</td>
<td>Prospective controlled studies to assess benefit of provocation testing</td>
<td>Moderate</td>
</tr>
<tr>
<td>Management of AIT in patients who become pregnant on therapy</td>
<td>More prospective observational studies</td>
<td>Low</td>
</tr>
<tr>
<td>Lack of standardized AIT preparations for orphan allergens</td>
<td>Multi-centre studies</td>
<td>Low</td>
</tr>
</tbody>
</table>
Box 4. Practical considerations for healthcare professionals delivering AIT

**Training and facilities**
- Expertise in the diagnosis and differential diagnosis of AR by history and supporting SPT or specific IgE testing
- Training in recognition and management of severe allergic reactions including anaphylaxis
- Availability of equipment and trained personal to manage severe allergic reactions
- Training in administration of specific AIT products
- Facilities to observe patient for at least 30 minutes with SCIT injections and initial dose of SLIT

**Assessing patient and deciding on best approach**
- Effective communication with patients and/or family about practicalities of AIT, expected benefits and potential adverse effects
- Identification of clinical contraindications to AIT
- Select an AIT product with documented evidence for efficacy and safety, for specific patients, whereever possible

**Undertaking AIT**
- Start AIT for seasonal AR at least 4, and preferably 2, months before the pollen season
- Preferably start AIT for perennial AR when allergen exposure is lowest and avoidance measures are in place
- Dose reductions (usually 50%) or split doses for adverse effects, intercurrent illness or delayed dosing as recommended by SmPC for SCIT
- Dose interruption with oral lesions and other issues as recommended by SmPC for SLIT
- Facilities to regularly follow up patient promoting adherences to therapy and watching for adverse effects
Box 5. Summary of the EAACI Rhinoconjunctivitis AIT Guidelines

- AIT should be considered with symptoms strongly suggestive of allergic rhinitis, with or without conjunctivitis; evidence of IgE-sensitization to one or more clinically relevant allergens; and moderate-to-severe symptoms despite regular and/or avoidance strategies.

- AIT may also be considered in less severe AR where a patient wishes to take advantage of its long term effect on rhinitis and potential to prevent asthma with grass pollen AIT.

- More standardized products with documented evidence for efficacy in clinical trials are needed.

- Standardized AIT products with evidence of efficacy in the clinical documentation should be used when they are available.

- An individual product-based evaluation of the tolerance and evidence for efficacy is recommended before treatment with a specific product is initiated.

- Key contraindications are severe or uncontrolled asthma; active, systemic autoimmune disorders; active malignant neoplasia. Careful review of benefits and risks are required with beta-blocker or ACE-inhibitor therapy, severe cardiovascular disease, other autoimmune disorders, severe psychiatric disease, poor adherence and immunodeficiency. The individual patient's conditions should be considered when deciding whether to prescribe AIT and the summary of product characteristics (SmPC) should be reviewed for specific contraindications for individual preparations.

- For each recommendation, an individual product-based evaluation of the evidence for efficacy is recommended before treatment with a specific product is initiated given the heterogeneity in meta-analysis results:
  - Continuous SCIT is recommended for seasonal (Grade A for adults, B for children) or perennial (Grade B for adults, C for children) AR for short-term
benefit in those with moderate-to severe disease

- Pre- and pre-/co-seasonal SCIT is recommended for seasonal AR for short-term benefit (Grade A for adults, B for children)
- Both modified (allergoids) and unmodified allergen SCIT extracts are recommended for AR for short-term benefit (Grade A for adults, B for children)
- Continuous grass pollen SCIT is recommended for AR for short and long-term benefit (Grade A for adults, B for children)
- Pre-/co-seasonal or continuous SLIT is recommended for seasonal ARs for short-term benefit (Grade A)
- SLIT with tablets for pollens or HDM can be recommended for AR for short-term benefit (Grade A)
- SLIT aqueous solutions for pollens can be recommended for AR for short-term benefit (Grade B for adults, A in children)
- SLIT aqueous solutions for HDM cannot be recommended for AR for short-term benefit
- Continuous grass pollen SLIT tablets or SLIT solution is recommended for AR for long-term benefit (Grade A)
- HDM SLIT tablet can be recommended for AR for long-term benefit (Grade B for adults, C for children)

- Polysensitized patients who are poly-allergic for taxonomically related homologous allergens can be recommended to receive either a single allergen or a mixture of homologous allergens from that biological family that covers all the major allergens (Grade A)
- Patients who are poly-allergic for non-homologous allergens may be recommended to start AIT with either the allergen responsible for most of their allergic
rhinoconjunctivitis symptoms or separate treatment with the two clinically most important allergens (Grade C)

- In children aged 2-5 years of age, it is recommended that consideration should be given to likely benefits and risks associated with AIT for AR (Grade D)

- AIT can be recommended in otherwise healthy elderly patients with AR whose symptoms cannot be adequately controlled by pharmacotherapy (Grade A for SLIT, B for SCIT)

- If patients have not started AIT and are pregnant, it is recommended to wait until after pregnancy to initiate therapy (Grade D)

- It can be recommended that patients on SLIT are followed up every 3 months to maximize adherence (Grade B)

- To achieve long-term efficacy, it is recommended that a minimum of 3 years of therapy is used (Grade A)

- Premedication with an antihistamine is recommended as it reduces the frequency and severity of local and systemic cutaneous reactions but does not eliminate the risk of other systemic adverse reactions including anaphylaxis (Grade A)

- It is recommended that patients should wait in the clinic for at least 30 minutes after a SCIT injection (Grade C)

- It is recommended that SCIT should be administered by competent staff, trained to diagnosed symptoms of early systemic reactions or anaphylaxis, with immediate access to resuscitation equipment and a doctor trained in managing anaphylaxis. (Grade C)

- It is recommended that patients should wait in clinic for at least 30 minutes after an initial SLIT dosage and staff and equipment should be available to manage any severe local or systemic reaction or anaphylaxis (Grade C)
• It is recommended that patients receiving SLIT should be informed about how to recognize and manage adverse reactions, particularly severe ones (Grade D)
Box 6. Key messages for primary care

- Diagnosis of AR is by history
- Where severe, treat with non-sedating, long-acting antihistamine and topical nasal corticosteroid (with appropriate nasal spray training) and/or topical ocular cromoglycate or antihistamine
- Check for any co-existing asthma; this should be properly controlled when using AIT
- AIT is effective for AR driven by pollens, house dust mite and animal dander
- AIT is indicated for AR with moderate to severe symptoms that are not controlled by pharmacotherapy or avoidance strategies (where appropriate)
- AIT may be given by subcutaneous (SCIT) or sublingual route (SLIT) as either SLIT tablets or SLIT drops
- AIT therapy needs to be continued for at least three years for post-cessation effectiveness
- Local adverse effects, which are mild in severity and self-limited without the use of rescue medication, are common with SLIT when starting therapy
- More severe systemic allergic adverse events are infrequently seen and more commonly with SCIT than SLIT
- SCIT injections and the initial SLIT dose should be given by healthcare personal who are trained in AIT and the management of any adverse events
- At least a 30 minute observation period is required for all SCIT injections and the initial dose of SLIT
Acknowledgements:
The EAACI Guideline: AIT for rhinoconjunctivitis Taskforce would like to thank Kate Crowley and Lynn Reeve for their administrative assistance; Stefan Vieths and Andreas Bonertz for their advice; Claus Bachert, G. Walter Canonica, Gabriele Di Lorenzo, Peter Eng, Hans Joergen Malling and Harold Nelson for their constructive, expert review of the draft guidelines; all the EAACI members who commented on the draft guideline via the public website; and to funding from EAACI and the BM4SIT project (grant number 601763) in the European Union's Seventh Framework Programme FP7.

Contributorship:
G Roberts and O Pfaar jointly chaired the EAACI Guideline: AIT for rhinoconjunctivitis Taskforce; together with A Muraro and A Sheikh, they conceptualized the manuscript. CA Akdis, IJ Ansotegui, SR Durham, R Gerth van Wijk, S Halken, D Larenas-Linnemann, G Passalacqua, R Pawankar, C Pitsios, A Sheikh and M Worm all initially drafted sections of the guideline. S Arasi, M Calderon, C Cingi, S Dhami, JL Fauquert, E Hamelmann, P Hellings, L Jacobsen, EF Knol, SY Lin, P Maggina, R Mösges, A Muraro, H Oude Elberink, G Pajno, EA Pastorello, M Penagos, G Rotiroti, CB Schmidt-Weber, F Timmermans, O Tsilochristou, E-M Varga, J Wilkinson, A Williams and L Zhang as members of the Taskforce plus I Agache, E Angier, M Fernandez-Rivas, M Jutel, S Lau, R van Ree, D Ryan and G Sturm as chairs of the other AIT Guidelines were all involved in conceptualizing the guidelines and critically reviewed guideline drafts. S Dhami and S Arasi also provided methodological support to the Taskforce. F Timmermans was the patient group representative. All the authors satisfied the international authorship criteria (further details in Table S4). This guideline is part of the EAACI Guidelines on Allergen Immunotherapy, chaired by Antonella Muraro and coordinated by Graham Roberts.
Conflict of interest:

G. Roberts has a patent issued: “Use of sublingual immunotherapy to prevent the development of allergy in at risk infants”; and his university has received payments for the activities he has undertaken giving expert advice to ALK, and presenting at company symposia for ALK, Allergen Therapeutics, and Meda, and serving as a member of an Independent Data Monitoring Committee for Merck outside of this work.

O. Pfaar reports grants and personal fees from ALK-Abello, Allergopharma, Stallergenes Greer, HAL-Allergy Holding B.V./HAL-Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, Biotech Tools S.A., Laboratorios LETI/LETI Pharma, and Anergis S.A.; grants from Biomay, Nuvo, and Circassia; and personal fees from MEDA Pharma, Sanofi US Services, Mobile Chamber Experts (a GA2LEN Partner), Novartis Pharma and PohlBoskamp, outside this work.

CA Akdis has noting to disclose.

IJ. Ansotegui reports personal fees from SANOFI, Bayer, Pfizer, FAES FARMA, MIT FARMA, HIKMA, Menarini, and Bial Aristegui, outside this work.

S. Durham reports grants from Regeneron (USA), Biotech Tools, ALK (Denmark), Food Standards Agency (UK), and National Institute of Health Research (UK) and personal fees from Anergis (Switzerland), Circassia (UK), Biomay (Austria), Merck, Allergy Therapeutics (UK), ALK (Hørsholm, Denmark), med update GmbH (Germany), and Allergy Therapeutics, outside of this work.

R. Gerth van Wijk reports personal fees from ALK-Abello, Circassia, and Allergopharma, during the conduct of this work.

S. Halken reports personal fees from ALK-Abello and from different companies, for example, Meda, Stallergenes, Allergopharma, and ALK-Abello, outside of this work.

D. Larenas-Linnemann reports grants and personal fees from Astrazeneca, Boehringer-ingelheim, MEDA, Novartis, grants and personal fees from Sanofi, UCB, GSK, Pfizer, MSD, grants from Chiesi, TEVA, personal fees from Grunenthal, Armstrong, Stallergenes, ALK-Abelló, personal fees from DBV, outside the submitted work; and Chair immunotherapy committee CMICA, Member immunotherapy committee or interest group EAACI, WAO, SLAAL, Board of Directors and Program Chair CMICA 2018-2019.
R. Pawankar has nothing to disclose.

C. Pitsios has nothing to disclose.

A. Sheikh reports grants from the EAACI during the conduct of this work.

M. Worm reports grants from Allergopharma, Novartis, Stallergenes, Medic Pharma, and ALK-Abello.

S. Arasi reports payment from Evidence-Based Health Care Ltd during the conduct of this work.

M. Calderon has received honorarium in advisory boards for ALK and Hal-Allergy and served as a speaker for ALK, Merck, and Stallergenes Greer.

C. Cingi has nothing to disclose.

S. Dhami reports grants from EAACI to carry out the review, during the conduct of this work.

JL Fauquert has noting to disclose.

E. Hamelmann has served on scientific advisory boards and received honorarium for lectures on scientific meetings for ALK, AllergoPharma, Bencard, HAL, Leti, Stallergenes.

P. Hellings has nothing to disclose.

L. Jacobsen reports personal fees from EAMG, outside this work.

E.F. Knol has nothing to disclose

S.Y. Lin has nothing to disclose.

P. Maggina has nothing to disclose.

R. Mosges reports personal fees from ALK, Allergopharma, Allergy Therapeutics, Friulchem, Hexal, Servier, Klosterfrau, Bayer, FAES, GSK, MSD, Johnson&Johnson, Meda, Stada, UCB, and Nuvo; grants from ASIT biotech, Leti, Optima, bitop AG, Hulka, and Ursapharm; grants and

This article is protected by copyright. All rights reserved.
personal fees from Bencard and Stallergenes; grants, personal fees, and nonfinancial support from Lofarma; nonfinancial support from Roxall, Atmos, Bionorica, Otonomy, and Ferrero; and personal fees and nonfinancial support from Novartis, outside this work.

H. Oude Elberlink reports grants from ALK-Abello during the conduct of this work.

G.B. Pajno reports grants from Stallergenes during the conduct of this work.

E.A. Pastorello has nothing to disclose.

M. Penagos reports personal fees from Stallergenes and ALK, outside this work.

G. Rotiroti reports personal fees from ALK-Abello, outside this work.

C. Schmidt-Weber reports grants from Allergopharma and Leti and honorarium from PLS-Design, Allergopharma, and Leti; is a member of scientific advisory board for Leti; holds shares in PLS-Design; and hopes to develop a patent.

F. Timmermans has nothing to disclose.

O. Tsilochristou has nothing to disclose.

E-M Varga reports lecture fees from ALK-Abello, Stallergenes-Greer, Allergopharma, Bencard, MEDA and Nutricia outside the submitted work.

J. Wilkinson has nothing to disclose.

A. Williams reports other grants from ALK-Abello (UK) and Diagenics Ltd (UK), outside this work; and travel expenses for education meetings from the EAACI and BSACI.

L. Zhang has nothing to disclose.

I. Agache has nothing to disclose.

E. Angier reports previous advisory board membership for Stallergenes, Meda and Schering Plough plus a sponsored lecture by Meda and attendance at a ALK SOSA meeting.

This article is protected by copyright. All rights reserved.
M. Fernandez-Rivas reports personal fees from ALK, Merck and GSK.

M. Jutel reports personal fees from Allergopharma, Anergis, Stallergens, ALK, LETI outside the submitted work.

S. Lau reports a grant from Allergopharma plus personal fees for data monitoring committee activities for Merck.

R. van Ree reports personal fees from HAL Allergy BV and Citeq BV outside of the submitted work.

D. Ryan reports personal fees from Stallergenes, Thermo Fisher, MEDA outside of the submitted work.

G. Sturm reports grants and personal fees from ALK Abello, Novartis, Stallergens, Bencard Allergy and Leti outside of the submitted work.

A. Muraro reports personal fees from Novartis, Meda, and Mylan, outside the submitted work.

REFERENCES


This article is protected by copyright. All rights reserved.


11. Pfaar O, Bachert C, Bufe A, Buhl R, Ebner C, Eng P, et al. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases: S2k Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergy and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA), the Austrian Society for Allergy and Immunology (ÖGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Dermatology (DDG), the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Pneumology (GPP), the German Respiratory Society (DGP), the German Association of ENT Surgeons (BV-HNO), the Professional Federation of Paediatricians and Youth Doctors (BVKJ), the Federal Association of Pulmonologists (BDP) and the German Dermatologists Association (BVDD). Allergo J Int. 2014; 23: 282-319.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


64. Dolz I, Martínez-Cocera C, Bartolome JM, Cimarra M. A doubleblind, placebo-controlled study of immunotherapy with grass-pollen extract Alutard SQ during a 3-year period with initial rush immunotherapy. Allergy 1996; 51: 489-500.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


85. Dahl R, Stender A, Rak S. Specific immunotherapy with SQ standardized grass allergen tablets in asthmatics with rhinoconjunctivitis. Allergy 2006; 61: 185–90


This article is protected by copyright. All rights reserved.


94. Didier A, Malling HJ, Worm M, Horak F, Sussman GL. Prolonged efficacy of the 300IR 5-grass pollen tablet up to 2 years after treatment cessation, as measured by a recommended daily combined score. Clinical Translational Allergy. 2015; 5: 12.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


186. Kelso JM. The rate of systemic reactions to immunotherapy injections is the same whether or not the dose is reduced after a local reaction. Ann Allergy Asthma Immunol 2004; 92: 225–7.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.


This article is protected by copyright. All rights reserved.