Diterpenes and other metabolites isolated from sage (Salvia officinalis L.) and their effect on the human peroxisome proliferator-activated receptor (PPAR) γ

Jørgensen, Monica; Christensen, Kathrine Bisgaard; Kotowska, Dorota Ewa; Christensen, Lars Porskjær; Kristiansen, Karsten

Publication date:
2009

Document version
Final published version

Citation for published version (APA):

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk
Diterpenes and other metabolites from sage (Salvia officinalis L.) and their effect on the human peroxisome proliferator-activated receptor (PPAR) γ

Monica Jørgensen*a, Kathrine B. Christensenb,b,*, Dorota Kotowskaec, Lars P. Christensenb, and Karsten Kristiansend
d
*Department of Food Science, University of Aarhus, DK-8792 Aarslev. bInstitute of Chemical Engineering, Biotechnology & Environmental Technology, University of Southern Denmark, DK-5230 Odense M. cDepartment of Biochemistry & Molecular Biology, University of Southern Denmark, DK-5230 Odense M. dDepartment of Biology, University of Copenhagen, DK-2200 Copenhagen.

Introduction

Sage (Salvia officinalis, Lamiaceae) has been used both as a culinary herb and as a medicinal plant for centuries. Preparations of the aerial parts of sage have been used as a traditional remedy against diabetes, and the glucose-lowering effects have been proven in animal studies. It has been suggested that diterpenes are responsible for the anti-diabetic effects of sage but the bioactive compounds and their mechanism of action are still unknown.

PPARγ is a master regulator of adipocyte differentiation and hence, is highly involved in the regulation of insulin sensitivity. Extracts of sage and diterpenes from sage have been reported to activate PPARγ [1,2]. The aim of this study was to find further PPARγ activators among the sage metabolites.

Phytochemical analysis

Sage was cultivated and harvested at Department of Horticulture, University of Aarhus. 5 kg of frozen aerial parts were subjected to a 2-step sequential extraction procedure using n-hexane and CH2Cl2. The CH2Cl2 extract was initially separated by silica gel flash column chromatography using n-hexane–EtOAc gradients, and for final purification of sage metabolites reverse phase semi-preparative HPLC with CH3CN–water gradients were used.

The phytochemical analysis of sage resulted in the isolation of the diterpenes carnosol (1), 20-deoxycarnosol (2), carnosic acid (3), 20-hydroxyferruginol (4), 20-deoxocarnosic acid (6), 12-O-methylcarnosic acid (5), manool (11), and a new abietane diterpene being the epiosmanol ester of 12-O-methylcarnosic acid (10). In addition, viridiflorol (7), oleanolic acid (9), and α-linolenic acid were also isolated. All compounds were identified by 1D- and 2D-NMR and HR-ESI mass spectrometry.

Activation of PPARγ

Extracts of sage activate PPARγ and increase insulin-stimulated glucose uptake in adipocytes [1]. In this study, we tested the isolated sage metabolites for their ability to activate PPARγ. α-Linolenic acid is a known PPARγ agonist. 12-O-Methylcarnosic acid (5) was also found to significantly activate PPARγ in a transactivation bioassay (using mouse embryonic fibroblasts) giving a 7-fold activation at 10 µM relative to the vehicle (DMSO) (Fig. 1) [3]. Rosiglitazone was used as a positive control.

Carnosol (1) and carnosic acid (3) have previously been reported to activate PPARγ [2]. In our study they were only weak activators. Oleanolic acid, which is an agonist of PPARα [4] was also shown to be a weak activator of PPARγ.

Fig. 1

Conclusions

- One new compound isolated from sage: the epiosmanol ester of 12-O-methylcarnosic acid (10).
- 20-hydroxyferruginol (4) isolated from sage for the first time.
- 12-O-methylcarnosic acid (5) was found to significantly activate PPARγ.
- Anti-diabetic activity of sage might be mediated through activation of PPARγ.

This work was funded by the EU Interreg IIIA project "Plants for Diabetes" and was a cooperation between University of Southern Denmark, University of Aarhus, Christian-Albrechts-Universität zu Kiel, and Development Center Aarslev.