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 A B S T R A C T

When humans perform repetitive tasks over long periods, their performance is not constant. People drift in 
and out of states that might be loosely categorised as engagement, disengagement or ’flow’ and these states 
will be reflected in aspects of their performance (for example, reaction time, accuracy, criteria shifts and 
potentially longer-term strategy). Until recently it has been challenging to relate these behavioural states to the 
underlying neural mechanisms that generate them. Here, we acquired magnetoencephalograpy recordings and 
contemporaneous, dense behavioural data from participants performing an engaging task (Tetris) that required 
rapid, strategic behavioural responses over the period of an entire game. We asked whether it was possible to 
infer the presence of distinct behavioural states from the behavioural data and, if so, whether these states would 
have distinct neural correlates. We used hidden Markov Modelling to segment the behavioural time series into 
states with unique behavioural signatures, finding that we could identify three distinct and robust behavioural 
states. We then computed occipital alpha power across each state. These within-participant differences in 
alpha power were statistically significant, suggesting that individuals shift between behaviourally and neurally 
distinct states during complex performance, and that visuo-spatial attention change across these states.

1. Introduction

Digital games are a promising paradigm for research into hu-
man cognition. In recent years, researchers have used telemetry data 
recorded in commercial games to investigate theories of motor chunk-
ing (Thompson et al., 2017, 2019), ageing (Thompson et al., 2014a,b), 
and sleep consolidation (Stafford and Haasnoot, 2017), among some 
examples of problem domains. On the other end of the methodological 
spectrum, games have been tailor-made for laboratory research on 
neural plasticity (Lee et al., 2012; Voss et al., 2012), skill transfer 
effects (Anderson et al., 2011; Boot et al., 2010), and have been 
used to test cognitive architectures that model human learning as a 
whole (Anderson et al., 2019).

A challenge in game-based research is the reliance on total or 
end-game scores to assess performance. Games are often complex and 
engaging by design, presenting players with varied challenges across 
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interactions. This complexity makes analysis using total scores prob-
lematic, as moment-to-moment variability can obscure underlying fac-
tors that change across trials and sessions, such as players’ responses to 
novel situations. Relatedly, individuals may alternate between periods 
of good and bad performance within single sessions despite proficiency 
in the game.

To address these challenges, studies have proposed examining more 
complex measures of behaviour, such as patterns of players’ control 
inputs and decisions (Towne et al., 2014; Gobet, 2017; Stafford and 
Vaci, 2022). Additionally, it has been suggested that performance 
fluctuations can be explained in terms of changes in latent cognitive 
factors, such as shifts in attention (van Maanen et al., 2011; Renart 
and Machens, 2014). Recent applications of unsupervised learning tech-
niques have further advanced this field by modelling performance as 
underpinned by discrete shifts in internal states (Chen, 2015; Calhoun 
et al., 2019; Ashwood et al., 2022). Inspired by these approaches, this 
study aims to identify shifts in latent states as individuals engage in 
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a complex psychomotor task with high ecological validity. By com-
bining high-dimensional behavioural data from a laboratory version 
of a commercial video game (Tetris (Lindstedt and Gray, 2015)) with 
magnetoencephalography (MEG) recordings and unsupervised learn-
ing techniques, we show that individuals playing a video game shift 
between behaviourally and neurally distinct states.

1.1. Identifying latent states using hidden Markov models

Previous studies in this vein have shown that brain states during 
waking behaviour shape the dynamics of cortical activity, stimulus–
response and task performance in different animals and in recent cases 
have been able to describe behaviour with striking accuracy (Vidaurre 
et al., 2019; Eyjolfsdottir et al., 2017; Wiltschko et al., 2015; Cal-
houn et al., 2019). For instance, researchers investigating the acoustic 
courtship behaviours of fruit flies were able to precisely predict distinct 
patterns of song behaviour by statistically inferring latent states from 
flies’ movement data, capturing 84.6% of all remaining song patterning 
information that previous models lacking a latent state component 
could not explain Calhoun et al. (2019). Accurate segmentation of 
the latent state sequence allowed detailed description of the flies’ 
sensorimotor-strategies corresponding to each state and, following an 
optogenetics component of the study, identification of the neurons 
responsible for switching between states. Similarly, latent state mod-
els of rodent decision-making can accurately predict choice strategies 
corresponding to states of optimal engagement versus bias (Roy et al., 
2021; Ashwood et al., 2022), permitting reliable detection of blocks 
of trials with heterogeneous error-rates, as opposed to previous models 
that would assume errors are scattered throughout all trials in a session 
with equal probability.

While varying in scope and problem domain, common to some of 
these studies is their use of Hidden Markov Models (HMM), which 
model observable processes in terms of an underlying sequence of un-
observable (i.e., hidden) states that transition with fixed probabilities. 
This approach first involves specification of the number of states that 
are assumed to influence the process as well as the probabilities of the 
model initialising each state, following which the parameters of the 
model are estimated via maximum likelihood estimation. As described 
previously, successful validation of HMMs in cognitive task environ-
ments allows post-hoc relation of observable behavioural dynamics 
to underlying brain states, resulting in rich descriptions of moment-
to-moment performance and cognition. These can exist at the group 
level but also the individual level, for instance by analysing how much 
time individual participants spend in each state and how often they 
transition between states (Vidaurre et al., 2018).

Depending on the objectives of modelling, the specification of the 
states can take on different forms. In the examples outlined above, 
researchers specified a distinct generalised linear model (GLM) for each 
state that acted as a psychometric function mapping stimulus to senso-
rimotor response (Calhoun et al., 2019; Ashwood et al., 2022). This 
approach paired the HMM with a previously tested GLM with proven 
application in tasks with discrete outputs. A similar approach tested 
stage-wise models of human skill acquisition by pairing each latent 
state (i.e., stage of learning) with a different speedup function describ-
ing participants’ response latencies in a novel arithmetic task (Tenison 
and Anderson, 2016). Other investigations of latent states in humans 
have included the identification of brain states during wakeful rest or 
motor task performance by fitting HMMs to electrophysiological time 
series (Vidaurre et al., 2018, 2019; Karapanagiotidis et al., 2020). These 
studies have demonstrated that HMMs provide a flexible and task-
agnostic framework for segmenting behavioural or neural time series 
into meaningful state-dependent epochs.

1.2. Aims and approach

In this study, our aims were to (1) use an HMM approach to identify 
and characterise behavioural states that occur during an ecologically 
valid psychomotor task and (2) relate these states to neural markers 
of attention using MEG. To achieve these aims, we used a laboratory 
version of a commercial game (Tetris (Lindstedt and Gray, 2015)) that 
records detailed performance metrics. To our knowledge, this is the first 
investigation of latent states to be conducted in an ecologically valid 
context of human psychomotor performance.

We first analysed a purely behavioural experiment (Experiment 1) 
using secondary experimental data from an independent lab. Data from 
Experiment 1 were used to decompose game-state and behavioural logs 
into distinct features describing Tetris performance, and to test the 
capacity of these features to describe game-play. We then conducted 
a new experiment (Experiment 2) inside the MEG scanner where we 
recorded neuronal activity while subjects played the same task as in Ex-
periment 1. We applied dimensionality reduction techniques validated 
in Experiment 1 to extract performance components from our new 
behavioural data, used HMMs to identify distinct behavioural states, 
and related these states to contemporaneous neural activity.

The focus of the neural analysis was on occipital alpha power, as 
there is a well-established relationship between occipital alpha and 
visual spatial attention (Foster and Awh, 2019; Peylo et al., 2021). More 
specifically, direction of the attentional ‘‘spotlight’’ from one location 
in the visual field to another in the absence of eye movement has 
been shown to correlate with modulations in the amplitude of alpha 
rhythm in both the parietal and primary visual cortices (Yamagishi 
et al., 2003; Sauseng et al., 2005). We hypothesised that occipital alpha 
power would differ between states, reflecting changes in participant 
engagement throughout the task.

2. Methods

Here, we provide a brief overview of the overall study design, fol-
lowed by a detailed description of stimuli, procedures, and analysis for 
both experiments. We first detail the stimulus, followed by descriptions 
of samples and procedures for each experiment, noting adjustments 
made for neuroimaging in Experiment 2. The analysis protocol span-
ning both data sets, covering feature extraction, data pre-processing, 
HMM and MEG analysis, is then fully described.

2.1. Experimental overview and rationale

Our study comprised reanalysis of a large behavioural data set 
from Lindstedt and Gray (2019) (Experiment 1), followed by a novel 
experiment involving simultaneous behavioural and MEG data (Exper-
iment 2). The task in both experiments was ‘‘Meta-T’’, a laboratory 
adaptation of Tetris. In Experiment 1, we validated a set of orthogo-
nal features describing Tetris performance using Principal Component 
Analysis (PCA) and an analysis of expert-novice differences. After col-
lecting novel behavioural and MEG data in Experiment 2, we used the 
PCA weights from Experiment 1 to extract behavioural features from 
Meta-T, before applying Hidden Markov modelling on the resultant 
time series to identify distinct behavioural states during gameplay. 
These states were then related to contemporaneous neural activity 
recorded via MEG, focusing on occipital alpha power as an attentional 
marker.

The rationale for this two-part approach was to establish robust 
behavioural features in a large sample before extracting and analysing 
these features in combination with neural data collected from a smaller 
sample. Fig.  1 provides an overview of the experimental and analysis 
pipelines.
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Fig. 1. Overview of experimental and analysis pipelines. a, We extracted 4 orthogonal behavioural features using an archival data set of 240 participants. b, Feature extraction 
was validated by comparing performance trajectories of players in the top and bottom deciles of performance, confirming Meta-T reliably produces meaningful behavioural 
information relating to motor planning and execution. c, Simultaneous behavioural and MEG data were collected using an identical version of Meta-T. d, Structural MRI scans 
and MEG sources were estimated using minimum-norm estimation after co-registration. e, PCA weights extracted from Experiment 1 were then applied to the behavioural data 
obtained in Experiment 2. f, After fitting a three-state HMM to the resulting principal component scores, we aligned MEG and sMRI data for each participant, and computed alpha 
power in the visual cortex across each HMM state.

2.2. Experimental design

2.2.1. Stimuli
The behavioural task was an implementation of Tetris called ‘‘Meta-

T’’, developed by Lindstedt and colleagues to study human expertise 
and learning (Lindstedt and Gray, 2015). Meta-T is a near-identical 
representation of the original Nintendo Entertainment System (NES) 
Tetris, with the exception of minor visual differences relating to the 
use of Python (using pygame (Shinners, 2011)) as the development 
language. Importantly, Meta-T possesses several features that make it 
suitable for cognitive science, and has been used as a task environment 
in several published studies on human and machine expertise (Lindstedt 
and Gray, 2013; Sibert et al., 2017; Sibert and Gray, 2018; Lindstedt 
and Gray, 2019).

First, Meta-T outputs data files at the end of each session that, 
in addition to detailing the participant’s ID and other session-specific 
information, include a log of post-game summary statistics for each 
game, a log of game-state (e.g., pile structure) and behavioural (e.g., ac-
tion latencies) information describing performance for each ‘‘episode’’ 
of play (i.e., the time between tetromino appearance and tetromino 
drop), as well as a complete log containing key-press information at 
the millisecond level (See Lindstedt and Gray (2015) for an exhaustive 
description of logged variables). Second, researchers can modify game 
parameters such as screen size, game length, or difficulty curve, by 
editing the default configuration file. In doing so, researchers can 
constrain participant behaviour to bespoke experimental conditions 
according to the requirements of their research question.

We note minor differences in the stimulus code between experi-
ments due to adjustments made for MEG scanning. In Experiment 2, 
participants played an updated Python3 version of the Tetris imple-
mentation used in Experiment 1 (Fig.  2). The code was further adapted 
to accommodate a fibre optic response interface (Cambridge Research 
Systems 905 package) connecting the stimulus computer and MEG 
scanner, allowing participants to use a non-electronic, non-magnetic 

five button response pad to play Meta-T without adding additional 
noise to the scans. Finally, Meta-T was configured to send triggers to 
the MEG record upon the occurrence of salient events: button inputs, 
tetromino appearances/drops, line clears, and game start/end.

2.3. Experimental procedure

2.3.1. Experiment 1: Participants
We used a secondary, experimental data set of Meta-T gameplay 

made public by Lindstedt and colleagues through the Open Science 
Framework (https://osf.io/78ebg/). We describe the data set here fol-
lowing the original experimenters’ (Lindstedt and Gray, 2019) reports 
as well as our own examination of its contents. These data were col-
lected from 240 participants under laboratory conditions and informed 
consent was provided by the Rensselaer IRB.

2.3.2. Experiment 1: Stimulus task
Participants were seated in front of a computer and instructed to 

play Meta-T for 50 min using a provided NES controller, connected 
to the computer via USB. Players repeatedly engaged in successive 
games of Meta-T until the 50-minute period elapsed, restarting games 
upon failure. The data set comprise three log files, each detailing all 
240 participants’ task engagement at three different levels of time: one 
describing behaviour at the time of each button input, one describing 
behaviour in the time spanning the appearance to dropping of each 
tetromino, and one summarising behaviour at the level of the entire 
game. We concentrated our analyses on logs of tetromino drops at each 
game, as these provided the highest density of measures across all log 
files.

2.3.3. Experiment 2: Participants
15 healthy, right-handed participants were recruited through the 

York Neuroimaging Centre (YNiC) participant pool (United Kingdom). 
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All participants provided informed consent, and the study was ap-
proved by the York Neuroimaging Centre ethics committee. All partic-
ipants were familiar with playing Tetris, and provided a self-report of 
their proficiency on a 5 point Likert scale (𝑀=3.08, 𝑆𝐷=1.04), as well 
as their proficiency in digital games in general (𝑀=3.38, 𝑆𝐷=1.19). 
Data from 2 participants were excluded from analysis due to poor MEG 
data quality, resulting in a final sample of n = 13 participants (4 female, 
𝑀age = 33, 𝑆𝐷age = 11.31).

2.3.4. Experiment 2: MEG and MRI set-up
MEG scanning was conducted using a 4D Neuroimaging Magnes 

WH3600 scanner (248 channels + 23 reference channels) at YNiC. Data 
were recorded at a sampling rate of 500 Hz and then downsampled 
to 200 Hz. Prior to scanning, five fiducial head-coils were attached 
to each participant’s head with hypoallergenic tape. Facial landmarks 
(nasion, left and right preauricular) and head shape were then recorded 
using a Polhemus Tastrak 3D digitiser. To assess head movement inside 
the scanner helmet, we measured the position of the head-coils before 
and after every scan, and then compared these measurements to the 
spatial relation between head-coils recorded outside of the scanner. 
Movement < 0.5 cm was our acceptance threshold for head move-
ment, beyond which we reran our coil-on-head (CoH) scan to confirm 
any discrepancies in coil position and to subsequently recalculate coil 
positions using non-displaced coils. To estimate the neural sources of 
our MEG recordings, MEG data were co-registered with high-resolution 
structural MRI images. These were 1x1x1 mm MPRAGE T1-weighted 
structural MRI scans, acquired for each participant using a Siemens 
Prisma 3T MRI scanner. The Freesurfer pipeline (Dale et al., 1999; 
Fischl et al., 2004) was used to perform image segmentation and 
cortical reconstruction.

2.3.5. Experiment 2: Stimulus task
After being briefed and prepared for scanning, each participant 

was seated in a dark, magnetically shielded room under the scanner. 
Participants were given some time to practise playing Meta-T in the 
scanner until they reported feeling well-adjusted to the button inputs, 
during which time the data acquisition software was configured for 
scanning. Participants played Meta-T in a seated position and were 
instructed to minimise head movement, while playing until game over. 
Meta-T was configured to run in a full-screen environment without in-
game music. Tetromino sequences were randomised between games but 
standardised across participants using fixed numerical seeds. Games 
were played until loss, with all other settings matching Classic Tetris 
defaults.

Each scan was initiated five seconds before the start of each game 
and scan duration varied for each participant depending on their perfor-
mance across games (i.e., better performance resulted in longer games). 
Each scan and concurrent game was preceded and followed by a CoH 
scan, allowing us to assess head movement while the participant took 
a short break. Each participant typically played two or three games, 
resulting in an average acquisition duration of 𝑀 = 7.84 min per 
game (𝑆𝐷 = 2.88) and an average total acquisition duration of 𝑀 = 
21.55 min per participant (𝑆𝐷 = 4.54).

2.4. Analysis

Here, we describe analysis of behavioural data, describing extrac-
tion and validation of behavioural features through PCA on Experiment 
1. This is followed by a description of analogous feature extraction for 
Experiment 2 and subsequent HMM analysis. We then describe pre-
processing of MEG data from Experiment 2, and analysis of neural 
activity across HMM states.

Pre-processing and analysis was performed using both Python 3.8
(Van Rossum and Drake, 2009) and MatLab/Brainstorm (Tadel et al., 
2019). All analysis pipelines and supporting software are publicly 
available at https://github.com/ozvar/tetrisMEG, together with details 
regarding requisite software dependencies.

Fig. 2. Depiction of Meta-T user interface. The left side of the screen shows the 
current board, including the tetromino that is currently being controlled above it. The 
top right side of the screen shows the next tetromino that will be played after the 
current one is dropped. The player is also presented with the current game number, 
their current score, number of cleared lines, and the current level.
Source: Image taken from Lindstedt and Gray (2019).

2.4.1. Experiment 1: Feature extraction and behavioural analysis
As mentioned previously, Meta-T captures a wealth of information 

throughout gameplay. Each row in the episodic log file details over 60 
variables for the current tetromino drop, including:

1. Features summarising the session (e.g., participant ID, game 
number, timestamp),

2. Game state features relating to the tetromino (current and next 
tetromino, current tetromino position),

3. Game state features describing the pile (e.g., height, circumfer-
ence, number of unplayable cells)

4. Motor execution features (e.g., number of control inputs, latency 
before and between actions),

5. Features describing tetromino placement (e.g., number of lines 
cleared, landing height).

Our first aim was to validate a dimensionality reduction protocol 
using the behavioural data set from Experiment 1. We performed a PCA 
using the sklearn package (Pedregosa et al., 2011), focusing on episodic 
logs describing behaviour and game-state at the level of each tetromino 
drop, as these logs provided the greatest breadth of information relating 
to moment-to-moment performance. Each row in these logs corre-
sponded to one tetromino drop, describing the input behaviours from 
tetromino appearance to drop, changes to the game-state following the 
tetromino drop, as well as summary variables describing participant 
and session related information.

After inspecting data for outliers and removing two players who 
never progressed past level 0, we extracted a subset of variables related 
to performance, excluding session (e.g., subject ID, time stamp) and 
game-state descriptors (e.g., current tetromino, tetromino orientation). 
PCA was performed on this trimmed data set (see Table A.1 for a list 
of variables retained for PCA), initially with an unconstrained number 
of components. We identified the optimal number of components to 
retain using a scree plot (Figure A.7), retaining four components that 
explained 53.3% of the variance: Disarray, Well preparation, Action 
inefficiency, and Decision-action latency (see Section 3.1 for a detailed 
description of retained features following PCA).

NeuroImage 310 (2025) 121134 

4 



O. Vardal et al.

To validate the meaningfulness of our measures, we compared 
top and bottom performers, hypothesising significant differences in 
component scores across time between the groups. Players were sorted 
based on their average scores in their first three games and we selected 
the top and bottom quintiles for comparison. We then visualised the 
averaged trajectory of each component over the first 50 episodes of the 
first game for both groups, allowing us to examine how these measures 
differentiate between skill levels. These differences were tested for 
statistical significance through a mixed ANOVA of each performance 
component, with scoring quintile as the between subjects factor, and 
tetromino drop as the within-subjects factor.

2.4.2. Experiment 2: Feature extraction and validation
After validating feature extraction on the archival data set from 

Experiment 1, we fit the weights of our PCA model to transform the 
behavioural data from Experiment 2, producing for each participant 
from our novel sample an analogous time series of four components 
describing Meta-T performance. We used the mathematical difference 
of disarray rather than its absolute value to capture moment-to-moment 
impacts on pile structure. The scores of each component were then 
standardised to permit comparison between components with differ-
ent scales. Distributions of performance component scores across all 
tetromino drops in the sample are depicted in the Appendix (Figure 
A.8).

To verify that these behavioural measures remained meaningful in 
the scanner environment of Experiment 2, we examined correlations be-
tween participants’ game performance and component scores. For each 
of the first two games of each participant (𝑛 = 13 as every participant 
played at least two games), we computed average z-scored component 
scores across all tetromino drops and analysed their relationships with 
final game scores using Spearman rank correlations.

2.4.3. Experiment 2: Hidden Markov modelling
Trigger timestamps from the MEG record were imported into the be-

havioural record for use in HMM analysis, as the MEG record reflected 
the ground truth of event timings. We adjusted for the ∼5 s difference in 
initiation times between MEG scans and Meta-T games by subtracting 
the game start trigger in the MEG record from the episode duration 
column in the behavioural record. This was to avoid exaggerating the 
duration of each tetromino drop in the behavioural data by the initial 
task-free scan time, which was crucial for accurate analysis of state 
temporal dynamics (see below).
Model fitting. We used the Python hmmlearn package (an open source 
module with an API similar to scikit-learn; Anon (2022)), to fit a three-
state HMM to the time series of PCA-derived performance variables, 
where each point in the time series describes participant performance 
at each tetromino drop. Our model was fit to our data at the group-
level by concatenating the data across all of our participants and games. 
This approach aligns with established methods for group-level HMM 
analysis of behavioural and neural data across both human and animal 
studies (Ashwood et al., 2022; Calhoun et al., 2019; Karapanagiotidis 
et al., 2020; Vidaurre et al., 2018). We fit a Gaussian HMM (the obser-
vations are assumed to be well-described by a Gaussian distribution) 
with a diagonal covariance matrix and a 200 iteration upper bound for 
training, ensuring that the Expectation Maximisation (EM) algorithm 
stopped either after 200 iterations or on convergence to a maximally 
likely solution before reaching the iteration limit. As the EM algorithm 
is gradient-based and may therefore converge to local optima, we 
ran multiple courses of model fitting with different initialisations (a 
random initial transition matrix for the states) but otherwise identical 
parameters. We then chose the model with the highest log-likelihood 
for the remainder of our analyses. As an additional check of model 
robustness, we compared the log-likelihood of our true model to a 
randomised model that we produced by fitting an HMM with identical 
parameters to a randomly shuffled time series of our observations. 

We observed a consistently higher model fit in our true model as 
compared to our chance model, with Bayesian Information Criterion 
(BIC) values of 89,525.36 and 98,337.01 respectively (where lower 
values are indicative of the preferred model) (Visser et al., 2002).

We chose a three-state model assuming three modes of engagement 
with Meta-T: a default state where participants were engaged and 
attentive, a performant state where participants were both engaged and 
playing optimally, and a ‘‘panic’’ state involving suboptimal moves and 
blunders, potentially relating to inattention. States were assigned to 
each point in the behavioural time series using the Viterbi algorithm, 
which finds the most likely sequence of hidden states given the observa-
tions. It is worth noting that due to the variable amount of time taken 
by players to drop each tetromino, each point in the resulting HMM 
state time series was also of variable length.
State temporal dynamics. We first assessed the temporal dynamics of the 
model by interpreting the transition matrix. This is the central output 
of the model and describes the probability of participants switching 
between each pair of states from one tetromino to the next. We then 
computed the fractional occupancy of each state, that is, the fraction 
of total time that is spent by our sample in each state, both in the 
data set as a whole as well as in each individual game (Fig.  5). 
Previous applications of HMMs to the analysis of human brain dynamics 
have evaluated HMM validity by examining how state occupancy is 
distributed across participants (Karapanagiotidis et al., 2020; Vidaurre 
et al., 2018). An effective HMM would be expected to output state 
sequences that show participants occupying multiple states without 
large discrepancies in state occupancy (suggestive of single states over-
whelming entire participants or recordings). One statistic that reflects 
this requirement is the maximum fractional occupancy, that is, the 
fraction of time taken by the state that occupies the most amount 
of time in a given data acquisition or participant. To examine this 
criterion, we visualised our transition matrix together with a bar chart 
depicting fractional occupancy in each state, as well as a histogram of 
maximum fractional occupancy across all data acquisitions. In addition 
to a group level plot of maximum fractional occupancy, we produced a 
plot of state fractional occupancies unique to each participant to check 
for outliers who may have been skewing the overall model.
State performance dynamics. We analysed state performance dynamics 
by visualising group-level state profiles as well as individual game 
sequences (Fig.  6). To interpret state-performance dynamics across the 
entire sample, we referred to the demeaned score of each component 
within each state, which is the primary Gaussian emission returned by 
our model. These scores provide insight into the relative importance 
of each component within each state. These were tabulated together 
with violin plots of component scores for each state, which show 
how component scores were distributed across states. To inspect state 
sequences and performance for individual games, we visualised the 
time series of observed performance components individual games in 
parallel to the time series of posterior probabilities; a secondary output 
of our model that describes the probability of each of the three states 
being active given our observations for any given participant and game. 
By plotting these two time series in parallel for exemplar games, it be-
comes possible to visually relate patterns of performance to particular 
states in any given segment of our data. Additionally, to assess potential 
differences in eye movements across states, we estimated blink events 
from the MEG data using ICA (see below) to compare blink rates across 
HMM states. These results are presented in the Appendix (Figure A.13).

2.4.4. Experiment 2: MEG data pre-processing
Analysis and pre-processing of MEG data were performed in Mat-

Lab using Brainstorm (Tadel et al., 2019). Data were first band-pass 
filtered between 1 and 40 Hz using a finite impulse response filter. 
We performed an Independent Component Analysis (using the infomax 
algorithm; Bell and Sejnowski (1995)) to identify and reject compo-
nents capturing physiological artefacts such as blinks and heartbeats. 
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Fig. 3. SVM decoding of left versus right button inputs for participant R3154. a, Averaged 244 channel MEG time series from −400 ms to 400 ms for left and right translation 
inputs respectively. b, Heat maps of cortical source estimates at 0.085 s after the input was registered by Meta-T, corresponding to temporal peaks of amplitudes in (a). c, Averaged 
percentage accuracy of the classifier at each millisecond of the MEG time series. The red vertical dotted line on each line plot shows the time point corresponding to the presented 
cortical activity.

Raw time series data for each scan were then inspected manually in 
epochs of 50 s, and any periods contaminated by additional artefacts 
were removed manually.

As a test of data synchronicity, we checked that we were able to 
distinguish between neural responses to button presses executed with 
the left versus right thumb (i.e., the buttons used to translate the 
tetromino left and right respectively), as this would indicate that our 
MEG and behavioural data were synchronised and contained mean-
ingful information. For each participant, we trained a linear Support 
Vector Machine using the libsvm library (Chang and Lin, 2011) to 
decode left versus right translation inputs using the MEG time series 
extracted from −400 ms to 400 ms relative to each button press. To 
improve computational efficiency and signal-to-noise ratio, trials from 
each class (i.e., left versus right translation) were randomly assigned to 
five folds. Trials in each fold were then sub-averaged, yielding a total of 
five sub-averaged trials per class. Decoding was then performed on the 
five sub-averaged trials following a leave-one-out cross-validation pro-
cedure, and the process was iterated 50 times. Classification accuracy 
was averaged across the 50 iterations for each millisecond across the 
trial time range, and plotted for each participant (Fig.  3). We attained 
a classification accuracy of 100% for every participant approximately 
0.1 s after the response.

2.4.5. Experiment 2: Neural activity across HMM states
To examine brain activity across HMM states, we first aligned 

digitised head surfaces with reconstructed MRI images using fidu-
cial landmarks and applied a minimum-norm source estimation al-
gorithm to estimate source amplitudes across our regions of interest 
(ROIs) (Hämäläinen and Ilmoniemi, 1994). MEG source time series 
were extracted from ROIs parcellated using the Brodmann atlas (A.11), 
focusing on the primary visual cortex (V1) and motor cortex (M1) in 
both hemispheres.

HMM state onsets and switch times from the behavioural analysis 
were imported into the MEG record. MEG time series were then binned 
into one-second intervals, each labelled with the corresponding active 
HMM state. We computed the Fourier transform for each bin using the 
Fast Fourier Transform algorithm, with uniform bin length ensuring 
consistent transform lengths.

We calculated root-mean-square (RMS) amplitudes for alpha
(8–12 Hz) in V1 and mu (8–13 Hz) rhythms in M1. These were 
computed for each HMM state and participant. To analyse the neural 
distinctness of HMM states within participants, we conducted one-way 
repeated measures ANOVAs for V1 alpha and M1 mu RMS separately. 
Due to observed differences between left and right hemispheres (Figure 
A.12), we performed separate statistical analyses for each hemisphere.

3. Results

3.1. PCA

Following PCA, we extracted four principal components that ex-
plained up to 53.3% of the variance in Meta-T performance. Table 
(A.1) displays the PCA loadings, describing the correlation between 
each variable and principal component (only correlations past 0.20 are 
displayed). Each component was provided a meaningful label based on 
how it individually loaded on Meta-T variables and the unique aspect 
of Tetris gameplay that it related to. These labels are in line with a 
previous report that identified a similar factor structure (Lindstedt and 
Gray, 2019). We describe each component here in detail, with variables 
in parentheses referring to the original names of Meta-T variables as 
found in the table of PCA loadings.

1. Disarray. Players that fail to clear lines as their Tetris pile in-
creases in size are prone to developing an unfavourable Tetris 
pile. Disarray is the first principal component and it primarily 
loads on variables capturing this deficiency in pile structure, 
such as pits (e.g., ‘‘pits’’, ‘‘pit_rows’’, ‘‘pit_depth’’), randomness 
of the pile (e.g., ‘‘col_trans’’, ‘‘row_trans’’), and pile height.

2. Well preparation. Achieving a high score in Tetris requires cap-
italising on opportunities to score bonus points, typically by 
clearing multiple lines with a single tetromino. Well preparation 
relates to the forward planning required to achieve multiple 
line clears, such as by reserving a single, empty column at 
either edge of the pile. This phenomenon is uniquely captured 
by the second principal component through its correlation with 
variables relating to well properties (e.g., ‘‘wells’’, ‘‘deep_wells’’) 
and the height difference at edge columns (i.e., ‘‘cd_1’’, ‘‘cd_9’’).

3. Action inefficiency. Action inefficiency captures inputs (e.g., ro-
tations, translations) that are made in excess of the minimum 
number of inputs required to place a tetromino at its final 
destination (e.g., ‘‘min_rots_diff’’, ‘‘min_trans_diff’’). This relates 
to poor motor execution and planning.

4. Decision-action latency. This component corresponds to the initial 
lag (‘‘initial_lat’’) and average lag between actions (‘‘avg_lat’’) 
associated with each tetromino placement. It also corresponds 
to the local quality of placement for each tetromino (i.e., the 
reduction in pile height caused by placement and amount of 
contact with tetrominoes in the pile). Taken together we view 
this component as capturing both the speed and quality of 
decision-making as it relates to identifying optimal tetromino 
placement.
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Fig. 4. Comparison of moment-to-moment performance between top and bottom scorers. Each panel depicts the mean trajectory of the respective performance component for 
bottom (red line) versus top scorers (grey line) for the first 50 tetromino drops from game 1. From top left going clockwise to the bottom left panel, the subplots show trajectories 
for mean disarray, well preparation, decision-action latency and action inefficiency respectively. Shaded regions depict 95% confidence intervals of the mean.

3.1.1. Validation of behavioural features
Visualisation and statistical analysis confirmed that top and bottom 

scoring players in Experiment 1 differed significantly in their com-
ponent scores across time (Fig.  4). As a reminder, participants are 
exposed to identical tetromino sequences for each successive game that 
is played. It is therefore striking that while the peaks and troughs in 
action inefficiency and decision-action latency appear similar between 
top and bottom scorers, the top scorers were more efficient and faster in 
their gameplay across almost all depicted tetromino drops. Moreover, 
while disarray in both groups appears to trend upwards, the upward 
trend is much more pronounced in bottom scorers than in the top 
scoring group. Conversely, bottom scoring players trend downwards in 
their well preparation while top scoring players trend upwards.

Between-subjects effects for disarray [F(1, 34) = 81.93, 𝑝 < 0.001, 
partial 𝜂2 = 0.71], well preparation [F(1, 34) = 10.90, 𝑝 = 0.002, partial 
𝜂2 = 0.2427], action inefficiency [F(1, 34) = 26.38, 𝑝 < 0.001, partial 
𝜂2 = 0.44], and decision-action latency [F(1, 34) = 21.75, 𝑝 < 0.001, 
partial 𝜂2 = 0.39] were all statistically significant.

Additionally, interaction effects between scoring decile and tetro-
mino drop were statistically significant for disarray [F(1, 34) = 36.79, 
𝑝 < 0.001, partial 𝜂2 = 0.52], well preparation [F(1, 34) = 3.84, 
𝑝 < 0.001, partial 𝜂2 = 0.11], and action inefficiency [F(1, 34) = 1.42, 
𝑝 = 0.30, partial 𝜂2 = 0.04], but not for decision-action latency [F(1, 34) 
= 1.09, 𝑝 = 0.31], suggesting that between-groups differences in the for-
mer three components grew statistically significantly more pronounced 
as games went on. Taken together these results demonstrated that 
extracted features probe meaningful aspects of Meta-T performance.

Results of the feature extraction analysis from Experiment 2 were 
consistent with those from Experiment 1, and correlations from Game 
2 were generally stronger than in Game 1. Pile disarray showed a 
strong negative correlation with final game scores (𝜌 = −0.79, 𝑝 =
0.001). Well preparation and action inefficiency also showed significant 
correlations with performance in expected directions (𝜌 = 0.58, 𝑝 =
0.037 and 𝜌 = −0.59, 𝑝 = 0.035 respectively). While decision-action 
latency showed a non-significant correlation (𝜌 = 0.35, 𝑝 = 0.239) with 
overall performance, we retained this component in the subsequent 
HMM analysis as it captures a theoretically distinct aspect of gameplay 

— the temporal dynamics of decision-making and execution — that 
complements our other behavioural measures. Scatter plots of these 
relationships annotated with relevant statistics for both Games 1 and 
2 are presented in the Appendix (Figures A.9 and A.10).

3.2. Hidden Markov model analysis

3.2.1. State temporal dynamics
The HMM transition matrix reveals distinct probabilities for state 

transitions (Fig.  5). In particular, the probability of switches from State 
1 to State 1 and State 3 to State 3 were high (0.69 and 0.79 respectively) 
showing that participants have an affinity to remain in these states once 
they enter them. The probability of switching from State 1 to State 2 
was also relatively high, while the self-transitions for State 2 and State 
3 were relatively low (0.2 and 0.13 respectively), suggesting that State 
2 was a transient state that participants switched to mostly from State 
1 but seldom remained in.

In our case, the majority of games had maximum fractional occu-
pancy below 0.6 (mean fractional occupancy was 0.54), demonstrating 
that our participants’ time was shared across all states in our model. 
Our plot showed that a little over half of all time (∼52%) on task 
was spent in State 1, making this the dominant state throughout task 
performance. This was followed by State 3, accounting for  28% of state 
occupancy, and State 2 with  20%. A bar plot of fractional occupancies 
(Figure A.14) for each participant additionally shows that participants 
stayed for similar durations of time in each state, indicating that there 
were no outliers in the sample skewing the overall model.

3.2.2. State performance dynamics
Together these visualisations inform us about how participants tran-

sition between and how frequently they occupy states, but they do 
not tell us how behaviour and cognition vary across states. Here, 
we examine state performance dynamics through two complementary 
approaches: analysis of group-level state profiles and visualisation of 
individual game sequences (Fig.  6).
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Fig. 5. Overview of three-state HMM temporal dynamics. a, Inferred transition matrix of the model, where states are depicted as nodes and directed connections describing the 
probability of switching between each pair of states. b, Fractional occupancy of each state, defined as the fraction of total time spent in that state, as well as violin plots depicting 
distributions of dwell times (the amount of time resided in each state occupancy) across each state. c, Distribution of maximum fractional occupancy across acquisitions in the 
sample. That is, for each data acquisition in the sample, the maximum fractional occupancy represents the fraction of total time spent in the state that the participant occupied 
for the most amount of time for that acquisition.

Default state (State 1). We first refer to the table of demeaned com-
ponent scores, which offers a quantitative summary of how each per-
formance aspect deviates from the overall mean within each state. 
Together with the corresponding violin plot, these scores characterise 
the unique performance profile of each state. We observed that State 1 
is mostly characterised by efficient motor execution, slight increases to 
pile disarray at each tetromino drop. In line with this state being the 
most occupied state across the data set, we view State 1 as the ‘‘default’’ 
state, corresponding to usual, attentive Tetris gameplay.

Opportunity state (State 2). State 2 is characterised by high well prepa-
ration, large reductions to pile disarray, and moderate motor ineffi-
ciency and low decision-action latency. Participants appear to make 
quick decisions with relatively poor inputs in this state, corresponding 
to large changes to pile structure. Additionally, given that dwell times 
in State 2 appear to be short, we interpreted State 2 as a transient 
‘‘opportunity’’ state, during which the participant is prepared to either 
score significant points through line clears, or fumble and compromise 
the established pile structure. We pursued this idea by calculating the 
percentage of tetromino drops in the opportunity state that resulted in 
at least one line clear. This number was 97%, confirming our initial 
intuition. The remaining 3% of drops in the opportunity state that 
did not result in a line clear were distributed across 11 players in the 
sample, indicating that this state does not exclusively capture cleared 
lines, but rather pile structure conducive to line clears that most players 
in the sample occasionally failed to take advantage of.

Panic state (State 3). Finally, and in contrast to the opportunity state, 
State 3 was characterised by the lowest well preparation, increases 
to pile disarray, as well as relatively high motor inefficiency and 
moderate but variable decision-action latency. We interpreted State 3 
by considering these trends in tandem with aforementioned temporal 
dynamics. That is, instances of State 3 showed higher dwell times than 
the opportunity state, and transitions to State 3 were over twice as 
likely from the opportunity state than from the default state. Taken 
together, we interpreted State 3 as the ‘‘panic’’ state characterised by 
poor motor execution and planning, during which participants attempt 
to resolve difficult pile structures that likely arise from sudden and 
significant changes to structure that may occur in the opportunity state.
State dynamics in a single game. To illustrate these state dynamics, we 
examined a game from participant R3154 (top panel, Fig.  6). When 
well preparation is high and pile disarray is reduced, the participant 
enters the opportunity state which, consistent with our interpreta-
tion of the transition matrix, appears as a transient state with short 
dwell times. Conversely, the panic state is associated with low well 
preparation and increases in pile disarray. The participant’s motor 
executions are most efficient during the default state, evident from dips 
in action inefficiency following transitions to this state. This individual 
example corroborates our group-level analysis and provides a concrete 
illustration of how these states manifest during gameplay.

3.2.3. Endogenous rhythms across states
We first conducted a one-way repeated measures ANOVA to test for 

within-participants differences in V1 RMS alpha between states. These 
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Fig. 6. Overview of behavioural profiles of each HMM statea, Time series of state posterior probabilities (top) and performance component z-scores (bottom) for each tetromino 
drop for an example game. b Violin plots of performance component distributions across states. Each violin includes a box plot (black) indicating median and quartiles, with the 
coloured area representing the kernel density estimate. Tails show extreme values. The adjoined table shows demeaned component scores within each state.

tests were significant for both left V1 [F(2, 24) = 3.6317, 𝑝 = 0.0419] 
and right V1 [F(2, 24) = 4.2665, 𝑝 = 0.0260], effect sizes (𝜂2 = 0.0024 
and 𝜂2 = 0.0046 respectively). We also conducted one-way repeated 
measures ANOVAs to test for within-participants differences in M1 
RMS mu between states. Differences in neither left M1 [F(2, 24) =
0.7357, 𝑝 = 0.4896] nor right M1 [F(2, 24) = 0.8488, 𝑝 = 0.4404] were 
statistically significant.

Post-hoc differences for within-participants differences in occipital 
alpha across states showed significant differences in alpha activity in 
the left primary visual cortex between states 1 and 3 [t(12) = −1.44, 
p = 0.0374, Cohen’s d = −0.1036], as well as significant differences 
in the right primary visual cortex between states 1 and 2 [t(12) =
2.70, p = 0.0194, Cohen’s d = 0.0835] and states 2 and 3 [t(12) =
−2.25, p = 0.0436, Cohen’s d = −0.1585]. These results suggest that, 
in addition to our states displaying distinct patterns of alpha activity, 
participants manifest the highest levels of alpha in the panic state, 
followed by the default state.

4. Discussion

Drawing on recent advances in behavioural neuroscience, we used 
an HMM to identify hidden states in multivariate psychomotor data 
obtained from an ecologically valid task, showing that humans shift 
between latent states during psychomotor performance that differ in 
behavioural and neural characteristics. Our task was a laboratory ver-
sion of Tetris that logs granular performance metrics through time, 
and was performed in an MEG scanner. We identified three distinct 
states: (1) a ‘‘default’’ state with efficient motor execution and variable 
pile structure, (2) a transient ‘‘opportunity’’ state characterised by high 
scoring potential and rapid decision-making, and (3) a ‘‘panic’’ state 
involving challenging pile structures and inconsistent performance. 
Comparisons of neural activity between our three states revealed sta-
tistically significant differences in amplitudes of occipital alpha-band 
activity, a signal associated with attentional state (Foster and Awh, 
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2019; Peylo et al., 2021), indicating that differences in cognition across 
states may relate to attention. Taken together, our findings show that 
humans switch between behaviourally and neurally distinct states as 
they engage in complex psychomotor performance. We show that the 
dynamics of these state transitions can be captured using synchronised 
behavioural and neural measurements, and modelled using unsuper-
vised learning techniques to describe the relationship between states 
and performance.

Previous latent state models of behaviour have concentrated on 
animal behaviour in relatively well-studied task environments, such as 
courtship behaviours in fruit flies (Calhoun et al., 2019), visual detec-
tion in mice (Chen, 2015; Roy et al., 2021; Ashwood et al., 2022), or 
swim bouts in larval zebrafish (Sharma et al., 2018). These paradigms 
lend themselves well to models of latent states as the resultant observa-
tions are intuitively discretisable. Additionally, many of these studies 
are high in ecological validity, modelling behaviours that would be 
natural to observe in an animal’s usual behavioural repertoire. In com-
parison, the application of sequence classification techniques to identify 
latent states in humans has predominantly involved artificial tasks 
(e.g., motion coherence task (Ashwood et al., 2022)) or resting-state 
fMRI (Vidaurre et al., 2018, 2019; Karapanagiotidis et al., 2020). Here, 
we used a laboratory adaptation of a highly popular and commercially 
successful video game, parallelling growing interest in the use of natu-
ralistic stimuli within the domain of cognitive neuroscience (Sonkusare 
et al., 2019; Reggente et al., 2018). Specifically, participants played 
a laboratory adaptation of Tetris (Lindstedt and Gray, 2013, 2015) 
that collects numerous cognitive-behavioural variables relating to game 
state, motor execution, and motor planning. Our analysis included 
a feature engineering component whereby behavioural measurements 
were decomposed into four performance components based on data 
obtained by an independent laboratory using the same task (Lindstedt 
and Gray, 2019). Thus, using a tried and tested version of a video 
game explicitly tailored for laboratory research, we add to a growing 
body of literature that uses video games for research in cognitive 
neuroscience (Voss et al., 2012; Bavelier et al., 2012; Boot, 2015; Zhang 
et al., 2015).

One related implication for our analysis is that phases of gameplay 
that are more demanding for less skilled players may place lower 
demands on best players in the sample. Having concatenated all ob-
servations to produce our input time series for model fitting, our 
model would not have accounted for the potential effects of variation 
in skill. This is an important consideration, given previous evidence 
highlighting that variables discriminating between less versus more 
skilled players are not the same across skill brackets (Thompson et al., 
2013). In parallel research on animal models, this issue is either re-
solved through extensive training, or it is completely bypassed by 
observing naturally ingrained behaviours. Here, we made efforts to 
recruit participants who reported familiarity with Tetris, but we were 
unable to control for how proficient they were. Additionally, we re-
alised during data collection that many participants were familiar with 
modern versions of Tetris with nuanced differences that confounded 
their initial experiences for the game. For instance, our configuration 
of Meta-T emulates Classic Tetris and therefore lacks visual guidelines 
indicating each tetromino’s destination, and prohibits rotating tetromi-
noes at the very edge of the well; both of these are mechanics that 
some of our more experienced participants reported relying on in their 
usual recreational gameplay. These issues may have introduced some 
additional noise to our model.

Compared to previous latent state models of low-level psychophysi-
cal phenomena, we opted for a complex behavioural environment that 
is high in ecological validity. In doing so, we show that hidden Markov 
modelling can be used to identify state shifts in tasks that approach real 
world behaviour. However, we acknowledge our position in the trade-
off between simple behavioural data suitable for predictive modelling 
versus rich behavioural data that makes prediction much more difficult. 
Given the nature of our input data (i.e., our time series of performance 

components), our model infers parameters that describe the temporal 
dynamics of our states, and generates emission probabilities describing 
the probabilities of observations given the state time series. In the case 
of our Gaussian HMM, the emission probability parameters of each 
state were the mean and standard deviation parameters describing the 
Gaussian probability density function of each performance component 
in the respective state. This can lead to expectations about how par-
ticipants may perform across states based on how the distributions of 
performance components shift across states but it does not permit the 
more fine-grained prediction mechanisms that other studies have used, 
such as the GLM-HMM approach in Calhoun et al. (2019).

The validity of our model is supported by the correspondence 
between the behavioural characterisations of our states and the un-
derlying neural signatures of each state. In a model that failed to 
distinguish between cognitively meaningful states, we would expect to 
observe no differences in neural signatures associated with cognition. 
Instead, comparisons of neural activity across our inferred states re-
vealed statistically significant differences in occipital alpha, a signal 
that has been previously linked to attention (Foster et al., 2017; Fos-
ter and Awh, 2019; Peylo et al., 2021). In particular, post-hoc tests 
revealed elevated occipital alpha in the panic state as compared to the 
default state, and higher occipital alpha in the default state as compared 
to the opportunity state.

These findings align with previous research on the relationship 
between occipital alpha power and attentional processes. The elevated 
alpha power observed in the ‘‘panic’’ state compared to the default 
state is consistent with studies showing increased alpha activity dur-
ing periods of high cognitive load or task difficulty. For instance, 
Klimesch and colleagues (Klimesch et al., 1999) found that alpha power 
increased during the retention period of a working memory task, partic-
ularly when task demands were high. In contrast, the opportunity state 
might represent moments when players have identified clear strategic 
moves, requiring less broad attentional deployment and more focused 
execution.

State-dependent variations in occipital alpha power may relate to 
other neural signatures, such as activity in the default-mode network 
(DMN), which is known to be active during internally directed cog-
nition (Raichle, 2015). Mo and colleagues (Mo et al., 2013) found a 
positive correlation between visual alpha power and DMN activity dur-
ing eyes-open resting state, suggesting that increased alpha power may 
serve to protect internal information processing by gating out sensory 
input. This framework could explain our observation of elevated alpha 
in the panic state, where players focus internally on strategic planning 
while inhibiting distracting visual input.

Furthermore, the state transitions we observed in Tetris gameplay 
may be analogous to the spontaneous switching between externally-
oriented and internally-oriented states It is important to note that the 
relationship between alpha power and attention is complex and can be 
task-dependent. Foxe and Snyder (2011) reviewed evidence suggesting 
that alpha oscillations can serve as both an attentional suppression 
mechanism and an active processing mode, depending on the specific 
cognitive demands. Our results, showing distinct alpha patterns across 
the three identified states, underscore the nuanced nature of attentional 
modulation during complex, ecologically valid tasks like Tetris.

While our model likely reflects attention shifts, without manipu-
lating attention as in previous studies (Cohen and Maunsell, 2009; 
Mitchell et al., 2009), we cannot precisely determine which task as-
pects are attended to in different states. To address this limitation, 
we performed a supplementary analysis estimating blink events across 
states using ICA, revealing significant differences in participants’ blink 
rates between states. This finding aligns with recent research suggesting 
that blinking may be a source of attentional shifts (Yang et al., 2024). 
Future work could combine eye tracking with this task to allow more 
precise inferences about attention across states, potentially exploring 
the relationship between blinking and attentional shifts as a promising 
avenue for investigation.
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It is also possible that attention shifts continuously, and not dis-
cretely as assumed by our model. Ashwood and colleagues (2022) 
found superior model fit in their discrete model as compared to a model 
with continuous latent states (Roy et al., 2021), albeit in the context 
of a different task. Additionally, these authors found that a two-state 
discrete model fit human data from a motion coherence task better 
than a three-state model. We are open to the possibility that models 
with different assumptions may describe performance in the present 
context better than our three-state guassian HMM, for instance a two-
state, engaged versus disengaged model. However, this is a question for 
future work.

4.1. Limitations

Many studies of cognition that use video games, in particular com-
mercial video games, have analysed univariate measures of perfor-
mance such as end of game summary metrics (e.g., win/loss, points 
scored), or time-bound measures of performance (e.g., points scored per 
minute). We show here that the analysis of fine-grained, multivariate 
behavioural time series can generate inferences and research questions 
that may be difficult to access with summary metrics alone. Relatedly, 
and partly as a consequence of this limitation, studies of video games 
that involve repeated measures often aggregate data within and across 
sessions of engagement. Previous work has advised against this on 
theoretical (Towne et al., 2014; Gobet, 2017; Stafford and Vaci, 2022) 
as well as empirical grounds, demonstrating how certain insights into 
individual differences (Harwell et al., 2018) or skill acquisition (Towne 
et al., 2016; Rahman and Gray, 2020) can only be achieved after 
disaggregating data and considering behaviour in a more detailed 
fashion. Although this study involved detailed analysis of behaviour 
through time, we have aggregated data across subjects despite variation 
in players’ average scores indicating a heterogeneity in skill level. 
Additionally, follow-up studies should be conducted with a prior power 
analysis and a sample size sufficient for achieving adequate statistical 
power.

In addition, and in contrast to previous latent state models of 
behaviour, we did not train our participants on the task. Tetris is a 
complex psychomotor task requiring both rapid perceptual decision-
making and skilled motor inputs. Although we recruited participants 
who all indicated ample prior experience with Tetris, as mentioned 
before, we are nonetheless conscious of large variation in participant 
skill, as well as noise arising from unfamiliarity with our specific 
configuration of Meta-T, the controller, and the scanner environment 
in which the task was performed. In addition, we note the absence 
of a ‘‘ground truth’’ model with which to validate our model. Instead, 
we compared the log-likelihood of our model to a randomised chance 
model, which indicated superior fit of the true model. However, we 
acknowledge as a limitation that due to the nature of our input data 
and the type of HMM that we used, the predictive capacity of our 
model may be restricted. Future work, perhaps using recording systems 
that are more tolerant to continuous recording in more naturalistic 
environments (for example, EEG, OPM-MEG or chronically-implanted 
electrode arrays) would allow us to collect more extensive data sets 
on a larger population and integrate other physiologically-relevant 
measures such as pupilometry, actigraphy, skin conductance and heart 
and respiration monitoring. Such dense, multivariate recordings could 
allow us to characterise the neurophysiological biomarkers associated 
with different states and make predictions of future performance.

4.2. Conclusions

Using simultaneous behavioural and neural recordings of partici-
pants playing a laboratory version of Tetris, we extend previous work 
by demonstrating that individuals switch between latent states during 
performance in an ecologically valid task. Individuals in our sample 

shifted between three states each with unique performance character-
istics during gameplay. Further, MEG analysis revealed differences in 
occipital alpha across states, suggesting that differences across states 
may be related to attention. Our results show that analysing sessions 
of data by averaging summary statistics alone may mask a wealth of 
information describing the dynamics of performance and cognition. We 
demonstrate how these dynamics can be uncovered using unsupervised 
learning techniques and granular, multivariate data.
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