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Article
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Abstract: Aim: The aim of this study was to evaluate the differences in plaque composition
and burden between normal glycemic status (NGS) and dysglycemia expressed as impaired
glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). Methods: Clinically indicated
coronary computed tomography angiography was used to evaluate patients with suspected
coronary artery disease (CAD). An oral glucose tolerance test was performed to assess
glycemic status. Patients were stratified as NGS, IGT, and T2DM. Plaque volumes were
quantified using validated software, with further compositional measurements of low-
attenuation, non-calcified, and calcified plaque burden. Results: Of 355 patients with
suspected CAD, 220 had NGS, 92 were diagnosed with IGT, and 43 with known T2DM. Low-
attenuation plaque volume was significantly higher in IGT (209 mm3, p < 0.02) and T2DM
(243 mm3, p = 0.005) compared with NGS (166 mm3). Total plaque burden was similar
between all groups, but a significantly greater low-attenuation plaque burden was seen in
IGT (p = 0.03) and T2DM (p = 0.02) compared with NGS. The multivariate linear regression
model adjusted for clinical risk factors showed that patients with IGT had a greater low-
attenuation plaque burden compared with those with NGS (p = 0.03). Interestingly, no
significant differences in plaque burdens were observed between those with IGT and
T2DM in both univariate and multivariate analyses. Conclusions: Dysglycemia, including
impaired glucose tolerance and type 2 diabetes mellitus, was associated with increased
low-attenuation plaque burden compared with normal glycemic status. Patients with IGT
demonstrated plaque burden similar to patients with known T2DM, underscoring the need
for early metabolic intervention.

Keywords: computed coronary tomography angiography; low-attenuation plaque;
dysglycemia; impaired glucose tolerance; type 2 diabetes mellitus; plaque burden; plaque
composition
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1. Introduction
Dysglycemia, characterized by perturbations in glucose metabolism, is steadily rising

worldwide [1]. This condition develops gradually, progressing from normal glycemic
status (NGS) to prediabetes (preDM) and, finally, type 2 diabetes mellitus (T2DM) [2]. The
severity of dysglycemia correlates to higher morbidity and mortality after acute myocardial
infarction [3,4], underscoring the importance of early detection and management.

Diabetes has long been a focus of coronary artery disease (CAD) [5] and can be di-
agnosed using either glycated hemoglobin A1c (HbA1c) or an oral glucose tolerance test
(OGTT) [6]. Unlike HBA1c, the OGGT can stratify patients into prediabetic groups, impaired
fasting glucose (IFG), and impaired glucose tolerance (IGT) based on their fasting glucose
and 2 h values [6]. Independently, both IFG and IGT have been associated with CAD [7,8].
IGT has been more strongly associated with the risk of CAD and metabolic syndrome
compared with IFG [9–11], which is why this article aims to highlight this association.

Patients with preDM often exhibit hallmarks of insulin resistance with increased
inflammation, oxidative stress, and dyslipidemia [12]. These conditions are part of the
latent phase of T2DM and are strongly associated with well-established risk factors for
CAD, such as smoking, obesity, hypertension, and hypercholesterolemia [13]. Despite these
associations, international guidelines for CAD risk management and prevention in patients
with preDM remain noticeably absent. Interestingly, a study from Yahyavi et al. suggested
that patients with HbA1c values of 46–47 mmol/mol, just below the limit for T2DM, face a
higher risk of major adverse cardiovascular events (MACE) compared with those within
the diabetic range [14]. This underscores the need for further research to investigate/clarify
the mechanisms by which preDM influences CAD development, as well as determine the
need for further risk prevention strategies.

Coronary computed tomography angiography (CCTA) is a valuable tool in screening
for CAD and in risk stratification [15]. CCTA is a non-invasive imaging technique used to
assess the extent of atherosclerosis and evaluate coronary artery stenosis. It also enables a
comprehensive evaluation of plaque composition and allows for the estimation of plaque
severity based on the plaque burden. Analyzing differences in attenuation allows for
subdivision into different plaque components: calcified, non-calcified, and low-attenuation
plaque burden [16,17]. Williams et al. found that non-calcified and low-attenuation plaque
burden were predictors of both fatal and non-fatal myocardial infarction [17]. Research
on low-attenuation plaque in patients with IGT is limited, and there is a significant gap in
understanding the variations in low-attenuation plaque across the glycemic stages.

Our aim was to investigate the associations between plaque composition and burden
in groups representing different stages of dysglycemia. Our objectives were (i) to evalu-
ate the differences in plaque composition and burden between normal glycemic status,
impaired glucose tolerance, and T2DM, and (ii) to evaluate the association between low-
attenuation plaque burden and glycemic status, focusing on impaired glucose tolerance
and its comparisons to normal glycemic status and T2DM.

2. Materials and Methods
2.1. Study Design

This was an observational, prospective, single-center, open-labeled study with a
blinded comparison between glycemic status and coronary plaque composition and burden.
The study was conducted at the Outpatient Clinic of Cardiology at OUH/ Svendborg
Hospital, Denmark, and the Department of Cardiovascular Research. We enrolled patients
referred for CCTA due to suspicion of ischemic heart disease between February 2018
and June 2020. During the CCTA visit, patients were informed about the study and
invited to participate. Patients were booked for a consultation where written informed
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consent was acquired, blood samples were taken, and the completion of a medical history
interview was conducted. The mean interval between blood sampling and CCTA was
29 days. Inclusion criteria included being at least 18 years old, being capable of providing
informed consent, and having suspected CAD. Exclusion criteria included body mass index
(BMI) > 40, irregular or fast heart rhythm inadequate for CCTA, reduced kidney function
with estimated glomerular filtration rate (eGFR) < 45 mL/min, contrast allergy, or newly
detected T2DM by either HbA1c or OGTT. All patients provided written informed consent,
and the study was approved by the Regional Scientific Ethics Committee for Southern
Denmark (project ID: S-20170094) and the Danish Data Protection Agency (project ID:
2012-58-0018).

2.2. Study Population

For this study, 586 consecutive patients under suspicion of stable coronary artery
disease CAD were enrolled in the Outpatient Clinic of Cardiology at OUH/Svendborg
Hospital. Patients with non-diagnostic CCTA and tube voltage below 100 kilo Volt (kV)
were excluded (n = 128) due to issues of comparability, as noted by Takagi et al. [18]. Eighty-
four patients were excluded due to being stratified as IFG by OGTT. A further 19 patients
were excluded based on 2 h blood glucose of more than 11.1 due to uncertainty of possible
diabetes diagnosis. A total of 355 patients were available for the final analysis (Figure 1).
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2.3. Biochemical Analysis

Blood samples were obtained and assessed for various biomarkers, including HbA1c,
fasting blood glucose, 120 min blood glucose, total cholesterol, low-density lipoprotein
(LDL), high-density lipoprotein (HDL), triglycerides, eGFR, creatinine, and C-reactive
protein (CRP). Remnant cholesterol was calculated by subtracting LDL and HDL from
total cholesterol.

2.4. Medical History

A questionnaire was used to evaluate cardiovascular risk factors, encompassing age,
height, weight, smoking status, history of CAD, medical history, and medication use. Hy-
pertension was defined by a previous diagnosis or current treatment with anti-hypertensive
treatment. Hypercholesterolemia was defined by either previous diagnosis or current
treatment with lipid-modifying drugs.
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2.5. Oral Glucose Tolerance Test and HbA1c

OGTT was performed after CCTA in patients without known T2DM. Patients were
instructed to fast for 8 h before the OGTT. Fasting plasma glucose was measured before 75 g
of glucose was ingested over five minutes. After 120 min, plasma glucose was measured,
and patients were stratified according to WHO definitions of glycemic status (Figure 2) [6].
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Figure 2. WHO criteria for oral glucose tolerance test stratification.

Patients with known T2DM were included in the study if they had an HbA1c ≥ 48 mmol/
mol at inclusion or any prior two measurements, a previous venous plasma glucose of
≥11.1 mmol/L, or current use of antidiabetic medication. Patients were stratified into the
following groups based on their OGTT results: NGS, IGT, and T2DM. Patients with IFG were
excluded from the study due to similar risk profiles and plaque burden as the NGS group
(Supplemental Material Tables S1 and S2).

2.6. Coronary Computed Tomography Angiography Acquisition

CCTA images were obtained using a standardized protocol on a 256-detector system
(GE-revolution CT, GE Healthcare, Waukesha, WI, USA). We also conducted an unenhanced
scan to assess coronary artery calcium. Ivabradine 7.5 mg tablets were administered one
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tablet on the night days before the scan and one tablet in the morning on scanning day
to improve the image quality. If necessary, intravenous beta-blockers were administered
on the day of the scan. ECG-gated prospective acquisition in the 75% R–R interval, with
additional padding of 45 ms to allow for additional construction, was used to obtain the
images. A total of 60 mL of iodine contrast (Visiplaque 320 mg iodine/mL) was injected
at a rate of 5 mL/s, and the scan was timed when maximum attenuation was detected in
the descending aorta. Tube voltage was adjusted based on the patient’s body size; patients
scanned at 100–120 kV were included. The gantry rotation time was 280 ms with a 16 cm
axial coverage. The slice thickness and interval for reconstruction were 0.625 mm, and 40%
adaptive statistical iterative reconstruction was standardized. The highest-quality images
were selected from the available phases and used for reconstruction and final analysis using
dedicated software.

2.7. Quantitative Coronary Computed Tomography Angiography Analysis

Quantitative CCTA analysis was performed using the semiautomatic, validated soft-
ware (Qangio CT Research Edition 3.2.0.13, Medis, Leiden NL, USA) [19]. All images
were blinded to the experienced observer (TRA). The software automatically extracted the
coronary artery tree and placed centerlines. Coronary artery segments were automatically
extracted using the American Heart Association 17-segment model. Segments were man-
ually changed when needed. Cross-sectional and longitudinal images of the lumen and
vessel wall were automatically created, with careful manual adjustments when necessary.
Segments with insufficient quality, with a lumen of less than 1.5 mm, or with low levels
of contrast were excluded. Patients were excluded if they had less than two vessels of
adequate quality or with severe artifacts that compromised image quality.

All vessels were examined for visible plaque, defined as structures ≥1 mm3 within or
adjacent to the lumen and visible in ≥2 planes. Plaque volumes and burdens were extracted
automatically per patient, and tissue volumes were extracted based on Hounsfield Unit
(HU) values using a dynamic algorithm, converting HU thresholds into volumes according
to luminal contrast densities. The following plaque characteristics were extracted by the
software: vessel length (mm), lumen volume (mm3), and total atheroma volume (TAV, mm3).
The total plaque volume was sub-classified into volumes of calcified plaque (≥351 HU),
non-calcified plaque (30–350 HU), and low-attenuation plaque (<30 HU) based on their
HU values (Figure 3). The following parameters were calculated post-data extraction:
percent atheroma volume (PAV) ((total vessel volume − total lumen volume)/total vessel
volume × 100%), normalized atheroma volume (NAV) ((total vessel volume − total lumen
volume)/mean segment length), percent plaque volume per individual plaque component
(PPV) ((total calcified, non-calcified and low-attenuation plaque volume/total plaque
volume) × 100%). Additionally, patients were screened for the presence of significant
stenosis (≥50% stenosis). The coronary artery calcium score (CACS) was calculated using
the Agatston method on non-contrast CCTA images [20].
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anterior descending artery.

2.8. Statistical Analysis

All statistical analysis was performed using STATA IC 17. Baseline characteristics are
presented as means with standard deviations for continuous variables, and categorical
variables are presented as totals and percentages of the total number per group. Patient
and plaque level data were tested for normal distribution prior to analysis. Non-normally
distributed variables are presented as medians and inter-quartile ranges. Student’s t-test
was used to compare the means of continuous variables between each pair of the three
stratified groups: NGS vs. IGT, NGS vs. T2DM, and IGT vs. T2DM. When appropriate,
categorical parameters were described using the Chi-squared or Fisher’s test. Plaque vol-
umes were logarithmically transformed before statistical analysis due to their non-normal
distribution. The association between NGS, IGT, and T2DM groups with overall plaque
burden and individual plaque components was tested using univariate and multivariate
linear regression. Categorical parameters, stenosis ≥ 50%, and plaque presence were tested
using univariate and multivariate logistic regression. To build the multivariate regression
model, baseline characteristics with a p-value < 0.05 in univariate analysis were initially
considered for inclusion. The Wald Test was then applied to evaluate the significance of
each variable within the multivariate context, assessing whether it significantly improved
the model’s fit while controlling for other factors. Variables with p-values < 0.05 on the Wald
Test were retained in the final model. Additionally, variables known to be clinically relevant
confounders based on prior research or biological plausibility were included regardless of
their univariate p-values.

2.9. Statement on Use of AI

We used ChatGPT, developed by OpenAI, to enhance the clarity and accuracy of the
manuscript’s language. The platform was accessed from October to 20th of December 2024,
and its functionality was employed specifically for refining the wording and improving
the articulation of key concepts. The authors take full responsibility for the integrity and
accuracy of the content generated and confirm that all substantive scientific findings and
conclusions remain the work of the authors.
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3. Results
3.1. Patient Population

This cross-sectional study included 355 patients under suspicion of CAD. Of these,
220 patients were classified as NGS, 92 patients as IGT, and 43 patients had known T2DM.
The baseline characteristics of the study participants are presented in Table 1. The BMI
was significantly higher in the IGT and T2DM groups compared with the NGS group (IGT:
29.3 ± 4.5, T2DM: 31.5 ± 6.0, and NGS: 27.0 ± 4.0). The IGT group had higher systolic blood
pressure compared with both NGS and T2DM. The prevalence of hypercholesterolemia
increased gradually across the spectrum of dysglycemia (i.e., NGS 25%, IGT 40%, T2DM
79%). The T2DM group was more likely to be treated with anti-hypertensive medications,
and lipid-lowering agents compared with NGS and IGT groups. Additionally, the T2DM
group had an increased risk of having a family history of CAD.

Glycemic status significantly influenced the lipid profiles and inflammatory markers,
with distinct differences observed among the T2DM, IGT, and NGS groups. The total
cholesterol and the low-density lipoprotein (LDL) levels were significantly lower in the
T2DM group compared with the other groups (p < 0.001). Remnant lipoproteins were sig-
nificantly higher in the IGT group compared with the NGS (p < 0.0001). Triglyceride levels
increased as glycemic status worsened (NGS: 1.4 ± 0.9, IGT 1.8 ± 0.9, T2DM: 1.9 ± 1.1).
Finally, the IGT group had a significantly higher level of C-reactive protein compared with
the NGS (p < 0.0001) and T2DM groups (p = 0.006).

Table 1. Patient characteristics. Data are presented as mean ± SD or as exact figure (n) with
percentage (%).

NGS
N = 220

IGT
N = 92

T2DM
N = 43

NGS vs. IGT
p-Value

NGS vs. T2DM
p-Value

IGT vs. T2DM
p-Value

Age 59.8 (11.7) 61.6 (10.6) 62.8 (9.3) 0.5 0.3 0.9
Male gender 112 (51%) 57 (62%) 29 (67%) 0.07 0.05 0.6

BMI 27.0 (4.0) 29.3 (4.5) 31.5 (6.0) <0.0001 <0.0001 0.02
Systolic BP 140 (22) 149 (20) 140 (22) 0.004 0.9 0.1
Diastolic BP 78 (11) 82 (13) 80 (17) 0.05 0.9 0.9

Hypertension 79 (36%) 45 (49%) 27 (63%) 0.03 0.001 0.1
Hypercholesterolaemia 54 (25%) 37 (40%) 34 (79%) 0.005 <0.0001 <0.0001

Never smoker 110 (50%) 33 (36%) 18 (42%) 0.02 0.3 0.5
Former smoker 82 (37%) 45 (49%) 20 (47%) 0.06 0.6 0.6
Active smoker 28 (13%) 14 (15%) 5 (12%) 0.6 0.8 0.6

Fam. history of CVD 71 (33%) 32 (35%) 22 (51%) 0.7 0.02 0.08
Fasting glucose 5.6 (0.3) 6.1 (0.5) - <0.0001 - -
120 min glucose 5.8 (1.1) 9.0 (0.9) - <0.0001 - -

HbA1c 35 (4) 37 (3) 52 (11) 0.008 <0.0001 <0.0001
Total cholesterol 5.0 (1.0) 4.7 (1.1) 3.6 (0.8) 0.08 <0.0001 <0.0001

HDL 1.5 (0.5) 1.4 (0.4) 1.1 (0.2) 0.002 <0.0001 0.02
LDL 3.0 (0.9) 2.6 (1.0) 1.9 (0.5) 0.01 <0.0001 <0.0001

Triglycerides 1.4 (0.9) 1.8 (0.9) 1.9 (1.1) 0.001 0.002 0.9
Remnant lipoprotein 0.5 (0.4) 0.7 (0.4) 0.6 (0.4) <0.0001 0.9 0.2

CRP 2.1 (2.0) 3.3 (2.9) 2 (2.0) <0.0001 0.9 0.006
eGFR 81 (10) 82 (10) 82 (11) 0.9 0.9 0.9

Creatinine 77 (16) 78 (16) 76 (15) 0.9 0.9 0.9
ACE-inhibitors 42 (19%) 28 (30%) 24 (56%) 0.03 <0.0001 0.005

Calcium-antagonists 28 (13%) 16 (17%) 11 (26%) 0.3 0.03 0.3
Beta-blockers 40 (18%) 23 (25%) 15 (35%) 0.2 0.01 0.2

3.2. CCTA Findings

Table 2 presents the total atheroma volume and individual plaque volumes, as well as
the prevalence of stenosis of more than 50% in the study groups. Total atheroma volume,
calcified, and non-calcified plaque volume did not differ between the groups. However, the
low-attenuation plaque volume was significantly higher in patients with IGT and T2DM
compared with patients with NGS. Specifically, the total volume of low-attenuation plaque
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was significantly higher in the IGT and T2DM groups compared with NGS (p < 0.001)
(Table 2). Notably, no difference was observed between the IGT and T2DM groups. A
significant trend was found for the increasing number of significant stenosis present as
dysglycemia worsened. However, there was no statistically significant difference between
NGS and IGT.

Table 2. Plaque burden and composition stratified by glycemic state in 355 patients. Data are
presented as mean and SD when data is continuous. Stenosis is presented as the total number in the
group and percentage. Total CAC is presented as median and IQR.

NGS
N = 220

IGT
N = 92

T2DM
N = 43

NGS vs.
IGT

p-Value

NGS vs.
T2DM
p-Value

IGT vs.
T2DM
p-Value

Trend
p-Value

TAV, mm3 955 (786–1172) 1054 (873–1294) 1077 (875–1317) 0.3 0.4 0.9 0.1
PAV, % 27 (23–30) 27 (23–31) 27 (24–32) 0.9 0.8 0.9 0.5
NAV, % 2.7 (2.3–3.4) 2.9 (2.3–3.6) 2.9 (2.3–3.5) 0.8 0.9 0.9 0.4

Calcified plaque vol. 25 (9–87) 43 (7–119) 50 (21–112) 0.8 0.2 0.3 0.1
Non-calcified vol. 728 (607–866) 764 (616–905) 728 (611–933) 0.9 0.8 0.9 0.7

Low-attenuation vol. 166 (112–230) 209 (154–306) 243 (145–350) 0.02 0.001 0.9 <0.0001
PPV calcified 3 (1–8) 4 (1–10) 5 (2–11) 0.9 0.4 0.3 0.2

PPV non-calcified 76 (70–82) 71 (66–78) 70 (65–75) 0.04 0.005 0.8 0.01
PPV low-attenuation 16 (13–23) 19 (14–28) 22 ( (16–28) 0.03 0.02 0.9 0.004

Stenosis > 50% 20 (9%) 14 (15%) 13 (30%) 0.1 0.001 0.005 0.0002
Total CAC score 8 (0–106) 29 (1–214) 84 (13–266) 0.05 0.5 0.9 0.05

TAV: total atheroma volume, PAV: percent atheroma volume, NAV: normalized atheroma volume, PPV: percentage
plaque volume, NGS: normal glycemic status. IGT: prediabetes. T2DM: type 2 diabetes mellitus. Stenosis > 50%:
Stenosis of coronary artery greater than 50% of luminal area. Total CAC: total coronary artery calcium score.

3.3. Univariate and Multivariate Analysis

Table 3 presents a comparative analysis of plaque volume and burden, CACS, and
the presence of stenosis of more than 50%. In the unadjusted model, a higher burden of
low-attenuation plaque was associated with dysglycemia. Patients with IGT and T2DM
had a significantly higher burden of low-attenuation plaques compared to patients with
NGS. However, no difference was found between patients with IGT compared to patients
with T2DM. The presence of stenosis of more than 50% was associated with having T2DM.
A multivariate regression analysis was performed to account for possible confounders. The
following parameters were tested: sex, age, LDL, hypercholesterolemia, smoking, BMI,
and CRP. The analysis revealed that low-attenuation plaque burden remained significantly
associated with IGT and T2DM when compared with NGS.

Table 3. Univariate and multivariate linear and logistic regression analysis of plaque volumes, total
coronary artery calcium score, and luminal stenosis of more than 50%. Multivariate model was
adjusted for sex, age, LDL, hypercholesterolemia, smoking, BMI, and CRP. OR: odds ratio.

NGS vs. IGT β p-Value NGS vs. T2DM β p-Value IGT vs. T2DM β p-Value

Unadjusted model
Calcified PPV −0.01 0.7 0.18 0.1 0.4 0.1

Non-calcified PPV −0.04 0.02 −0.03 0.002 −0.03 0.2
Low–attenuation PPV 0.14 0.01 0.12 0.007 0.08 0.3

Stenosis > 50% 1.8 0.07 2.1 <0.0001 2.4 0.05
Adjusted model

Calcified PPV −0.09 0.6 0.13 0.3 0.20 0.5
Non-calcified PPV −0.02 0.1 −0.02 0.08 −0.01 0.5

Low-attenuation PPV 0.12 0.02 0.09 0.02 0.07 0.4
Stenosis > 50% 1.3 0.5 2.7 0.03 1.8 0.2

4. Discussion
In this cross-sectional study, we investigated the associations between plaque compo-

sition and burden in groups representing different stages of dysglycemic progression. Our
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findings indicate the following: (i) Plaque composition varies significantly, with a signifi-
cant trend of incremental increase in non-calcified and low-attenuation plaque observed
moving from normal glycemic status to impaired glucose tolerance and type 2 diabetes.
However, the total plaque burden did not vary across groups. (ii) Patients with IGT and
T2DM showed a higher burden of low-attenuation plaque compared to those classified
as NGS.

4.1. Dysglycemia and CAD

Type 2 diabetes mellitus is a well-recognized risk factor for plaque accumulation and
the development of CAD [21–23]. In contrast, the impact of preDM, expressed as IFG and
IGT, is not as clear [11]. Previous studies have shown inconsistent results regarding their
influence on atherosclerosis. Some report a significant association, whereas others found no
consistent relationship between CAD and IGT or IFG [5,10,24,25]. This inconsistency has
been further complicated by the multitude of ways to classify preDM. HbA1c has become
the gold standard due to accessibility and because of the methodological impracticalities
of OGTT. However, using HbA1c for diagnosing T2DM and preDM has been shown to
underestimate the incidence of both conditions, and thus, this practice might misclassify
patients at elevated risk of CAD [13].

In our study, we used OGTT as the stratification method to detect dysglycemia,
as this allows for the earliest possible detection of disturbances in blood glucose levels.
Furthermore, the OGTT is the only way to obtain the IGT population. OGTT detects both
IFG and IGT, but since IGT in previous reports has been strongest associated with CAD,
we chose to focus on this population in the present study. For transparency, data on the
IFG population have been included in Supplementary Materials. We found that stratifying
patients using HbA1c values was not associated with plaque burden. This was most likely
due to a lack of statistical power since we did not have a large group of patients with
prediabetic HbA1c values.

4.2. Plaque Burden Across Glycemic Control

Total plaque burden has been associated with an increased risk of CAD and MACE in
previous reports [22], and a trend of increasing plaque volume with worsening dysglycemia
has been observed in previous studies [26–28]. In our study, which used OGTT as a
stratification tool, we found no significant difference in the total plaque burden between
the groups. To the best of our knowledge, this is the first CCTA study to find a similar
trend for dysglycemia and establish T2DM in relation to total plaque volume. Previous
CCTA studies found a higher total plaque burden in patients with T2DM compared with
IGT/preDM, which we did not observe in our data [21,24,29]. This may be attributed to
the good glycemic control in our diabetes cohort, with a mean HbA1c of 52 mmol/mol.
Kim et al. showed that plaque progression was halted with reductions in HbA1c [22],
which might explain our findings in our cohort of well-regulated patients with T2DM.
Additionally, we found elevated CRP levels in the IGT group compared to NGS and T2DM.
While CRP is a well-established marker of systemic inflammation, it did not correlate
with total plaque burden in our study, aligning with evidence that CRP alone does not
independently predict total plaque burden [30]. However, the elevated CRP in the IGT
group may indicate a distinct inflammatory profile at this intermediate glycemic stage,
potentially influencing plaque vulnerability rather than overall burden. Limited research
exists on low-attenuation plaque in IGT patients, leaving a significant gap in understanding
variations in plaque characteristics across the glycemic stage.
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4.3. Trends of Low-Attenuation Plaque, CACS, and Dysglycemia

The importance of coronary artery plaque composition cannot be understated. Stud-
ies have shown correlations between the presence of low-attenuation plaque and an in-
creased risk of myocardial death [17,31]. In our study, we found a trend of increasing
low-attenuation plaque burden by worsening degree of dysglycemia. The same trend was
observed in a cohort study using fasting glucose or HbA1c [21]. IGT and T2DM share key
metabolic pathways, including insulin resistance, hyperglycemia-induced oxidative stress,
and chronic inflammation [32]. These mechanisms are associated with the development of
atherosclerosis [33], which may explain the similar plaque compositions observed in our
study between the IGT and T2DM groups. To the best of our knowledge, this is the first
time such an association has been identified using IGT as a measure of preDM.

Furthermore, we found that CACS showed a significant trend with worsening dys-
glycemia. CACS is known to be higher in diabetic populations and associated with dys-
glycemia [23]. In our cohort, this may also be attributed to higher usage of statins in the
T2DM and IGT groups, as statins are known to promote calcification [34].

4.4. Prognosis and Lack of Guidelines

Patients with preDM, despite the classification method, have an increased risk of CAD
compared with NGS [11,14]. Currently, the guidelines for risk prevention in patients with
preDM are loosely based on T2DM guidelines [35], but dedicated preDM guidelines are
absent. In a Danish cohort, Yahyavi et al. found that patients with sub-diabetic HbA1c
levels had a higher risk of major cardiovascular events compared with patients with T2DM
with excellent glycemic control. A meta-analysis of early intervention studies for patients
with preDM found that early interventions lowered all-cause mortality by up to 17% [36].
However, there was no consensus on medicinal interventions, as most studies focused
primarily on exercise and dietary interventions. In our cohort, patients with IGT were less
medicated and had higher LDL-cholesterol and inflammatory biomarkers compared with
patients with T2DM and NGS.

5. Limitations
This study has several limitations. Since it is an observational study, we cannot

establish causality between dysglycemia and unfavorable plaque composition and burden.
Patients were invited to join the study after CCTA had been conducted, resulting in blood
samples not being taken on the same day. There is daily variability in several metabolic
markers used in this study, which could lead to some inaccuracy. However, this delay
was present for all patients, thus negating some of the possible errors. Using OGTT as a
stratification tool allows for the early detection of dysglycemia, but it relies on a single
measurement of blood glucose and is prone to variability. The uneven distribution of
patients across the three groups could potentially account for the observed similarity in
plaque burdens between the IGT and T2DM groups while also affecting the statistical
power and reproducibility of the findings. We only used one software program for the
analysis of CCTA data, and it could have been beneficial to compare two methodologies
to avoid any inaccuracies. The software used for this study has been validated and
is semi-automated, there is still some manual assessment of plaque, which could lead
to uncertainties.

6. Conclusions
In this observational study, we found an increased burden of low-attenuation plaque

in patients with impaired glucose tolerance and type 2 diabetes mellitus compared with
normal glycemic status. This incremental increase could explain the high incidence of CAD
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in patients with prediabetes. Further research is needed to understand plaque progression
in prediabetic states, explore targeted interventions, and confirm the clinical relevance of
low-attenuation plaque burden in predicting adverse outcomes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines13010028/s1, Table S1 IFG vs. NGS baseline; Table
S2 IFGvsNGS univariate and multivariate analysis.
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