
 

 

 

 

 

 

 

University of Southern Denmark

Influence of next-generation artificial intelligence on headache research, diagnosis and
treatment
the junior editorial board members’ vision – part 2
Petrušić, Igor; Chiang, Chia Chun; Garcia-Azorin, David; Ha, Woo Seok; Ornello, Raffaele;
Pellesi, Lanfranco; Rubio-Beltrán, Eloisa; Ruscheweyh, Ruth; Waliszewska-Prosół, Marta;
Wells-Gatnik, William

Published in:
Journal of Headache and Pain

DOI:
10.1186/s10194-024-01944-7

Publication date:
2025

Document version:
Final published version

Document license:
CC BY-NC-ND

Citation for pulished version (APA):
Petrušić, I., Chiang, C. C., Garcia-Azorin, D., Ha, W. S., Ornello, R., Pellesi, L., Rubio-Beltrán, E., Ruscheweyh,
R., Waliszewska-Prosół, M., & Wells-Gatnik, W. (2025). Influence of next-generation artificial intelligence on
headache research, diagnosis and treatment: the junior editorial board members’ vision – part 2. Journal of
Headache and Pain, 26(1), Article 2. https://doi.org/10.1186/s10194-024-01944-7

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

            • You may download this work for personal use only.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying this open access version
If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 30. Apr. 2025

https://doi.org/10.1186/s10194-024-01944-7
https://doi.org/10.1186/s10194-024-01944-7
https://portal.findresearcher.sdu.dk/en/publications/4ea1c41f-b85b-4672-b44e-d76db264fa47


R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Petrušić et al. The Journal of Headache and Pain            (2025) 26:2 
https://doi.org/10.1186/s10194-024-01944-7

The Journal of Headache 
and Pain

*Correspondence:
Igor Petrušić
ip7med@yahoo.com

Full list of author information is available at the end of the article

Abstract
Part 2 explores the transformative potential of artificial intelligence (AI) in addressing the complexities of headache 
disorders through innovative approaches, including digital twin models, wearable healthcare technologies and 
biosensors, and AI-driven drug discovery. Digital twins, as dynamic digital representations of patients, offer 
opportunities for personalized headache management by integrating diverse datasets such as neuroimaging, 
multiomics, and wearable sensor data to advance headache research, optimize treatment, and enable virtual 
trials. In addition, AI-driven wearable devices equipped with next-generation biosensors combined with multi-
agent chatbots could enable real-time physiological and biochemical monitoring, diagnosing, facilitating early 
headache attack forecasting and prevention, disease tracking, and personalized interventions. Furthermore, AI-
driven advances in drug discovery leverage machine learning and generative AI to accelerate the identification of 
novel therapeutic targets and optimize treatment strategies for migraine and other headache disorders. Despite 
these advances, challenges such as data standardization, model explainability, and ethical considerations remain 
pivotal. Collaborative efforts between clinicians, biomedical and biotechnological engineers, AI scientists, legal 
representatives and bioethics experts are essential to overcoming these barriers and unlocking AI’s full potential 
in transforming headache research and healthcare. This is a call to action in proposing novel frameworks for 
integrating AI-based technologies into headache care.
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Introduction
The year 2024 is very exciting for the artificial intelligence 
(AI) community. Geoffrey Hinton and John Hopfield 
were awarded the Nobel Prize in Physics for their foun-
dational work on machine learning (ML) and artificial 
neural networks, which laid the groundwork for modern 
AI technologies. Additionally, the Nobel Prize in Chem-
istry honored David Baker, Demis Hassabis, and John 
Jumper for their pioneering work in using AI for protein 
structure prediction, with profound implications for drug 
discovery and understanding complex biological mecha-
nisms [1]. This milestone signifies the convergence of AI 
with traditional scientific fields, suggesting exciting pros-
pects for medical and healthcare innovation.

In the field of headache medicine, AI has the potential 
to advance understanding, improve diagnostic accuracy, 
and facilitate personalized treatment approaches, poten-
tially redefining the standard of care for headache dis-
orders [2–4]. An example is the study that received the 
American Headache Society 2024 Harold G. Wolff Award 
using ML to predict treatment response to migraine pre-
ventive medications, as a step forward to advance per-
sonalized, precision migraine treatment using AI [2]. By 
integrating diverse data sources—ranging from neuroim-
aging and genetic data to patient-reported outcomes and 
real-time data from wearable devices—AI can address 
the heterogeneity in headache presentations and enable 
more targeted interventions (See Fig. 1).

Building on Part 1 [4], this review aims to explore the 
current and future applications of AI in the headache 

field, presenting a forward-looking vision for personal-
ized headache care. By outlining developments in the 
digital twin research field, as well as AI-driven wearable 
healthcare technology solutions and new treatment dis-
coveries boosted by AI, we highlight the transformative 
role of AI in revolutionizing headache research, diagno-
sis, and treatment. This review calls for action to set a 
framework for the involvement of AI scientists and neu-
roengineers in headache research for the development 
of standardized frameworks, collaborative ecosystems, 
and equitable strategies for AI in headache diagnosis and 
treatment.

Digital twin
The digital twin concept
A digital twin is a digital representation of a real-world 
object. The concept originally stems from production 
technology [5, 6]. There, the digital twin is a digital model 
of a physical process (e.g. a machine) that is connected to 
the real-world object by a “digital thread”. Via the digital 
thread, the digital twin continuously receives information 
from physical sensors capturing the state of the machine. 
This information is used to continuously update the 
model (i.e. adapt model parameters) to achieve the best 
current representation of the real-world machine [7]. 
However, information flow in the digital thread is bidi-
rectional. For example, the digital twin can detect devia-
tions between the desired output and the real output and 
initiate actions (e.g. parameter modifications of the real 
machine) to improve the real output. It can also predict 
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future outcomes and thus identify the need for preven-
tive action, therefore saving time and money [8]. A digi-
tal twin can also be used to perform digital experiments. 
For example, the effects of parameter changes could first 
be evaluated using the digital twin, and only the most 
promising parameters tested in the real world—thereby 
saving both time and money. In addition, the digital twin 
provides detailed digital information on the current state 
of the real-world object without the need to be on-site 
[9]. The digital twin therefore is a dynamically chang-
ing digital representation of a real object, with a model 
based on several factors, including previous knowledge 
(i.e. of physical laws), historical data (i.e. from similar 
constellations), the current state of the real world object 
from physical sensors, and longitudinal data from previ-
ous states of the object and its reactions to external influ-
ences [10].

There is a multitude of emerging applications of digital 
twins in medicine, and these will allow groundbreaking 
steps towards personalized medicine [11]. Potentially, 
the digital twin could be a complete representation of 
the human body, including omics and imaging data, con-
tinuously updated through data from sensors monitoring 
body functions and environmental influences [9]. Practi-
cally, there is a need to first model smaller entities, and 
promising results of digital twin applications have been 
reported in different fields [12], including neuroscience 
[6]. For example, the onset of cerebral atrophy in mul-
tiple sclerosis has been analyzed by comparing it with 
“healthy” digital twins [13], and a virtual trial has been 
conducted to identify actions to improve pain control 
achieved by fentanyl patches in cancer patients [14]. In 
addition, digital twins in neuroscience enable the model-
ing of brain function and pathology, since they offer an 
in-silico approach to studying the brain, and illustrat-
ing the complex relationships between brain network 

dynamics and related functions [15]. Possible applica-
tions in migraine and other headache disorders have 
been previously discussed in detail [16].

Building a digital twin for headaches
The quality of a digital twin depends on the data available 
to the model. Factors having been identified as predic-
tors of headache outcomes have to be included such as 
age, sex, body mass index, headache diagnosis, headache 
characteristics and other headache diary information 
(e.g. frequency, intensity, duration, medication, effect, 
headache location, associated symptoms and migraine 
attack triggers), psychological cofactors and psychiatric 
comorbidities (e.g. depression, anxiety, bipolar disorder), 
response to present and previous preventive medications, 
comorbidities and comedication [2, 17, 18]. In addition, 
omics and imaging data would make important contri-
butions [19, 20]. Regarding sensor data, data-capturing 
known elements of headache or migraine pathophysi-
ology might have the strongest potential [21–23]. This 
might include real-time assessment of cranial vasodila-
tion, levels of calcitonin gene-related peptide (CGRP) 
or other potential biomarkers for migraine, neck muscle 
tension, electroencephalography (EEG) or evoked poten-
tials. While these assessments are becoming more acces-
sible, data from common methods (such as heart rate 
(HR), physical activity, sleep quality, and perceived stress 
level) are much easier to obtain, although they likely 
have a more indirect relationship to headache [24–26]. 
Automatically captured information collected through 
wearable technologies or personal devices is more user-
friendly and offers a higher likelihood of comprehensive 
data collection compared to self-reported, or diary-based 
methods, which are often prone to low completion 
rates. In addition to data on body function, data from 
the environment should be incorporated (e.g. weather, 

Fig. 1 Overview of current and proposed wearable devices for headache management
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noise, travel), as these factors have been used to forecast 
migraine attacks [27].

Possible applications of digital twins in headaches
Diagnosing headache disorders
One of the most time consuming aspects of headache 
medicine is the diagnosis of patients. When evaluat-
ing patients, prior medical history must be reviewed, 
since some comorbidities may play a significant role in 
patients’ current headache, or may contraindicate certain 
acute or preventive drugs (e.g. asthma or gastric disor-
ders) [28]. Prior medical history is relevant in the detec-
tion of certain secondary headache disorders, such as 
intracranial neoplasms or infections. Digital twins could 
eventually check whether patients exhibit any headache-
specific red flags, and in that case, suggest which are the 
most adequate exams [29]. Once secondary headache 
disorders have been ruled out, the diagnosis of a primary 
headache disorder should be considered. The digital twin 
could identify the phenotypic aspects that support the 
specific diagnosis, such as migraine, tension-type head-
ache or cluster headache [30]. However, a number of 
potential biases arise in clinical practice, such as insuf-
ficiently detailed data due to lack of time or inadequate 
data collection and inaccurate information due to recall 
bias. These challenges could be tackled with wearable 
multimodal AI-based biosensors capable of collecting 
and analysing continuous and objective data in individu-
als who are undergoing evaluation for specific headaches 
in real-world settings.

Prediction of individual therapy outcome
One of the most useful applications would be individual 
prediction of therapy outcome for specific treatment 
types, e.g. CGRP-targeting therapies or classical oral pre-
ventives. This would immensely improve headache care, 
reducing the time to find an effective medication [31]. As 
several predictors have already been identified in conven-
tional studies [17] and with ML methods [2], there is a 
large potential for prediction by a digital twin with access 
to large amounts of data. After treatment initiation, the 
digital twin might be able to detect success or failure 
earlier, allowing modification of treatment decisions. 
However, a possible downside of employing treatment 
prediction tools might be insurance companies or reim-
bursing agencies limiting payments only to patients who 
are likely to respond, thus reducing treatment options for 
difficult-to-treat patients. In addition, digital twin deci-
sions must be explainable, so that physicians, patients, 
and policymakers can understand how recommenda-
tions are made. Another important advantage is the early 
detection of adverse effects. They impair patients’ qual-
ity of life, even when the therapies are effective, and there 

is no need for suffering from bothering symptoms when 
other treatment alternatives exist.

Forecasting migraine attacks
Another application would be to forecast impending 
attacks, allowing for early and effective acute treatment. 
Although migraine patients are able to predict their 
attacks from premonitory symptoms [32], continuously 
logging premonitory symptoms in electronic diaries 
would be time-consuming. However, some premonitory 
symptoms such as neck muscle tension might be acces-
sible to wearable sensors, and additionally, AI sensors 
could collect EEG data during sleep and exposure to 
stress, two important trigger factors for headache attacks 
[25, 26, 33]. On the other hand, prediction of medium- 
and long-term headache course would also be useful. 
Knowing if a current exacerbation is temporary or the 
beginning of migraine chronification would allow to indi-
vidually tailor treatment and initiate timely interventions.

Virtual trials
Digital twin technology can also be used to conduct 
virtual trials. Apart from using the digital twins of real 
patients for the simulation of treatment effects or fore-
cast migraine attacks, larger virtual populations can 
be created by varying parameters obtained from real 
patients while observing parameter correlations. Virtual 
trials can then be performed on these larger virtual popu-
lations [13]. This approach could be especially useful in 
drug development.

Patient counselling
Based on continuously available patient data, e.g. on 
potential triggers such as sleep, stress or too little physi-
cal activity, or on exacerbating factors such as medica-
tion overuse, the digital twin could counsel the patient on 
health behaviors or interact with the treating physician 
via chatbots [34]. The digital twin might also advise a visit 
with the physician based on unfavorable headache devel-
opments, such as increased headache frequency or inten-
sity, or a change in headache features. Furthermore, this 
could lead to the proactive involvement of the patient, 
upgrading the treatment experience and ultimately a 
more satisfactory relationship between patient and physi-
cian. The use of chatbots has also limitations. Some head-
ache patients may present with unusual clinical features 
that require personal attention by a physician. Addition-
ally, headache triggers may vary based on factors such 
as ethnic background, lifestyle, or geographical location. 
These factors should be accounted for when chatbots 
are fine-tuned for personalized counselling of headache 
patients.
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Remote monitoring and telemedicine
Because digital twins could implement approaches such 
as the Internet of Things, including devices with sensors, 
processing ability, software, and other technologies that 
connect and exchange data with other devices and the 
cloud, telemedicine is much facilitated [35]. Studies have 
demonstrated high patient satisfaction using telemedi-
cine for headache care [36]. One example would be that 
the digital twin could remote visits with physicians when 
headache deterioration or medication overuse occurs in 
a specific patient, making early interventions possible. 
Even more, physicians might be able to trial and adjust 
treatment plans in a risk-free environment, observing 
long-term impacts on migraine progression and man-
agement in a personalized digital twin platform, and 
changing prescriptions without the need for patients to 
visit the clinic [35]. However, the legal regulations and 
responsibilities need to be clearly outlined to create a safe 
environment for both physicians and patients.

For the best use of the technology, the large amount of 
information available within a digital twin must be dis-
played in an intelligent way so it can support decisions 
of the physician and the data-based discussion of treat-
ment choices with the patient [37]. This needs user-
friendly and customizable visualization of data and their 
correlations.

Medical education
The model derived from a fully trained digital twin could 
be used for interactive medical education, where students 
could learn from the effects of their treatment choices on 
a digital twin or even a cohort of digital twins [38]. There-
fore, the use of digital twins in headache education would 
bridge the gap between theoretical knowledge and prac-
tical application. For example, some headache disorders 
or comorbidities, such as trigeminal autonomic cepha-
lalgias, or moyamoya vasculopathy, are less commonly 
encountered during medical training given the low prev-
alence. A digital twin can model such cases, providing 
valuable exposure and practice in diagnosing and manag-
ing rare headache syndromes [39]. Also, neurology train-
ees could receive immediate feedback on their treatment 
choices, enabling them to learn from mistakes without 
patient harm, and reinforcing best practices in headache 
management. Moreover, offering a safe, interactive, and 
personalized learning environment, empowers physicians 
to make informed, evidence-based decisions, ultimately 
improving patient outcomes. The integration of such 
technology aligns with a growing focus on personalized 
medicine and precision training in neurology and other 
specialities related to headache diagnosis and treatment.

Next-generation digital twin in the headache field
While no digital twin for headache has been developed 
yet, elements are becoming available, as discussed in 
several recent reviews on the use of AI in headaches [3, 
4, 40]. For example, wearable EEG data have been used 
for the prediction of the migraine phase [41] and AI has 
been used to diagnose migraine with aura based on imag-
ing data [18], to classify headaches according to ICHD-3 
diagnoses based on clinical data [42] and to predict 
response to preventive treatments [2, 16]. An important 
limitation to the creation of digital twins is the lack of 
definite biomarkers for primary headache disorders, so 
potential digital twins are based upon several hypoth-
eses. Nevertheless, AI algorithms applied to large datas-
ets could uncover latent patterns in headache disorders, 
compensating for the absence of single specific biomark-
ers, and thereby improving the identification of headache 
phenotypes.

In the process of development of digital twins in the 
field of headaches, we recognize the challenges to digi-
tal twins in medicine, such as limited accessibility of 
health data and high demands on information process-
ing and storage. Furthermore, digital twins require a 
robust infrastructure for integrating diverse datasets 
(e.g., neuroimaging, electrophysiology, and clinical data). 
The heterogeneity in data quality, collection protocols, 
and formats across healthcare centers poses significant 
obstacles. In addition, digital twin models require sophis-
ticated computational infrastructure, including real-time 
data processing and high-dimensional modeling. These 
requirements may be inaccessible in resource-limited 
healthcare systems, exacerbating global disparities in 
headache care. Ethical concerns also have to be consid-
ered, including the potential for discrimination based on 
health profiles [4, 35]. Data protection is of paramount 
importance when processing large amounts of personal 
and health data. Compliance with regulations like the 
General Data Protection Regulation (GDPR) is critical 
but complex to implement. Awareness is needed that dig-
ital twins are only statistical models that operate on prob-
abilities and can, at least at the time being, never be a 
complete representation of an individual. Therefore, sug-
gestions made by a digital twin need regular evaluation 
by a physician. AI models are often developed using data-
sets from academic centers, which may not adequately 
represent the general patient population and could 
introduce potential biases into the algorithms. There-
fore, without large-scale, validated studies, the adop-
tion of digital twins by clinicians and regulatory bodies 
will be slow. Thus, steps to enhance the usability of the 
digital twin paradigm in headache healthcare should 
be based on the prioritization of biomarker discovery 
(investing in multidisciplinary research to identify and 
validate biomarkers for headache disorders, focusing on 
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neuroimaging, genetics, and proteomics markers), creat-
ing collaborative networks among headache researchers 
and AI scientists to develop shared data repositories and 
modeling standards, empowering pilot studies to test the 
utility of digital twins in specific headache subtypes (e.g., 
migraine with aura), and developing robust ethical and 
regulatory frameworks to address privacy, data owner-
ship, and equitable access.

Wearable healthcare technology driven by artificial 
intelligence solutions
Wearable healthcare technology
Wearable healthcare technologies play a crucial role in 
building a successful digital twin model. They are inno-
vative tools designed to continuously and non-invasively 
monitor physiological and biochemical parameters. 
These small electronic devices, worn on the body or inte-
grated into clothing and accessories, have transformed 
how health data is collected and analyzed [43]. With 
advancements in electronics, computing, and materi-
als science, wearable devices are now more compact, 
sensitive, and cost-effective [44]. They incorporate tech-
nologies such as photoplethysmography (PPG), gyro-
scopes, and accelerometers for physiological monitoring, 
enabling the application of precision medicine beyond 
traditional clinical settings [43, 45]. In the future, high 
miniaturization will allow the integration of multiple bio-
sensors on the chip embedded in the human body, tar-
geting a specific biomarker of interest or allowing a rich 
multiparametric analysis. Moreover, data will be wire-
lessly available to the patient or physician in real-time 
through a secured data infrastructure.

In the field of headache care, wearable devices have 
already opened new possibilities for diagnosis, treatment, 
and monitoring [40]. By leveraging AI, wearable devices 
can process vast amounts of data to identify patterns, 
predict symptoms, and guide personalized interventions.

Wearable devices and proposed applications for headache 
disorders
In addition to biophysical signals like HR, recent 
advances in electrochemical biosensors enable the mea-
surement of biochemical signals directly from bodily flu-
ids like sweat or interstitial fluid [46–48]. These sensors 
provide real-time insights into metabolic and hormonal 
activity, offering a deeper understanding of the physi-
ological changes associated with headache disorders. The 
integration of biochemical and biophysical data would 
further enhance the potential of wearable devices. Here, 
we aim to examine the characteristics of various wearable 
devices, examples of their use in other medical fields, and 
their potential applications in headache disorders.

Smartwatches and wristbands
Smartwatches and wristbands are widely used for real-
time monitoring of HR, HR variability (HRV), sleep pat-
terns, and physical activity [44]. Equipped with sensors 
like accelerometers and optical HR monitors, they excel 
in seizure detection, atrial fibrillation monitoring, and 
sleep tracking [49–51]. Their portability, user-friend-
liness, cost-effectiveness, and wireless connectivity to 
smartphones make them practical tools for continu-
ous health monitoring. However, some limitations exist. 
Data accuracy can vary significantly depending on how 
tightly the device is worn, leading to a trade-off between 
user comfort and ideal accuracy [52]. Additionally, there 
is often a noticeable difference in accuracy between day-
time and nighttime measurements. Due to these factors, 
as seen in previous studies, research often focuses on 
using nighttime data to predict headaches for the fol-
lowing day [53]. One important advantage is the wide 
distribution of these devices in the population and the 
possibility of creating specific software that can be inte-
grated into them.

Smart rings
Smart rings utilize PPG technology to measure HR and 
HRV, offering similar functionalities in a smaller, more 
convenient form [54]. The integration of PPG or bio-
impedance with ML enables continuous, cuffless blood 
pressure monitoring, making them a valuable tool for 
health tracking [55]. While smart rings share many 
advantages and disadvantages with smartwatches, they 
tend to have a relatively higher price point. Additionally, 
their performance can be affected if the ring does not fit 
properly on the finger of the user, potentially leading to 
challenges in accurate data collection [54].

Smart contact lenses
Smart contact lenses are wearable ophthalmic devices 
that go beyond vision correction, incorporating advanced 
electronic components such as sensors, microprocessors, 
and wireless communication modules [46]. Recently, 
research has explored the use of piezoresistive sensors or 
microfluidic systems to enable continuous 24-hour moni-
toring of intraocular pressure (IOP) [56]. Additionally, 
these lenses can measure glucose levels in tears, allow-
ing for continuous blood glucose monitoring in diabetic 
patients [56]. Some smart contact lenses are equipped 
with integrated heaters to improve blood circulation 
around the eyes and stimulate tear production, poten-
tially alleviating symptoms of dry eye [56]. Their compact 
size and convenience make them ideal for daily wear and 
data collection. However, the durability of sensitive elec-
tronic components and the potential for discomfort or 
irritation with long-term use remain challenges.
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In the context of headaches, IOP monitoring with 
smart contact lenses could help study the relationship 
between migraine and glaucoma, or identify headache 
triggers [57]. Furthermore, these lenses could track 
changes in IOP following optic nerve sheet fenestration 
for idiopathic intracranial hypertension [58]. The ability 
of the amperometric biosensor to analyze target analytes 
could potentially be applied to headache research for 
monitoring related biomarkers.

Wearable patches
Wearable patches are innovative devices designed to 
adhere to the skin and perform functions such as moni-
toring body temperature, sweat analysis, muscle activity, 
or delivering medications [46, 48]. Using microfluidic 
devices, these patches can analyze sweat secretion in 
real-time, while electrochemical sensors provide insights 
into biomarkers like sweat pH or levodopa levels [59]. 
Additionally, patches equipped with microneedle arrays 
enable pain-free insertion into the skin, allowing real-
time monitoring of biomarkers such as lactate, glucose, 
or alcohol from interstitial fluid beneath the skin [60].

Imbalances in sweat electrolytes (e.g. sodium, potas-
sium) or changes in pH may indicate metabolic shifts 
or autonomic dysfunction, which is associated with 
migraine and other headache disorders [61]. Further-
more, tracking cortisol levels via wearable patches could 
help identifying stress-induced headache episodes [62].

Mouthguard
Wearable mouthguard is an intraoral device that holds 
potential as a method for diagnosis and monitoring head-
aches, thanks to its ability to non-invasively collect saliva 
in real time [48]. Although research in this area is in its 
early stages, preliminary studies have demonstrated mea-
suring and monitoring glucose, nitrate or uric acid levels 
in saliva [63, 64]. In the context of migraine, evidence sug-
gests that saliva contains elevated levels of specific bio-
markers during attacks, such as glutamate, inflammatory 
markers, and CGRP [65, 66]. This highlights the potential 
of wearable mouthguards for headache research, offering 
a non-invasive way to monitor these biomarkers in real-
time. However, several challenges remain. Oral bacteria 
and food intake can interfere with sensor accuracy, and 
user compliance may be low due to discomfort [48].

Smart textiles
Smart textiles are fabrics with special functionalities 
such as electrical conductivity, moisture management, 
and sensing capabilities [48]. These have been utilized as 
smart shirts for ECG monitoring, respiratory rate moni-
toring, and headbands for EEG monitoring [67]. Addi-
tionally, smart textiles can adapt to ambient temperature 
by generating or dissipating heat, offering personalized 

thermal regulation. However, high manufacturing costs 
and washing durability remain key limitations.

Studies of wearable technologies in headache
Wearable technologies have been studied in clinical set-
tings for their potential in headache management, pri-
marily focusing on migraine prediction (Table 1).

Stubberud et al. employed ML on smartphone dia-
ries and wearable data with a random forest model and 
showed promise for migraine attack forecasting [26]. 
Moreover, another study developed wearable-based 
models for early migraine detection, achieving over 84% 
balanced accuracy with sleep data and quadratic dis-
criminant analysis [25]. Kapustynska et al. utilized wear-
able sensors and ML to monitor pre-migraine biomarker 
patterns, identifying electrodermal activity, skin tem-
perature, and accelerometer data as key predictors with 
an XGBoost model achieving 81% accuracy [68]. Fur-
thermore, De Brouwer et al. demonstrated that adapted 
ICHD-3 criteria and wearable-based data improve 
headache attack classification [69]. Pagán et al. assessed 
hemodynamic monitoring using wireless body sensor 
networks, demonstrating patient-specific models with 
a 47-minute prediction window and low false-positive 
rates using the numerical subspace state space system 
identification method [70]. Martins et al. analyzed EEG 
changes during migraine cycles, finding reduced delta 
and increased beta power at 24  h before migraine and 
reduced P300 amplitude during attention tasks [71]. Con-
nelly et al. evaluated the feasibility of wearable biosensors 
and smartphones for migraine monitoring in adolescents, 
achieving high self-reported data compliance (89%) and 
wearable usage (18.7 h/day) with moderate acceptability 
(63–100%) [72]. These studies highlight the potential of 
wearable and ML technologies in enhancing migraine 
prediction, monitoring, and treatment. Future devel-
opments could incorporate additional environmental 
triggers, such as barometric pressure and outdoor tem-
perature that are potential migraine triggers [73]. Large-
scale, long-term passive tracking of vital parameters 
could provide robust training data for AI models. Fur-
thermore, integrating multiple data sources from both 
diurnal and nocturnal recordings could enhance pre-
dictive accuracy, guide acute treatment strategies, and 
advance our understanding of migraine.

Limitations of wearable devices
Wearable devices present innovative possibilities in the 
diagnosis and management of headaches, but they also 
share some common and significant limitations. From 
a technical perspective, issues such as battery life and 
data accuracy, which can be influenced by sensor type, 
wearing style, and environmental factors, remain chal-
lenges [45]. Devices that prioritize accuracy often require 
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complex calibration or maintenance, which can deter 
regular use. For example, EEG headbands for migraine 
monitoring may need precise placement and frequent 
adjustments to ensure reliable data capture. Further-
more, their widespread adoption is hindered by several 
limitations related to usability, user compliance, and 
data security. The trade-off between these factors lim-
its the scalability of wearable devices in clinical practice, 
where both reliable data and ease of use are essential. In 
addition, psychological barriers, such as mistrust in the 
technology or perceived privacy risks, also affect com-
pliance. Clear communication about the benefits and 
limitations of wearable devices is essential to build trust 
among users. Also, wearable devices often collect sen-
sitive physiological and behavioral data, making them 
attractive targets for cyberattacks. Thus, ensuring adher-
ence to privacy regulations requires robust encryption 
and data management protocols [44]. Given the large 
amount of information collected, data storage space in 
the cloud and computational resources should be con-
sidered. From the perspective of the user, concerns about 
comfort and adherence can affect their widespread adop-
tion [72]. Headaches are highly complex conditions, with 
individual variations in symptoms, triggers, and treat-
ment responses and fluctuating lifetime course of disease, 
making it difficult to develop generalized models that 
work for everyone [40]. Addressing all these challenges is 
critical to maximizing their potential in both clinical and 
research settings.

In summary, wearable devices hold great promise in 
the diagnosis, management, and treatment of head-
aches, offering innovative tools to monitor physiological 
and biochemical parameters in real-time. While chal-
lenges like data accuracy, cost, and privacy concerns 
remain, advancements in AI and wearable technology 
are expected to overcome these barriers. With further 
research and development, wearable devices could trans-
form headache care into a more personalized, predictive, 
and preventive discipline.

Drug discovery and development boosted by 
artificial intelligence
Drug discovery and therapy optimization are among the 
most significant applications of digital twin models. The 
landscape of drug discovery and development is being 
transformed by the integration of AI through the use of 
ML and deep learning. AI has demonstrated its potential 
in addressing the complexities and challenges inherent in 
drug discovery processes by enabling advanced data anal-
ysis and predictive modeling, becoming a transformative 
technology in pharmaceutical development. For instance, 
AI techniques have facilitated virtual screening, drug 
design and drug-target interaction modeling, establishing 
novel paradigms for predicting both pharmacodynamic 

and pharmacokinetic properties, thereby accelerating the 
drug discovery process and improving cost-effectiveness 
[74]. The integration of AI in describing pharmacokinetic 
and pharmacodynamic properties can optimize drug 
delivery systems, improving the accuracy of pharmaco-
logical predictions, and evaluating potential drug interac-
tions which would be particularly important in patients 
with multiple comorbidities [74].

The development of dedicated platforms like Mol-
Prophet or PandaOmics are revolutionizing the field of 
drug development by prioritizing drug targets with the 
highest probability of success. This is achieved by using 
ML algorithms that analyze diverse datasets, includ-
ing genomic, proteomic, and clinical data, exemplifying 
the practical implementation of AI in early-stage drug 
discovery. For instance, MolProphet is a comprehensive 
tool that integrates various AI methodologies that allow 
for virtual screening, molecular generation, and structure 
optimization [75]. An example of the potential of AI in 
drug development is INS018_055, which was developed 
by Insilico Medicine, for the treatment of idiopathic pul-
monary fibrosis [76]. This compound was AI-generated 
by using the PandaOmics target discovery platform, 
which evaluated lung and kidney fibrosis datasets, identi-
fying potential target proteins, and highlighting the ones 
with the highest probability of success. Later, Chemis-
try42, a deep learning generative chemistry tool, was 
used to design a small molecule targeting the protein of 
interest [77]. This process was completed in less than two 
years, and Phase II trials are currently ongoing, highlight-
ing the efficiency of this approach [78]. It is worth noting 
that the application of AI in drug discovery is not limited 
to small-molecule drugs but it also extends to biologics 
and complex therapeutic modalities [79].

In addition to novel compound generation, AI has been 
pivotal in optimizing existing drug candidates. AI tools 
can assist in predicting the three-dimensional struc-
tures of target proteins, which is essential for effective 
drug design, as well as drug repurposing. This predictive 
capability allows researchers to tailor drug candidates 
to specific biological targets, enhancing the likelihood 
of therapeutic success. The role of AI in drug repurpos-
ing has gained traction, particularly in response to pub-
lic health challenges such as the coronavirus disease 
2019 (COVID-19) pandemic [80]. AI-driven approaches 
have been employed to identify existing drugs that may 
be effective against type 2 severe acute respiratory syn-
drome coronavirus (SARS-CoV-2), thereby expediting 
the development of treatment options. A recent case 
study involving ChatGPT discussed the development 
of a drug for cocaine addiction, showcasing how AI can 
dissect protein-protein interaction networks to forecast 
drug repurposing opportunities [81].
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Despite the great potential of AI in drug discovery and 
development, it is important to also consider its limita-
tions. AI relies on large, often disease-specific, datasets, 
and its performance depends on training data; thus, dis-
orders with small datasets are less likely to benefit from 
AI approaches. Further, the inclusion of clinical data adds 
a layer of complexity to the analysis, since it is not always 
consistent; therefore, data (re)processing and harmo-
nization is crucial, which can be highly labor intensive. 
Most importantly, AI tools predict the efficacy of poten-
tial therapeutic targets based on pattern recognition and 
predictive analytics, but they do not provide the ratio-
nale behind the chosen targets, which is essential for the 
understanding of the pathophysiology of the disease [82]. 
Moreover, the ethical implications and regulatory con-
siderations surrounding AI in drug discovery are criti-
cal. The FDA (U.S. Food and Drug Administration) has 
begun to establish guidelines for the safe and effective 
use of AI/ML technologies in drug development, reflect-
ing the need for a balanced approach that fosters inno-
vation while ensuring patient safety [83]. Of note, user 
compliance is a crucial factor in the success of AI-driven 
drug discovery, particularly in clinical trials and post-
market monitoring. Therefore, ensuring user compli-
ance involves fostering trust in AI systems. This requires 
explainable AI approaches that allow users to understand 
and validate predictions, particularly in drug safety moni-
toring. Lastly, we should consider the specific limitations 
of the use of AI for drug discovery in the field of head-
aches, where there is a lack of pharmacological targets 
and data scarcity issues. To date, CGRP is the only reli-
able therapeutic target in migraine, while several other 
targets are under investigation [84]. The discovery of new 
pathophysiological mechanisms will likely increase the 
number of available therapeutic targets and thus expand 
the potential of AI for drug discovery. Action is needed 
for international collaboration to make large databases 
collecting and integrating multidata about headache 
patients that should tackle the utilization of current small 
datasets.

Despite the above mentioned limitations, as AI contin-
ues to evolve, its role in clinical research will grow, offer-
ing a future where clinical trials are faster, more efficient, 
and more inclusive, including underrepresented groups 
and more diverse populations. For example, in decentral-
ized clinical trials, AI helps faster patient identification 
by analyzing large electronic health records platforms 
and facilitates remote participation by monitoring the 
health of the patients through wearable devices and other 
remote tools. This reduces the need for in-person visits, 
broadening access to patients in diverse locations and 
making trials more convenient.

While AI-driven drug discovery is already making con-
tributions across multiple medical fields, its potential to 

revolutionize the development of treatments for head-
ache disorders remains largely untapped. Migraine, 
though a better-studied condition with an expanding 
treatment landscape, still presents significant challenges. 
A notable proportion of patients with migraine do not 
respond optimally to current therapies or experience 
debilitating side effects [85]. Tension-type headache, 
cluster headache, and trigeminal autonomic cephalalgias 
continue to lack targeted therapeutic options, represent-
ing an area of high unmet need [86, 87]. AI can acceler-
ate the discovery of novel therapeutic targets for these 
conditions by leveraging large datasets from genomics, 
proteomics, and clinical data to identify potential drug 
targets that may have been previously overlooked. For 
example, the ability of AI to model drug-target interac-
tions and predict responses based on patient-specific 
characteristics could enable the identification of novel 
compounds or the repurposing of existing drugs for use 
in tension-type headache or cluster headache, where 
conventional therapies often fall short. AI-based screen-
ing could help identify molecules that interact with 
specific nociceptive pathways, offering hope for more 
effective treatments. Furthermore, an AI-powered chat-
bot designed for headache patients involved in clinical 
trials could inform patients and involve them throughout 
clinical trials, leading to higher retention rates.

In summary, AI can be instrumental in uncovering new 
molecular targets that could lead to more personalized 
treatments, especially for patients who are non-respond-
ers to existing therapies. The ability of AI to generate pre-
dictive models based on complex biological data offers 
the potential for discovering more effective therapies 
for headache disorders, expanding beyond the current 
pharmacological toolbox. It holds particular promise in 
addressing the unmet needs of tension-type headache, 
cluster headache, and specific subgroups of migraine 
patients, facilitating the development of treatments that 
are both more targeted and effective.

Future perspectives and conclusion
The integration of AI into headache research and clini-
cal practice represents a transformative approach to 
understanding, diagnosing, and treating headache disor-
ders. AI-driven advancements in digital twin models and 
omics integration underscore the ability of AI to tackle 
complex data and uncover insights beyond traditional 
analysis in the headache field. However, realizing the full 
potential of AI in headache care requires overcoming 
several challenges, including the need for standardized 
data collection, ethical considerations, legal implications, 
and robust validation of AI models. Collaborative, multi-
institutional efforts are essential to establishing standards 
for data handling and model development. Furthermore, 
closer collaboration between researchers, clinicians, 
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bioethics experts, legal representatives, and neuroengi-
neers is paramount for the realization of these objectives 
in the near future. This paper serves as a call to action 
for all international and national headache societies, 
including board members of relevant scientific journals, 
to unite in proposing novel frameworks for integrating 
AI-based technologies into headache care. Benchmarks 
can be established, and biases minimized for future AI 
solutions in headache research, diagnosis, and treatment 
through the collaborative efforts of all relevant stakehold-
ers. Furthermore, the standardization of study protocols 
that incorporate AI is essential to advance headache clas-
sification and facilitate the discovery of new biomarkers 
[88]. A lack of cohesive strategy has already shown new 
pockets of inequality between worldwide healthcare sys-
tems that have begun implementing AI-based technolo-
gies and those that lack the resources to adopt them. To 
address this challenge, we propose creating a sustainable 
ecosystem that empowers task forces composed of inter-
national and multidisciplinary experts from AI-advanced 
healthcare centers, collaborating with emerging experts 
in AI-underserved countries. This collaboration could 
yield bidirectional benefits, such as establishing large 
databases, creating multiple hubs for external AI model 
validation, and optimizing systemic data collection 
approaches. These efforts will ensure that headache 
patients worldwide, especially those in underserved 
regions, receive equitable and adequate treatment.

In summary, while AI offers groundbreaking opportu-
nities to revolutionize headache care, success will depend 
on a balanced approach that combines technical inno-
vation with careful consideration of ethical and clinical 
implications. As research progresses, AI could pave the 
way for more personalized, efficient, and effective man-
agement of headache disorders, ultimately improving 
the quality of life for countless patients who suffer from 
various forms of headache disorders. The next wave of AI 
implementation in the headache field should be guided 
by headache specialists involved in multidisciplinary and 
multicentric hub collaborations because we are not here 
to simply witness change—we are here to define it.
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