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Abstract

Microgrids play a pivotal role in modern power distribution systems, necessitating precise
control methodologies to tackle challenges such as performance instability, especially dur-
ing islanding operations. This paper introduces an advanced control strategy that employs
artificial intelligence, specifically deep neural network (DNN) predictions, to enhance
microgrid performance, particularly in an islanding mode where voltage and frequency
(VaF) deviations are critical concerns. By utilizing real-time data and historical trends, the
proposed controller accurately forecasts power demand and generation patterns, enabling
proactive planning and optimization of efficiency, reliability, and sustainability in micro-
grid management. One significant aspect of this approach is to establish an intelligent
distributed control system that minimizes reliance on communication devices while ensur-
ing that VaF remains within acceptable limits. Moreover, it consolidates the roles of
primary and secondary controllers within the microgrid and facilitates the prediction of
load changes and load injection processes. This capability significantly reduces microgrid
VaF deviations, enhancing system performance through precise power distribution and
balanced coordination among distributed generators. Consequently, it ensures the stabil-
ity and reliability of the system. In summary, the integration of DNN-based predictive
control represents a significant advancement in microgrid management, providing a solu-
tion to address performance challenges and optimize operational efficiency, reliability, and
sustainability.

1 INTRODUCTION

Microgrids represent adaptable power distribution systems
capable of operating either connected to or independently
from the main grid. They efficiently manage energy generation
and consumption by optimizing energy sources and control-
ling demand [1]. These grids deploy two primary manage-
ment strategies: communication-based and non-communication
methods [2].

To enhance microgrid management, hierarchical control
structures are implemented, consisting of primary, secondary,
and tertiary levels [3]. Primary control (PC) methods, utiliz-
ing droop characteristics like active power–frequency (P–f) and
reactive power–voltage (Q–V), effectively manage power distri-
bution. However, they may inadvertently result in voltage and
frequency deviations (VaF) [4].
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Secondary control (SC) frameworks come in two primary
forms. The centralized framework, despite its prevalence, faces
challenges due to heavy communication and computation loads
[5]. In contrast, the distributed control framework, based on
local information exchanges, has gained significant attention.
Within this framework, distributed generators (DGs) communi-
cate through a network to mitigate VaF deviations [6]. Tertiary
control further optimizes microgrid operation by establishing
set points, thereby enhancing efficiency and performance [7].

Numerous methodologies have been explored in microgrid
control. For example, a decentralized SC introduced in refer-
ence [8] utilizes the average frequency of all DGs instead of
individual output frequencies for each DG. Additionally, refer-
ences [9] and [10] highlight the implementation of SC, which
involves receiving VaF information from the DGs within the
microgrid. This information is used to adjust the frequency of
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each DG source back to its nominal value, correcting devia-
tions from the DG’s nominal values. Moreover, reference [11]
introduces a pinning control strategy for SC in microgrids with
distributed pinning. This strategy selectively involves a small
subset of DGs with access to the frequency reference, guid-
ing the remaining DGs accordingly. Furthermore, reference [12]
proposes a distributed SC method aimed at managing voltage
variations through feedback linearization, leveraging microgrid
parameters exclusively. Another approach outlined in references
[13–17] suggests a general SC structure based on distributed
averaging proportional-integral (PI) control. However, utiliz-
ing a low-bandwidth SC in this case to address VaF deviations
results in slow operation for the microgrid.

The mentioned articles underscore the critical necessity of
continuous information exchange and periodic data transfer
among DGs in microgrids. However, microgrid operations face
challenges due to communication issues, resulting in disruptions
such as delays in data transmission, sudden disconnections,
and reduced efficiency. These faults can lead to instability in
network control, data loss, and significant impacts on decision-
making processes. Addressing these communication challenges
is crucial for ensuring the reliable and efficient operation of
microgrids. References [18] and [19] introduce a distributed
framework for frequency control and intrusion detection
in isolated microgrids, addressing challenges associated with
continuous information exchange. This framework enhances
microgrid flexibility by mitigating the impact of communi-
cation channel limitations. The operation of AC microgrids
presents inherent challenges, such as achieving optimal settling
time, maximum tolerable overshoot, and minimizing steady-
state error. These challenges must be addressed concurrently
with reducing reliance on continuous information exchange in
microgrid control. Achieving excellent performance in terms
of transient response and steady-state frequency recovery is
particularly crucial for microgrids operating in island mode
within low-inertia systems. The variability in power output
and fluctuations of renewable energy sources (RES), coupled
with uncertain load consumption, pose significant challenges
for microgrid systems. These challenges can lead to dynamic
stability issues, including transient power surges, unacceptable
frequency deviations, and voltage fluctuations. Hence, there is
a pressing need for more comprehensive research to address
these critical aspects. References [20–25] focus on controllers
designed for VaF in a droop-based microgrid control sys-
tem operating in island mode. These studies emphasize the
reduction of reliance on communication networks through the
implementation of communication-less control systems. Tradi-
tionally, data collected during microgrid operations has been
seldom leveraged to address the challenges at hand, particularly
in expediting stability attainment during transient states induced
by load changes. In reference [26], it is suggested that by adopt-
ing data-driven approaches in microgrid analysis, it is possible
to identify the dynamic network without previous structural
knowledge. However, this adoption presents challenges, par-
ticularly in managing large volumes of raw data, necessitating
the development of advanced data processing techniques. The
integration of artificial intelligence (AI) into large-scale electri-

cal microgrids holds promise, enabling efficient processing of
system information and facilitating various applications, includ-
ing electrical grid analysis and control. The primary objective of
this paper is to present a method utilizing deep neural networks
(DNNs) for effective microgrid control. Through training the
DNN network, it becomes capable of managing load changes
within the microgrid and adjusting the output power of the DG
system. To comprehend and formulate the DNN, it is neces-
sary to train the model using information received from the SC,
along with voltage and current measurements taken at the out-
put of each DER. These data originate from an AC microgrid
regulated by P–f and Q–V droop characteristics under steady-
state conditions and various operating modes, with control
implemented in a distributed manner. This specific microgrid
serves as the dataset for training the DNN network. Leveraging
this data, it becomes feasible to predict the voltage and current
trends of any distributed generation source through artificial
intelligence. Consequently, this approach eliminates the need
for periodic communication and integrates the tasks of PC and
SC within microgrids to form an intelligent distributed con-
trol (IDC) system. Additionally, by preprocessing the acquired
data, filtering out the information causing voltage and current
fluctuations during transient states, and replacing it with sta-
ble data, it becomes feasible to predict the trends of voltage
and current changes during transient states. Consequently, this
aids in achieving a seamless transition from transient to steady
state. The second chapter of the article explores the funda-
mentals of PC, while the third chapter examines distributed
SC. The fourth chapter emphasizes the integration of AI in
microgrid control, while the fifth chapter showcases simulation
results using Simulink MATLAB. Finally, the concluding chap-
ter summarizes the implications of integrating AI into microgrid
control.

2 FOUNDATIONS AND PRACTICAL
IMPLEMENTATIONS OF PC

In AC microgrid systems, inverters play an essential role in regu-
lating voltage and current based on the amplitude and frequency
of the distributed voltage. Droop properties, such as P–f and
Q–V, are crucial in microgrid control, particularly in scenar-
ios without communication devices. These characteristics define
the VaF values for various power levels, with the goal of keep-
ing them within acceptable limits [27, 28], and [29]. The control
formula for P–f is given by:

f = f ∗ − m (P − P∗ ) (1)

Here, utilizing control coefficients denoted by m and power
references (P*), the active power (P) is adjusted to stabilize
the frequency (f) around a desired value (f*). Similarly, reac-
tive power and voltage are controlled using a similar formula.
Similarly, the control formula for Q–V is given by:

E = E∗ − n (Q − Q∗ ) (2)
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FIGURE 1 P/Q (active power/reactive power) droop characteristic: (a)
q-axis; (b) d-axis.
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FIGURE 2 Schematic diagram of the primary control system.

Here, the reactive power (Q) is adjusted using a control
coefficient ‘n’ and a reference value (Q*), which determines
the sensitivity to voltage fluctuations. E represents the current
system voltage, while E* indicates the desired voltage, typi-
cally aligned with the nominal or expected voltage [30, 31].
Figure 1 depicts the P/Q droop characteristic for the q-axis and
d-axis, following Equations (1) and (2). The diagram in Figure 2
illustrates the PC system, employing P/Q droop control to
calculate the reference voltage for the inverter. A cascaded
voltage–current control loop, equipped with PI controllers, is
employed to regulate the voltage within acceptable limits. This
enhances the voltage stability of the microgrid and ensures reli-
able inverter operation through pulse width modulation (PWM)
switching [32].

3 DISTRIBUTED SECONDARY
CONTROL IN MICROGRIDS

In the microgrid, PC manages each DG locally and focuses on
individual DG operations, while SC provides a higher level of
coordination among all DGs. This involves sharing information
regarding output power, voltage, frequency, and other relevant
factors for making system-wide decisions. The SC employs var-
ious methods, including consensus control and droop control
techniques, to coordinate DGs and adjust their key parame-
ters, thereby enhancing the overall performance of the system.
By promoting coordination between DGs, SC aims to achieve
system-wide objectives such as load sharing, voltage regulation,
and frequency stability [33–36].

The synergy between PC and SC ensures the efficient and
reliable operation of a DG system by leveraging the capabili-
ties and compatibility of DG units while maintaining stability
and quality throughout the wider power system. The proposed
method integrates communication system information to col-
lect data from different DGs and employs a control approach
to optimize system performance and ensure proper operation.

Here is a breakdown of how SC operates in relation to
frequency, voltage control, and reactive power sharing.

When frequency deviates significantly, it adjusts individual
DGs’ power output to restore nominal frequency, maintaining
system stability. The control signal, 𝛿 fDGk

, is calculated using a
PI controller formula [28]:

𝛿 fDGk
= kPf

(
f ∗MG − f̄DGK

)
+ kI f ∫

(
f ∗MG − f̄DGK

)
dt

f̄DGK
=

∑N
i=1 fDGi

N
(3)

In this equation, kPf and kI f represent the parameters of the
PI controller. f ∗MG is the reference frequency for the microgrid.
f̄DGK

denotes the average frequency across all DG units. 𝛿 fDGk
is the control signal produced by the SC system of DGk at every
sample time. In this context, i ranges from 1 to N, where N
represents the number of packages (frequency measurements)
received through the communication system, and K ranges from
1 to n, where n represents the number of DG units.

In voltage control, maintaining voltage levels within accept-
able bounds is crucial. The SC system adjusts DGs to match a
reference voltage. This adjustment, 𝛿EDGk

, is calculated using a
PI control approach:

𝛿EDGk
= kPE

(
E∗

MG − ĒDGK

)
+ kIE ∫

(
E∗

MG − ĒDGK

)
dt

ĒDGK
=

∑N
i=1 EDGi

N
(4)

In this equation, 𝛿EDGk
signifies the voltage adjustment sig-

nal for DGk, while kPE and kIE represent the PI controller
parameters, respectively. E∗

MG denotes the microgrid voltage
reference, and ĒDGK

signifies the average voltage of all DG
units. Additionally, N indicates the number of voltage mea-
surements received via the communication system, providing
insights into the system’s voltage status.

This equation combines both immediate voltage deviations
(proportional term) and accumulated discrepancies over time
(integral term) to ensure stable voltage regulation.

By guiding DGs based on these control signals, the SC
system effectively maintains voltage within acceptable limits,
supporting a high-quality power supply.

Effective sharing of reactive power among DGs is vital for
voltage stability. The SC system collects data on reactive power
generation and compares it to predefined criteria. If imbalances
are detected, specific DGs are instructed to adjust their reactive
power output, restoring equilibrium.
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FIGURE 3 Effect of secondary control on P/Q (active power/reactive
power) Droop Charateristic: (a) q-axis; (b) d-axis.

The control signal, 𝛿QDGk
, is determined as follows:

𝛿QDGk
= kPQ

(
Q∗

MG − Q̄DGK

)
+ kIQ ∫

(
Q∗

MG − Q̄DGK

)
dt

Q̄DGK
=

∑N
i=1 QDGi

N
(5)

In this equation, 𝛿QDGk
denotes the reactive power adjust-

ment signal for DGk, while kPQ and kIQ stand for the PI
controller parameters, respectively. Q∗

MG signifies the micro-
grid’s reactive power reference, and Q̄DGK

represents the
average reactive power of DG units. Additionally, N indicates
the number of measurements received through the commu-
nication system. This equation facilitates the proper sharing
of reactive power, promoting voltage stability and balanced
operation.

The described controller system adopts a fully distributed
approach, with each DG unit incorporating both PC and SC.
The SC is strategically positioned between the communication
infrastructure and the PC. This control framework empowers
the management of frequency and voltage as well as the equi-
table distribution of reactive power. Additionally, it is adaptable
enough to extend its capabilities to include active power sharing
in microgrids characterized by high R/X ratios.

In this setup, the SC embedded in each DG unit col-
lects data, including frequency, voltage amplitude, and reactive
power, from other DG units through the communication sys-
tem. It then calculates the average of these measurements and
determines the required control signal to transmit to the PC,
effectively eliminating steady-state errors.

Figure 3 illustrates the successful reduction of frequency and
voltage deviations introduced by the PC within the microgrid
units, thanks to the SC. It demonstrates that the SC exclusively
enhances the primary response until the frequency returns to its
nominal value, even when dealing with DGs of varying power
ratings. This approach can be applied similarly to distributed fre-
quency control, where each inverter evaluates the voltage error
and works to alleviate voltage deviations stemming from the Q–
V droop control. By employing the averaging method, the SC
effectively mitigates voltage deviations induced by the PC within
each DG unit, as illustrated in Figure 3a.

Furthermore, Figure 4 presents a comprehensive overview
of the conventional distributed control framework for a DG

FIGURE 4 Traditional distributed control system scheme for each
distributed generation unit in a microgrid.

unit operating in island mode, with a specific focus on the DGk
unit. This process involves the measurement and comparison
of voltage and current levels within the microgrid against their
designated reference values. Upon detecting any deviations, the
relevant information is transmitted to the compensators at the
PC level of all DG units.

4 EMPOWERING CONTROL SYSTEMS
WITH AI

AI is indeed a tool that can establish relationships between
inputs and outputs based on validated data. Its primary advan-
tage lies in its ability to learn from this data and use it to predict
future outputs when new inputs are provided. By leveraging
advanced algorithms and modelling techniques, AI can anal-
yse patterns and make informed predictions or decisions. This
predictive power makes AI a valuable tool in various domains,
ranging from machine learning and data analysis to natural lan-
guage processing and image recognition [37]. The distributed
control system relies on the communication network as its back-
bone, making it prone to various communication challenges,
especially when the communication links are disrupted. This
paper aims to address these challenges by proposing an IDC
network that has a virtual communication link facilitated by AI.
Developing such a controller requires significant amounts of
training data. To collect this data, we have utilized a distributed
control network, as discussed in sections two and three of this
article. Using artificial intelligence, the controller predicts the
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FIGURE 5 An intelligent distributed control scheme for each distributed
generation unit in a microgrid.

data sent by each DG, thereby eliminating the periodic need
for direct communication. In a typical distributed control sys-
tem, variations in the output load cause voltage and current
fluctuations in each DG. Each DG requires time to synchro-
nize its power injection with others to meet the load demand
based on its rated capacity. To address this issue, a PI con-
troller is employed in the distributed control system to minimize
the disparity between the actual and desired voltage and cur-
rent. By leveraging historical data, the controller determines
the necessary power injection from each DG for any alter-
ations in load demand. Through the learning process of a DNN,
the system anticipates the trend of load variations. By integrat-
ing PC and SC in diverse scenarios and loads, the controller
achieves precise allocation of active and reactive power, aiming
to minimize VaF deviations. Consequently, voltage and current
fluctuations are effectively mitigated. Preparing and normalizing
the extra data acquired from microgrid control before training
the DNN is crucial for making the data more suitable and con-
sistent. Techniques such as feature scaling, normalization, or
data transformation can be applied to prepare the data, ensur-
ing it is well-suited for efficient learning and convergence during
the DNN training process. This step contributes to enhanc-
ing the accuracy and performance of the DNN model as a
whole. Figure 5 illustrates the IDC circuit within the microgrid,
employing artificial intelligence. Additionally, Figure 6 illustrates
the architecture of the proposed controller, structured as a
DNN. The first architecture takes the input voltage and output
current of frequency DGs and performs the role of a P–f con-
troller along with the secondary controller in the microgrid. The
second architecture utilizes the output voltage and current of
DGs to control the voltage, adjust reactive power, and perform
the role of a Q–V controller along with the secondary controller
in the microgrid. The architecture of neural networks consists
of several layers, with each layer containing a specific number of
neurons. Here is a breakdown of the neuron configuration for
each layer in Table 1.

Hidden Layer Output 
LayerLayer 2 Layer 3 Layer 4 Layer 5

Theta, E

Input 
Layer Layer 1

vc

iL 

1

1 1
1

1

2

2 2
2

23 3
3

FIGURE 6 The proposed deep neural network controller architecture for
active and reactive power control of microgrid.

TABLE 1 Number of neurons in deep neural network architectures used
for active and reactive power control.

Active power

control

architecture

Reactive power

control

architecture

First hidden layer 5 neurons 10 neurons

Second hidden layer 20 neurons 30 neurons

Third hidden layer 30 neurons 50 neurons

Fourth hidden layer 20 neurons 30 neurons

Fifth hidden layer 5 neurons 10 neurons

These neuron configurations define the structure and capac-
ity of the neural network models used in the proposed
controller.

Incorporating multiple hidden layers empowers the net-
work to engage in deep learning, enabling it to extract
intricate patterns and information from the input data. This
capability proves advantageous for tasks demanding a thor-
ough understanding and processing of complex data. The
DNN architecture enhances the model’s capacity to learn and
has the potential to enhance its performance across various
applications.

The proposed neural network architecture employs a “dense”
or “fully connected” structure, where the neurons in each layer
are connected to all the neurons in other layers. This type of
connectivity enables information to flow freely between any two
neurons in the network, regardless of their position in the layer.
This connection pattern is advantageous for preventing network
saturation during training. Saturation occurs when neuron acti-
vations reach extreme values (close to 0 or 1), hindering effective
learning. By allowing connections between non-adjacent neu-
rons, the information flow becomes more dynamic, preventing
saturation and potentially enhancing the learning process. The
fully connected architecture empowers the network to capture
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FIGURE 7 Architecture of neurons in a proposed deep neural network.
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FIGURE 8 A simulated model depicting a microgrid comprising 12
distributed generation units.

and transmit information from various parts of the network,
making it easier to extract complex patterns and improving
the network’s ability to understand intricate relationships within
the input data. In the described neural network, the activa-
tion function plays a vital role in transforming inputs into
desired outputs while capturing the complex and non-linear
relationships present in the data. As depicted in Figure 7, a
sigmoid activation function, also known as the logistic func-
tion, is employed in the hidden layer. This function maps inputs
to values between 0 and 1, commonly applied in deep learn-
ing for tasks such as binary classification or when the output
is intended to represent probabilities. As depicted in Figure 8,
a sigmoid activation function, also known as the logistic func-
tion, is employed in the hidden layer. This function maps inputs
to values between 0 and 1, commonly applied in deep learn-
ing for tasks such as binary classification or when the output
is intended to represent probabilities. In contrast, the output
layer utilizes the linear activation function. The linear function
generates an output that is directly proportional to the input,
making it well-suited for regression tasks or situations where
non-linear transformations are not needed. By using different
activation functions in the hidden and output layers, the net-
work can learn complex and non-linear data patterns while
ultimately generating linear outputs. However, the choice of
activation functions depends on the specific problem, with dif-
ferent scenarios warranting different activation functions for
optimal results.

The training of the proposed controller, utilizing a DNN
and the Levenberg–Marquardt algorithm, undergoes a sequence
of stages aimed at enhancing the network’s performance. It
commences with the initialization of the network’s weights and
biases. Subsequently, a dataset featuring input data and tar-
get outputs is employed for forward propagation and error

assessment. Gradients are computed through backpropagation,
guiding adjustments to the weights and biases to minimize
the error. The Levenberg–Marquardt algorithm streamlines this
process, dynamically adapting learning rates based on error
surface curvature.

This iterative process continues until a predefined stop-
ping criterion is met, such as a set number of iterations
or achieving the desired training data performance. This
approach amalgamates elements from gradient descent and
Gauss–Newton methods, offering more efficient optimization
compared to conventional gradient-based techniques. Since the
output ranges are significantly different, one related to the angle
and the other to the voltage, separate and specialized networks
should be used. Moreover, it is worth noting that discrete net-
works tend to converge faster and more effectively in such
scenarios. This is because each network is exclusively trained
on its own data set and requires minimal adaptation to other
data sets. Also, due to the complexity of this network, trying to
develop and train it can bring more challenges. Therefore, it was
decided to use two separate networks with the same inputs. By
distributing tasks among these networks, the overall complexity
becomes more manageable.

5 SIMULATION RESULTS

The proposed method was simulated using Simulink within
the MATLAB environment. The configuration, depicted in
Figure 8, delineates the overall structure of the simulated mod-
els for a microgrid consisting of 12 DG units. As illustrated
in Figure 8, each DG system incorporates a renewable energy
source, represented by DC sources. The power electronic inter-
face, typically a DC/AC converter, is a vital component within
every DG system. Each DG unit has the option of a direct con-
nection to a predefined load or a connection to a shared AC bus
for power distribution. DC/AC inverters play a pivotal role in
this process.

The microgrid is equipped with energy sources of the same
rated power. Thorough modelling has been performed for the
DG units, including their interface inverters. Each power source
connects to the shared bus through unique impedance lines and
supplies power to the loads at the common coupling point. A
comprehensive array of control parameters necessary for the
simulation of the microgrid using the proposed control method
is outlined in Table 2. It is important to note that, in this
simulation, all DG units maintain consistent control parame-
ters. Throughout the design phase of this proposed system, it
was crucial to secure a significant volume of input and out-
put data to facilitate effective neural network training. This
goal was accomplished by utilizing data collected from both
the primary and secondary controllers under different load-
ing conditions and during DG entry and exit at various time
intervals.

The dataset has been segregated into two separate subsets:
a training set and a test set. In the context of a DNN, 80% of
the data is designated for training, and the remaining 20% is set
aside for testing and evaluation.
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HASANI ET AL. 2505

TABLE 2 Parameters for electrical and control in the simulated microgrid.

Parameter Symbol Value

Rated phase voltage V ∗ 220 Vrms

Rated frequency f ∗ 50 Hz

LCL filter components L f 8.6 mH

C f 25 µF

𝐋𝐨 1.8 mH

Impedance of the load RL 100 or 50 Ω
Droop control

Active power droop factor K pP 0.00001 Ws/rd

Integral contribution to active power droop KiP 0.0008 Ws/rd

Coefficient for reactive power droop RpQ 0.16 VAr/V

First-level control loop

Voltage proportional component kPV 0.35

Voltage integral component kIV 400

Current proportional component kPC 0.35

Current integral component kIC 200

Secondary control

Proportional component of frequency K p f 0.001

Integral component of frequency Ki f 4/s

Amplitude voltage proportional factor K pE 0.001

Integral part of voltage KiE 0.6/s

Reactive power proportional factor K pQ 0.0001 Var/V

Reactive power integral gain KiQ 0.3 Var/V

Throughout the training process, the DNN progressively
enhances its capacity to create a mapping from input data to the
desired output by iteratively fine-tuning its weights and biases.
The training set serves as the cornerstone of this procedure,
facilitating the step-by-step adjustment of DNN parameters
until the model attains the desired level of accuracy. Once the
training phase is concluded, the test set is utilized to evaluate
the model’s performance and its ability to generalize.

The test set comprises data that the DNN has not been
exposed to during training, enabling an independent assess-
ment of the model’s proficiency in handling input it has not
encountered before. Through the assessment of the DNN’s
performance on the test set, one can estimate the model’s effec-
tiveness in dealing with new and unfamiliar data. This evaluation
offers valuable insights into the DNN’s ability to extrapolate
learned patterns and make predictions regarding data it has
not previously encountered. The practice of dividing a dataset
into training and testing subsets is a fundamental technique in
machine learning designed to combat overfitting. Overfitting
happens when a DNN becomes excessively focused on learn-
ing specific features within the training data, which can hinder
its ability to generalize to new, unseen data. The creation of a
distinct test set facilitates an unbiased evaluation of DNN per-
formance on this novel and unfamiliar data, ultimately reducing
the potential risks associated with overfitting.

At t = 3 s, the load connects to the microgrid, and power
is supplied to the load by distributed generation sources. The
proposed control system accurately allocates power among the
DG units and effectively corrects errors in active and reac-
tive power division. As depicted in Figure 9a, the active power
increases from 0 to 913 W at t = 3 s and stabilizes within about
half a second. In contrast, the controllers referenced in [21]
and [23] compensate for active power division errors relatively
slowly and exhibit power fluctuations. The observed errors stem
from communication delays and power fluctuations resulting
from power coupling, phenomena absent in the outcomes of
the proposed method. Previous studies exhibit prolonged sta-
bilization periods and significant fluctuations in active power
before achieving stability. Nonetheless, the proposed method
adeptly mitigates excessive active power and transient fluctua-
tions, offering a solution to a prominent challenge observed in
earlier methodologies.

In Figure 9b, the reactive power waveform stabilizes quickly
with each load change at t = 3 s and t = 15 s, accurately dis-
tributing reactive power among DG units without fluctuations
to achieve stability. In contrast, the referenced studies [14] and
[22] require more time to achieve stability during load changes.

At t = 15 s, Figure 9a,e illustrates the active power wave-
form of each DG and the effective output current of each
DG, respectively. These figures demonstrate that the micro-
grid, under the proposed control system, exhibits a rapid and
dynamic response to load changes. Additionally, the micro-
grid maintains active power stability with minimal overcurrent,
ensuring effective operation. Compared to the controller meth-
ods described in references [21] and [23], there is a notable
improvement in stability attainment time during load changes,
with negligible transient current. However, it is important to
note that excessive active power may lead to higher currents
from the inverter, posing risks to microgrid stability and inverter
integrity. Therefore, implementing power sharing according to
the capacity of each generation source is crucial to reducing
overload and ensuring swift dynamics, thereby maintaining the
stability and reliability of the microgrid.

The implementation of the proposed control system, as
depicted in Figure 9c,d, significantly reduces VaF deviations,
ensuring they remain within acceptable thresholds. Compared
to the methods mentioned in reference [23], the proposed
method achieves stability for a shorter duration when encoun-
tering deviations caused by changes in voltage and frequency
load during the transient state. Additionally, the frequency
oscillations exhibit less overshoot and undershoot, and they
are damped in a smaller number of oscillations. The rapid
attainment of voltage stability, as depicted in Figure 9c, under-
scores the dynamic and stabilizing capabilities of the proposed
controller. It notably reduces the time required to achieve
stability compared to the methods mentioned in [21] and [23].
Moreover, as evidenced in Figure 9a–e, the proposed controller
demonstrates agile dynamics and effective stabilization with
minimal overcurrent. In addition, integrating AI for predictive
analytics can eliminate the periodic dependence on communi-
cation devices, thus reducing communication disruptions and
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(a)

(b)

(c)

(d)

(e)

FIGURE 9 Performance of the proposed control
method: (a) active power sharing; (b) reactive power
sharing; (c) frequency restoration; (d) voltage amplitude
restoration; (e) current amplitude.
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TABLE 3 Comparative analysis of previous studies and current research.

Reference no.

Frequency

restoration

Active power

sharing

Voltage

restoration

Reactive power

sharing

Resilient to

communication

disruptions Data-driven

[11, 12, 17, 21] Yes Yes No No No No

[10, 15, 16, 23] Yes Yes Yes Yes No No

[14, 22] No No Yes Yes No No

[20, 25] Yes Yes No No Yes No

[26, 27] Yes Yes Yes Yes No Yes

This article Yes Yes Yes Yes Yes Yes

facilitating a smoother transition from transient to steady-state
by anticipating process changes.

6 CONCLUSION

This paper presents a novel distributed control system that
effectively tackles the communication challenges inherent in
traditional distributed control systems while capitalizing on
their benefits. This system facilitates equitable power allocation
among distributed energy sources without relying on periodic
communication devices. By adeptly managing power distri-
bution through VaF adjustments within specified limits, this
approach enhances overall system performance. DNNs lever-
age data from existing control methods to adapt to changing
conditions, predict outcomes, and handle complex non-linear
behaviours. The integration of AI-based optimization algo-
rithms enables efficient resource management by adapting
to dynamic parameters. It swiftly stabilizes the microgrid in
response to changes in output load and injected power, thereby
improving microgrid dynamics.

This customized DNN-based control system enhances
microgrid performance by dynamically adjusting output power
based on various inputs. In summary, the integration of AI into
microgrid control offers promising opportunities to boost per-
formance, streamline operations, and enhance flexibility. This
integration lays the groundwork for adaptive, predictive AI-
based microgrid systems capable of effectively addressing the
challenges of the evolving energy landscape.

Furthermore, Table 3 provides a comprehensive compar-
ative analysis of previous studies and the current research
across various aspects of microgrid control. These aspects
include frequency restoration, active power sharing, volt-
age restoration, reactive power sharing, resilience to com-
munication disruptions, and the utilization of data-driven
approaches.
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